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Abstract. In order to plan a safe maneuver an autonomous vehicle
must accurately perceive its environment, and understand the interac-
tions among traffic participants. In this paper, we aim to learn scene-
consistent motion forecasts of complex urban traffic directly from sensor
data. In particular, we propose to characterize the joint distribution over
future trajectories via an implicit latent variable model. We model the
scene as an interaction graph and employ powerful graph neural networks
to learn a distributed latent representation of the scene. Coupled with
a deterministic decoder, we obtain trajectory samples that are consis-
tent across traffic participants, achieving state-of-the-art results in mo-
tion forecasting and interaction understanding. Last but not least, we
demonstrate that our motion forecasts result in safer and more comfort-
able motion planning.

1 Introduction

Self driving vehicles (SDV) have the potential to make a broad impact in our
society, providing a safer and more efficient solution to transportation. A critical
component for autonomous driving is the ability to perceive the world and fore-
cast all possible future instantiations of the scene. 3D perception algorithms have
improved incredibly fast in recent years [34, 38, 48, 60, 62, 65], yielding very ac-
curate object detections surrounding the SDV. However, producing multi-modal
motion forecasts that precisely capture multiple plausible futures consistently
for all actors in the scene remains a very open problem.

The complexity is immense: the future is inherently uncertain as actor be-
haviors are influenced not only by their own individual goals and intentions but
also by the other actors’ actions. For instance, an actor at an intersection may
choose to turn right or go straight due to its own destination, and yield or go if
the behavior of a nearby traffic participant is aggressive or conservative. More-
over, unobserved traffic rules such as the future traffic light states heavily affect
the traffic (see Fig.1). It is clear that all these aspects cannot be directly ob-
served and require complex reasoning about the scene as a whole, including its
geometry, topology and the interaction between multiple agents.
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(a) Sample 1: protected left turn (b) Sample 2: horizontal traffic flow

Fig. 1: Two scene-consistent future trajectory samples from our model.
Ground truth trajectories are shown as white polylines.

In an autonomy system, detections and motion forecasts for other actors in
the scene are typically passed as obstacles to a motion-planner [49, 54] in order
to plan a safe maneuver. Importantly, the distribution over future trajectories
needs to cover the ground-truth for the plan to be safe, but also must exhibit
low enough entropy such that a comfortable ride with reasonable progress is
achieved. Thus in complex urban environments the SDV should reason about
multiple futures separately [17, 23, 32], and plan proactively by understanding
how its own actions might influence other actors’ behaviors [18,45]. Furthermore,
as self-driving vehicles get closer to full autonomy, closed-loop simulation is
becoming increasingly critical not only for testing but also for training. In a
self-driving simulator [6, 14, 43], smart-actor models [3, 4, 7, 58] are responsible
for generating stochastic joint behaviors that are realistic at a scene-level, with
actors obeying to underlying scene dynamics with complex interactions.

These applications require learning a joint distribution over actors’ future tra-
jectories that characterizes how the scene might unroll as a whole. Since this is
generally intractable, many motion forecasting approaches [9, 11, 12, 20] assume
marginal independence across actors’ future trajectories, failing to get scene-
consistent futures. Alternatively, auto-regressive formulations [51, 57] model in-
teractions at the output level, but require sequential sampling which results in
slow inference and compounding errors [53].

To overcome these challenges, we propose a novel way to characterize the joint
distribution over motion forecasts via an implicit latent variable model (ILVM).
We aim to recover a latent space that can summarize all the unobserved scene
dynamics given input sensor data. This is challenging given that (i) modern
roads present very complex geometries and topologies that make every inter-
section unique, (ii) the dynamic environment is only partially observed through
sensor returns, and (iii) the number of actors in a scene is variable. To address
these, we model the scene as an interaction graph [9,25,31,37], where nodes are
traffic participants. We then partition the scene latent space into a distributed
representation among actors. We leverage graph neural networks (GNN) [2] both
to encode the full scene into the latent space as well as to decode latent samples
into socially consistent future trajectories. We frame the decoding of all actors’
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(a) Independent output (b) Social auto-regressive (c) ILVM (Ours)

Fig. 2: Graphical models of trajectory distribution. Dashed arrows/circles
denote that only some approaches within the group use those components. Dou-
ble circle in (c) denotes that it is a deterministic mapping of its inputs.

trajectories as a deterministic mapping from the inputs and scene latent sam-
ples, making the latent variables capture all the stochasticity in our generative
process. Furthermore, this allows us to perform efficient inference via parallel
sampling.

We show that our ILVM significantly outperforms the motion forecasting
state-of-the-art in ATG4D [62] and nuScenes [8]. We observe that our ILVM
is able to generate scene-consistent samples (see Fig. 1) while producing less
entropic joint distributions that also better cover the ground-truth. Moreover,
when using our scene-consistent motion forecasts, a state-of-the-art motion plan-
ner [54] can plan safer and more comfortable trajectories.

2 Related Work

In this section, we review recent advances in motion forecasting, with a focus on
realistic approaches that predict from sensor data, explicitly reason about the
multi-modality of the output distribution, or model multi-agent interactions.

In traditional self-driving stacks, an object detection module is responsible
for recognizing other traffic participants in the scene, followed by a motion fore-
casting module that predicts how the scene might unroll given the current state
of each actor. However, the actor state is typically a very compact representa-
tion that includes pose, velocity, and acceleration. As a consequence, it is hard
to incorporate uncertainty due to sensor noise or occlusion.

We follow the works of [10, 40, 63], which unified these two tasks by hav-
ing a single fully convolutional backbone network predict both the current and
future states for each pixel in a bird’s eye view grid directly from a voxelized
LiDAR point-cloud and semantic raster of an HD map. This approach natu-
rally propagates uncertainty between the two tasks in the feature space, without
the need of explicit intermediate representations. While these models reason
about uncertainty in sensor observations, they neglect inherent uncertainty in
the actors’ future behavior. [9, 37] add agent-agent interaction reasoning to this
framework. [9] introduces spatially-aware graph neural networks that aggregate
features from neighboring actors in the scene to predict a single trajectory per
actor with gaussian waypoints, assuming marginal independence across actors.
This approach is still limited in expressivity since (i) a uni-modal characteriza-
tion of the future is insufficient for downstream motion planning to make safe
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decisions, and (ii) modeling the marginal distribution per actor cannot provide
trajectory samples that are consistent across actors.

Another research stream [1,13,21,31,35,42,50,51,57] has focused on the prob-
lem of multi-agent trajectory prediction from perfect perception, i.e., assuming
that the ground-truth past trajectory of all actors’ is given. Unfortunately, this
is not realistic in self-driving vehicles, which rely on imperfect perception with
noise that translates into failures such as false positive and false negative de-
tections and id switches in tracking. Nonetheless, these methods have proposed
output parameterizations that can predict multi-modal distributions over future
trajectories, which are applicable to our end-to-end perception and prediction
setting.

Various factorizations of the joint distribution over N actors’ trajectories
p(Y |X) = p(y1, · · · , yN |x1, · · · , xN ) with different levels of independence as-
sumptions have been proposed to sidestep the intractability of p(Y |X). The
simplest approximation is to assume independent futures across actors and time
steps p(Y |X) =

∏
n

∏
t p(y

t
n|X), as shown in Fig. 2a. Some approaches directly

regress the parameters of a mixture of Gaussians over time [11, 12, 39], which
provides efficient sampling but can suffer from low expressivity and unstable
optimization. Non-parametric approaches [26,27,47,52] have also been proposed
to characterize the multi-modality of one actor’s individual behavior. These ap-
proaches either score trajectory samples from a finite set [47, 64] with limited
coverage or predict an occupancy grid at different future horizons [26, 27, 52],
which is very memory consuming. [50] proposed to learn a one-step policy that
predicts the next waypoint based on the previous history, avoiding the time in-
dependence assumption. Variational methods [20, 36] inspired by [29, 56] have
also been proposed to learn an actor independent latent space to capture unob-
served actor dynamics such as goals. Unfortunately, none of these methods can
accurately characterize the joint distribution in interactive situations, since the
generative process is independent per actor.

An alternative approach to better characterize the behavior of multiple ac-
tors jointly is autoregressive generation with social mechanisms [1, 51], which
predict the distribution over the next trajectory waypoint of each actor condi-
tioned on the previous states of all actors p(Y |X) =

∏
n

∏
t p
(
ytn|Y 0:t−1, X

)
.

This approach has been enhanced by introducing latent variables [25,31,57], as
in Fig. 2b. In particular, [31] introduces discrete latent variables to model pair-
wise relationships in an interaction graph, while in [25,57] they capture per-actor
high-level actions. Autoregressive approaches, however, suffer from compound-
ing errors [33,46,53]. During training, the model is fed the ground-truth Y 0:t−1,
while during inference, the model must rely on approximate samples from the
learned distribution. While scheduled sampling [5] has been proposed to miti-
gate this issue, the objective function underlying this method is improper [24]
and pushes the conditional distributions p(ytn|Y 0:t−1) to model the marginal dis-
tributions p(ytn) instead. Moreover, these methods require sequential sampling,
which is not amenable to real-time applications such as self-driving.
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In contrast to previous works, we propose to model interaction in a scene
latent space that captures all sources of uncertainty, and use a deterministic
decoder to characterize an implicit joint distribution over all actors’ future tra-
jectories without any independence assumptions at the output level, as shown
in Fig. 2c. This design features efficient parallel sampling, high expressivity and
yields trajectory samples that are substantially more consistent across actors.

3 Scene Level Reasoning for Motion Forecasting

In this section we introduce our approach to model the joint distribution
P (Y |X) over N actors’ future trajectories Y =

{
y1, y2, · · · , yN

}
given each

actor’s local context X =
{
x1, x2, · · · , xN

}
extracted from sensor data and HD

maps. An actor’s trajectory yn is composed of 2D waypoints over time ytn in
the coordinate frame defined by the actor’s current position and heading. In the
following, we first explain our implicit latent variable model, then introduce our
concrete architecture including the actor feature extraction from sensor data,
and finally explain how to train our model in an end-to-end manner.

3.1 Implicit Latent Variable Model with Deterministic Decoder

We formulate the generative process of future trajectories over actors with a
latent variable model:

P (Y |X) =

∫
Z

P (Y |X,Z)P (Z|X)dZ

where Z is a latent variable that captures unobserved scene dynamics such as
actor goals and style, multi-agent interactions, or future traffic light states.

We propose to use a deterministic mapping Y = f(X,Z) to implicitly
characterize P (Y |X,Z), instead of explicitly representing it in a parametric
form. This approach allows us to avoid factorizing P (Y |X,Z) (as in Fig. 2a
or Fig. 2b) and sidestep the associated shortcomings discussed in Section 2. In
this framework, generating scene-consistent future trajectories Y across actors is
simple and highly efficient, since it only requires one stage of parallel sampling:

1. Draw latent scene samples from prior Z ∼ P (Z|X)
2. Decode with the deterministic decoder Y = f(X,Z)

We emphasize that this modeling choice encourages the latent Z to capture
all stochasticity in our generative process. To this end, we leverage a contin-
uous latent Z for high expressivity. This stands in contrast to previous meth-
ods [25,31,57], where discrete latent Z are employed to model discrete high-level
actions or pairwise interactions, and an explicit P (Y |X,Z) to represent contin-
uous uncertainty.

Producing a latent space that can capture all the uncertainties in any sce-
nario is challenging: scenarios vary drastically in the number of actors N , the
road topology as well as traffic rules. To mitigate this challenge, we propose to
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Voxelized LiDAR

Raster Map

Backbone Network 
and Object Detector Global features and object detections RRoI pooled 
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Fig. 3: Actor Feature Extraction. Given LiDAR and maps, our backbone
CNN detects the actors in the scene, and individual feature vectors per actor
are extracted via RRoI Align [41], followed by a CNN with spatial pooling.

partition the scene latent as Z =
{
z1, z2, · · · , zN

}
, obtaining a distributed rep-

resentation where zn is anchored to actor n in an interaction graph with traffic
participants as nodes. The distributed representation has the benefit of naturally
scaling the capacity of the latent space as the number of actors grow. Further-
more, the anchoring gives the model an inductive bias that eases the learning
of a scene latent space. Intuitively, each latent zn encodes unobserved dynam-
ics most relevant to actor n, including interactions with neighboring actors and
traffic rules that apply in its locality. We represent each zn as a diagonal multi-
variate gaussian zn ∼ N

([
µ1
n(X), · · · , µDn (X)

]
,diag

([
σ1
n(X), · · · , σDn (X)

]))
, as

is common with variational models [29,56]. We emphasize that although factor-
ized, the latent space is not marginally independent across actors since each zn
is conditioned on all x1, · · · , xN as shown in the graphical model in Fig. 2c.

Since integration over Z is intractable, we exploit amortized variational infer-
ence [29,56]. By introducing an encoder distribution Q(Z|X,Y ) to approximate
the true posterior P (Z|X,Y ), the learning problem can be reformulated as a
maximization of the Evidence Lower BOund (ELBO). Please visit the supple-
mentary for a more thorough description of variational inference.

3.2 Joint Perception and Motion Forecasting Architecture

Our architecture consists of an actor feature extractor that detects objects in
the scene and provides rich representations of each actor (Fig. 3), encoder/prior
modules that infer a scene latent space at training/inference respectively, and
a decoder that predicts the actors’ future trajectories (Fig. 4). To implement
the prior, encoder and decoder modules, we leverage a flexible scene interaction
module (SIM) as our building block for relational reasoning (Alg. 1).

Actor Feature Extractor: Fig. 3 shows how we extract per actor features
X =

{
x1, x2, · · · , xN

}
from raw sensor data and HD maps in a differentiable

manner, such that perception and motion forecasting can be trained jointly end-
to-end. We use a CNN-based perception backbone network architecture inspired
by [10,62] to extract rich geometrical and motion features about the whole scene
from a past history of voxelized LiDAR point clouds and a raster map. We
then detect [62] the traffic participants in the scene, and apply Rotated Region
of Interest Align [41] to the backbone features around each object detection,
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Fig. 4: Our Implicit Latent Variable Model encodes the scene into a latent
space, from which it can efficiently sample multiple future realizations in parallel,
each with socially consistent trajectories.

providing the local context for all actors, as proposed by [9]. As mentioned at the
beginning of Section 3, this will be the input to our motion forecasting module.
This contrasts with previous approaches (e.g., [11, 13, 51, 57]) that assume past
trajectories for each actor are given. We refer the reader to the supplementary
material for more details about our perception module, including the backbone
architecture and detection parameterization.

Scene Interaction Module (SIM): This is a core building block of our en-
coder, prior, and decoder networks, as shown in Fig. 4. Once we have extracted
individual actor features, we can frame the scene as a fully-connected inter-
action graph where each traffic participant is a node. Inspired by [9], we use
a spatially-aware graph neural network to model multi-agent dynamics, as de-
scribed in Alg. 1. Our SIM performs a single round of message passing to update
the nodes’ representation, taking into account spatiotemporal relationships.

Encoder: To approximate the true posterior latent distribution P (Z|X,Y ), we
introduce an approximate posterior qφ(Z|X,Y ), implemented by our SIM and
parameterized by φ. This network is also commonly known as recognition net-
work, since it receives the target output variable Y as an input, and thus it can
recognize the scene dynamics that are unobserved by the prior pγ(Z|X). Note
that the encoder can only be used during training, since it requires access to the
ground-truth future trajectories. We initialize the node representations as hn =
MLP(xn ⊕GRU(yn)), where ⊕ denotes concatenation along the feature dimen-
sion. After running one round of message passing, the scene interaction module
predicts the distribution over scene latent variables Z =

{
z1, z2, · · · , zN

}
. We

stress that despite anchoring each partition of the scene latent to an actor, each
individual zn contains information about the full scene, since each final node
representation is dependent on the whole input X because of the message prop-
agation in the fully-connected interaction graph.

Prior: The prior network pγ(Z|X) is responsible for approximating the prior
distribution of the scene latent variable Z at inference time. Similar to the
encoder, we model the scene-level latent space with our SIM, where the only
difference is that the initial node representations in the graph propagation are
hn = MLP(xn), since yn is not available at inference time.
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Algorithm 1 Scene Interaction Module (SIM)

Input: Initial hidden state for all of the actors in the scene
{
h0, h1, · · · , hN

}
. BEV

coordinates (centroid and heading) of the detected bounding boxes
{
c0, c1, ..., cN

}
.

Output: Feature vector per node
{
o0, o1, · · · , oN

}
.

1: Construct fully-connected interaction graph G = (V,E) from detections
2: Compute pairwise coordinate transformations T (cu, cv), ∀(u, v) ∈ E
3: for (u, v) ∈ E do . Compute message for every edge in the graph in parallel
4: mu→v = MLP (hu, hv, T (cu, cv))

5: for v ∈ V do . Update node states in parallel
6: av = MaxPooling ({mu→v : u ∈ N(v)}) . Aggregate messages from neighbors
7: h′

v = GRU (hv, av) . Update the hidden state
8: ov = MLP (h′

v) . Compute outputs

9: return
{
o0, o1, · · · , oN

}

Deterministic Decoder: Recall that our scene latent has been partitioned into
a distributed representation Z =

{
z1, z2, · · · , zN

}
. To leverage actor features

and distributed latents from the whole scene, we parameterize the decoder with
another SIM. We can then predict the s-th realization of the future at a scene
level via message passing, where each actor trajectory ysn takes into account a
sample from all the partitions of the scene latent Zs =

{
zs1, · · · , zsn

}
as well as all

actors’ features X, enabling reasoning about multi-agent interactions such as car
following, yielding, etc. More precisely, given each actor context xn, we initialize
its node representation for the decoder graph propagation as hsn = MLP(xn ⊕
zsn). After a round of message passing in our SIM, h

′s
n contains an updated

representation of actor n that takes into account the underlying dynamics of
the whole scene summarized in Zs. Finally, the s-th trajectory sample for actor
n is deterministically decoded ysn = MLP(h

′s
n ) by the SIM output function,

without additional sampling steps. The trajectory-level scene sample is simply
the collection of all actor trajectories Y s =

{
ys1, . . . , y

s
N

}
. We can generate S

possible futures for all actors in the scene in parallel by batching S scene latent
samples.

In this fashion, our model implicitly characterizes the joint distribution over
actors’ trajectories, achieving superior scene-level consistency. In the experi-
ments section we ablate the design choices in the encoder, prior and decoder,
and show that although all of them are important, the deterministic decoder is
the key contribution towards socially-consistent trajectories.

3.3 Learning

Our perception and prediction model can be trained end-to-end using stochastic
gradient descent. In particular, we minimize a multi-task loss for detection and
motion forecasting: L = Ldet + λ · Lforecast
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Detection: For the detection classification branch we employ a binary cross
entropy loss with hard negative mining Lcla. We select all positive examples
from the ground-truth and 3 times as many negative examples. For box fitting,
we apply a smooth `1 loss Lreg to each of the 5 parameters (xi, yi, wi, hi, φi) of
the bounding boxes anchored to a positive example i. The overall detection loss
is a linear combination Ldet = Lcla + α · Lreg.

Motion Forecasting: We adapt the variational learning objective of the CVAE
framework [56] and optimize the evidence-based lower bound (ELBO) of the log-
likelihood logP (Y |X). In our case, due to the deterministic decoder leading to
an implicit distribution over Y , we use Huber loss `δ as the reconstruction loss,
and reweight the KL term with β as proposed by [19]:

Lforecast =
N∑
n

T∑
t

`δ(y
t
n − ytn,GT ) + β ·KL (qφ (Z|X,YGT ) ||pγ (Z|X))

where the first term minimizes the reconstruction error between all the trajec-
tories in the scene Y = {ytn|∀n, t} = fθ(Z), Z ∼ qφ (Z|X,YGT ) and their corre-
sponding ground-truth YGT , and the second term brings the privileged posterior
qφ(Z|X,YGT ) and the approximate prior pγ(Z|X) distributions closer.

4 Experimental Evaluation

In this section, we first explain the metrics and baselines we use for evaluation.
Next, we compare our model against state-of-the-art motion forecasting algo-
rithms on predicting the future 5 second trajectories on two real-world datasets:
ATG4D [62] and nuScenes [8] (see supplementary for details). Then, we mea-
sure the impact on motion planning. Finally, we carry out an ablation study to
understand which part of our model contributes the most.

4.1 Scene Level Motion Forecasting Metrics

Previous methods use sample quality metrics at the actor level such as the popu-
lar minimum/mean average displacement error (minADE/meanADE). However,
these metrics only evaluate the quality of the underlying marginal distribution
per actor. For instance, minADE takes the trajectory sample that best fits the
ground-truth of each actor independently, which does not measure the consis-
tency between different actors sample trajectories and can be easily cheated by
predicting high entropy distributions that cover all the space but are not precise.

We propose scene-level sample quality metrics to evaluate how well the mod-
els capture the joint distribution over future outcomes. To this end, we define
a scene-level counterpart of the popular minimum/mean average displacement
error. We emphasize that in this context, each scene sample s ∈ 1, ..., S is a
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Type Model SCR5s (%) min
SFDE(m)

min
SADE(m)

mean
SFDE(m)

mean
SADE(m)

Indep.
Output

SpAGNN [9] 8.19 2.83 1.34 4.37 1.92
RulesRoad [20] 6.66 2.71 1.32 4.21 1.84
MTP [12] 3.98 1.91 0.95 3.11 1.37
MultiPath [11] 4.41 1.97 0.95 3.14 1.36
R2P2-MA [50] 4.63 2.13 1.09 3.27 1.49

Social
Auto-
regressive

SocialLSTM [1] 6.13 2.75 1.38 4.05 1.83
NRI [31] 7.00 2.68 1.43 3.81 1.74
ESP [51] 2.67 1.91 0.97 2.84 1.29
MFP [57] 5.15 2.35 1.13 3.35 1.45

ILVM 0.70 1.53 0.76 2.27 1.02

Table 1: [ATG4D] Scene-level motion forecasting (S = 15 samples)

collection of N future trajectories, one for each actor in the scene.

minSADE = min
s∈1...S

1

NT

N∑
n=1

T∑
t=1

||ytn,GT − ytn,s||2

meanSADE =
1

NTS

S∑
s=1

N∑
n=1

T∑
t=1

||ytn,GT − ytn,s||2

We also compute their final counterparts minSFDE and meanSFDE, which
evaluate only the motion forecasts at the final timestep (i.e. at 5 seconds).

Furthermore, to evaluate the consistency of the motion forecasts we propose
to measure the scene collision rate (SCR). It measures the percentage of trajec-
tory samples that collide with any other trajectory in the same scene sample s.
Two trajectory samples are considered in collision if the overlap between their
future bounding boxes at any time step is higher than a small IOU threshold
εIOU . To compute this, we first obtain the bounding boxes for future time steps
{bti,s}. The size of the bounding boxes are the same as their object detections and
the future headings are extracted by finite differences on the trajectory samples.

SCRT =
1

NS

S∑
s=1

N∑
i=1

min

(
1,

N∑
j>i

T∑
t=1

1
[
IoU(bti,s, b

t
j,s) > εIOU

])

Finally, to perform a fair comparison in motion forecasting metrics, which are
evaluated on true positive detections, we follow [9] and operate the object de-
tector at 90% recall point for all models in ATG4D and 80% in nuScenes.

4.2 Baselines

In this section, we discuss the state of the art motion forecasting models that
we use as baselines. It is important to note that most baselines are designed for
motion forecasting given perfect perception, i.e., ground-truth past trajectories.
However, this is not realistic in self-driving vehicles, which rely on imperfect noisy
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Type Model SCR5s (%) min
SFDE(m)

min
SADE(m)

mean
SFDE(m)

mean
SADE(m)

Indep.
Output

SpAGNN [9] 7.54 2.07 1.00 3.85 1.82
RulesRoad [20] 5.67 2.10 1.01 3.55 1.67
MTP [12] 8.68 1.86 0.91 3.86 1.85
MultiPath [11] 7.31 2.01 0.95 3.50 1.65
R2P2-MA [50] 4.56 2.25 1.08 3.47 1.67

Social
Auto-
regressive

SocialLSTM [1] 6.45 2.71 1.33 4.20 2.05
NRI [31] 5.98 2.54 1.28 3.91 1.88
ESP [51] 5.09 2.16 1.07 3.46 1.67
MFP [57] 4.94 2.74 1.30 4.11 1.95

ILVM 1.91 1.84 0.86 2.99 1.43

Table 2: [nuScenes] Scene-level motion forecasting (S = 15 samples)

perception. Thus, we adapt them to the realistic setting by replacing their past
trajectory encoders with our extracted actor features (see Fig. 3) and training
end-to-end with our perception backbone (see supplementary for details).

Independent output: We benchmark against SpAGNN [9], MTP [12], Mul-
tiPath [11], RulesRoad [20], and R2P2-MA [50]. Since the trajectory sam-
pling process from these models is independent per actor, we define a scene
sample s by drawing one sample for each actor in the scene.

Social auto-regressive: We compare against SocialLSTM [1], ESP [51],
MFP [57], and NRI [31]. It is worth sharing that for these baselines to achieve
competitive results we had to perturb the ground-truth trajectories with white
noise during training. This is because these models suffer from a distributional
shift between training and inference, as explained in Section 2. We note that
white noise was more effective than teacher forcing [33] or scheduled sampling [5].

4.3 Motion Forecasting Results

Experimental results for motion forecasting in the ATG4D dataset (with S = 15
samples) are shown in Table 1. Our ILVM outperforms the baselines across all
metrics. Very notably, it achieves a 75% reduction in collision rate with
respect to the strongest baseline in this metric (ESP [51]), thus highlighting the
better characterization of the joint distribution across actors (which also trans-
lates into scene-consistent samples). Our model is also much more precise (20%
reduction in meanSFDE) while exhibiting better coverage of the ground-truth
data (19% reduction in minSFDE). We include an analysis of how the minSADE
and minSFDE vary across different number of samples S in the supplementary.

Fig. 5 shows individual samples. We heuristically select the two most distinct
samples for visualization to show diverse realizations of the future. The baseline
models capture variations in individual actors’ future, but do not capture the
yielding interaction at the intersection, which our model does. In addition, Fig. 6
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Fig. 5: Scene-level samples. Our latent variable model captures underlying
scene dynamics at the intersection level (i.e. yield vs. go)

showcases the full distribution learned by the models. More concretely, this plot
shows a Monte Carlo estimation of the marginal distribution per actor, where
50 samples are drawn from each model. Transparency in the plots illustrates
the probability density at a given location. These examples support the same
conclusion taken from the quantitative results and highlight the ability of our
model to understand complex road geometries and the multi-modal behaviors
they induce. This is particularly interesting since all models share the same
representation of the environment and backbone architecture.

To show that our improvements generalize to a dataset with a different dis-
tribution of motions and road topologies, we validate our method on nuScenes.
Table 2, shows that ILVM brings improvements over the baselines across all
metrics. In particular, we observe significant gains in scene-consistency (SCR)
and precision metrics (meanSADE and meanSFDE).

4.4 Motion Planning Results

To validate the system-level impact of different perception and prediction mod-
els, we use the state-of-the-art learnable motion planner of [55] to plan a trajec-
tory for the SDV (τSDV):

τSDV = arg min
τ∈T

Ep(Y |X) [c(τ, Y \ ySDV)] ≈ arg min
τ∈T

c(τ,
{
Y s \ ysSDV : ∀s ∈ 1 . . . S

}
)

where p(Y |X) is the distribution over future trajectories output by the per-
ception and prediction model, T is a predefined set of SDV trajectories given
the map and high-level route, and c is a costing function that measures safety
and comfort taking into account the motion forecasts for the rest of the vehicles.
More concretely, the motion planner receives a Monte Carlo estimate of the fu-
ture trajectory distribution with S = 50 sample trajectories (see Fig.6) for every
detected vehicle (excluding the SDV), which are considered obstacles in order
to approximate the expected cost of plans τ ∈ T.

The experiments in Table 3 measure how different motion forecasts trans-
late into the safety and comfort of the SDV trajectory (τSDV), an impact often
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Fig. 6: Motion forecasting visualizations of 50 samples. Time is encoded
in the rainbow color map ranging from red (0s) to pink (5s).

overlooked by previous works. Our motion forecasts (ILVM) enable the motion
planner to execute significantly safer and more comfortable trajectories. We no-
tice that the ego-motion plans make similar progress across models, but our
approach produces the closest trajectories to the expert demonstrations (lowest
`2 distance at 5 seconds into the future), while yielding much fewer collisions.
We include planning qualitative results in our supplementary material.

4.5 Ablation Study

Implicit vs. Explicit Decoder: We ablate ILVM (M0 in Table 4) by replac-
ing the proposed implicit decoder with an explicit decoder that produces a full
covariance bi-variate Gaussian per waypoint, and the reconstruction loss with
Negative Log Likelihood. This gives us M1, where ancestral sampling is used
for inference: first sample latent, then sample output. Here, we can see that as-
suming conditional independence across actor at the output level significantly
degrades all aspects of the motion forecasting performance. Most notably, the
high scene collision rate shows that the samples are no longer socially consistent.

Learned vs. Fixed Prior: A comparison betweenM0 andM2 in Table 4 shows
that using a learned prior network P (Z|X) achieves a better precision diversity
trade-off compared to using a fixed prior distribution of isotropic Gaussians.

ILVM architecture: In Table 4, M3 ablates the SIM encoder and prior net-
works by replacing them with MLPs that model p(zn|xn) and p(zn|xn, yn) at
the actor-level, respectively.M4 replaces the SIM decoder by an MLP per actor
ysn = MLP(X, zsn). Finally,M5 applies the changes inM3 andM4. These exper-
iments show that both the graph based prior/encoder and decoder are important
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Type Model Collision L2 human Lat. acc. Jerk Progress
(% up to 5s) (m @ 5s) (m/s2) (m/s3) (m @ 5s)

Indep.
Output

SpAGNN [9] 4.19 5.98 2.94 2.90 32.37
RulesRoad [20] 4.04 5.83 2.84 2.76 32.50
MTP [12] 3.10 5.67 2.83 2.66 33.14
MultiPath [11] 3.30 5.58 2.73 2.57 32.99
R2P2-MA [51] 3.71 5.65 2.84 2.53 33.90

Social
Auto-
regressive

SocialLSTM [1] 4.22 5.92 2.76 2.66 32.60
NRI [31] 4.94 5.73 2.78 2.55 33.43
ESP [51] 3.13 5.48 2.76 2.44 33.74
MFP [57] 4.14 5.57 2.61 2.43 32.94

ILVM 2.64 5.33 2.59 2.30 33.72

Table 3: [ATG4D] System Level Performance (ego-motion planning)

ID Learned
Prior

Implicit
Output

SIM
Encoder

SIM
Decoder

SCR5s min
SFDE

min
SADE

mean
SFDE

mean
SADE

M0 X X X X 0.70 1.53 0.76 2.27 1.02

M1 X X X 8.46 2.66 1.31 4.17 1.80
M2 X X X 1.10 1.53 0.76 2.43 1.08
M3 X X X 1.03 1.57 0.78 2.42 1.08
M4 X X X 1.52 1.67 0.81 2.44 1.09
M5 X X 1.74 1.66 0.81 2.43 1.08

Table 4: [ATG4D] Motion Forecasting Ablation Study (S = 15 samples)

for our latent variable model. In particular, the large gap in scene level collision
demonstrates that our proposed SIM encoder and decoder capture scene-level
understanding that is not present in the ablations with independent assumptions
at the latent or output level.

5 Conclusion and Future Work

We have proposed a latent variable model to obtain an implicit joint distribu-
tion over actor trajectories that characterizes the dependencies over their fu-
ture behaviors. Our model achieves fast parallel sampling of the joint trajectory
space and produces scene-consistent motion forecasts. We have demonstrated
the effectiveness of our method on two challenging datasets by significantly im-
proving over state-of-the-art motion forecasting models on scene-level sample
quality metrics. Our method achieves much more precise predictions that are
more socially consistent. We also show that our method produces significant im-
provements in motion planning, even though the planner does not make explicit
use of the strong consistency of our scenes. We leave it to future work to design
a motion planner to better utilize joint distributions over trajectories.
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Supplementary Material

In the following supplementary materials, we provide: additional discussions
of our method in the broader context of implicit generative models in Section A,
details about the datasets used in Section B, more implementation details in
Section C, more in-depth evaluation details and quantitative results in Section D,
and finally more visualizations in Section E.

A Further Discussion on Implicit Generative Models

A.1 Implicit Generative Models

Typical probabilistic models for motion forecasting define an explicit parameter-
ized output distribution over each actor n and trajectory waypoints across time
t, ynt . Examples are the methods proposed in [9,11,12], which parameterize their
output distribution as a mixture of Gaussians, which can be sampled efficiently
and provides a likelihood evaluation but assumes 1) independence across actors,
and 2) a particular shape of the output distribution. In contrast, implicit gener-
ative models define a output distribution pθ(Y ) implicitly by specifying a latent
distribution p(Z) from which we can sample, followed by a mapping fθ : Z → Y,
which we refer to as the decoder.

In particular, we can characterize the decoder in two ways:

1. via a specified and tractable conditional likelihood pθ(Y |Z). In this case,
many tools are available for inference and learning. Variational inference, and
in particular the variational auto-encoder (VAE) [30], is a common choice.

2. via a stochastic sampling procedure where p(Y |Z) is not specified. In this
case, likelihood-free inference methods are required for learning. Density es-
timation by comparison has been proposed [44] using either density ratio
(GAN) or density difference (MMD). These methods, however, are generally
more difficult to optimize.

In our model, we define fθ as a deterministic function (parameterized by a
graph neural network), since we wish the latent Z to capture all the uncertainty
in a scene and have Y be deterministic given Z. To sidestep the difficulty of
likelihood-free inference, particularly in a complex model where we optimize
both perception and motion forecasting end-to-end, we make a mild assumption
to leverage variational inference for learning. In the following sections, we provide
a preliminary on variational inference before providing a detailed analysis of our
model and learning approach.

A.2 Variational Inference

The variational auto-encoder (VAE) [29] specifies a directed graphical model
with latent variables z and output variables y. Conditional variational auto-
encoder (CVAE) [56] extends this formulation to the conditional generative set-
ting, with additional input variables x. Now, for a given observation x, z is drawn
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from the conditional prior distribution p(z|x) and output y is generated from
the distribution p(y|x, z).

The learning objective for the conditional generative model is maximizing
the conditional log likelihood log p(y|x). But since marginalizing over continu-
ous latent variables z is intractable, it is typical to apply the Stochastic Gradient
Variational Bayes (SGVB) framework and optimize the following evidence vari-
ational lower bound (ELBO) instead:

log p(y|x) ≥ Eqφ(z|x,y)[log pθ(y|x, z)]−KL(qφ(z|x, y)||pγ(z|x))

Here, qφ(z|x, y) is the learned approximate posterior, pγ(z|x) the learned ap-
proximate prior, and pθ(y|x, z) the learned decoder.

Followup works have proposed further modifications to this objective to en-
courage disentanglement, prevent posterior collapse, and improve training sta-
bility. In this work, we follow [19] in extending the ELBO objective with an
additional hyperparameter β:

LELBO = −Eqφ(z|x,y)[log pθ(y|x, z)] + βKL(qφ(z|x, y)||pγ(z|x))

A.3 Analysis of Our Method

We recall that to capture the joint distribution over all the actor trajectories
we employ a deterministic decoder Y = f(X,Z), letting the latent variable Z
capture all the stochasticity. Thus, instead of optimizing the likelihood based
reconstruction objective that appears in the ELBO, we opted for a Huber loss
on the trajectory waypoints. This choice can be interpreted as an assumption
of pθ(Y |X,Z) being a Gaussian/Laplacian with fixed diagonal covariance. For
simplicity, let’s assume our Huber loss is always active within the L2 segment,
but the following derivation could be easily done with a Laplacian as well. In
this view, we can further interpret β as the variance of the underlying Gaussian,
as follows:

Lforecast = ||Y − YGT ||22 + βKL(qφ(Z|X,Y )||pγ(Z|X))

∝ 1

β
||Y − YGT ||22 +KL(qφ(Z|X,Y )||pγ(Z|X))

∝ Eqφ(Z|X,Y )

[
logN (YGT |fθ(X,Z),

β

2
I)

]
+KL(qφ(Z|X,Y )||pγ(Z|X))

To see this, recall the log likelihood of Gaussian with diagonal covariance:

logN (YGT |µ, σ2I) = − 1

2σ2

N∑
n=1

T∑
t=1

(ytn,GT − µt)2 − cσ

logN (YGT |µ, σ2I =
β

2
I) = − 1

β

N∑
n=1

T∑
t=1

(ytn,GT − µt)2 − cσ
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where cσ can be neglected since it is constant relative to µ, and thus does not
contribute to its gradient.

Empirically we found β = 0.05 to yield the best results. Under the inter-
pretation above, this would translate into using a fixed variance of 2.5cm while
learning our model. We note that this is extremely small in the context of mo-
tion forecasts (where vehicles can easily travel 50 meters in 5 seconds), and thus
consistent with our goal of approximating Y as a deterministic mapping from X
and Z, letting Z capture (nearly) all the uncertainty at a scene level.

B Datasets

We benchmark our approach on two datasets: ATG4D [62] and nuScenes [8].
This allow us to test the effectiveness of our approach in two vehicle platforms
with different LiDAR sensors and maps, driving in multiple cities across the
world.

ATG4D Our dataset contains more than one million frames collected over sev-
eral cities in North America with a 64-beam, roof-mounted LiDAR. Our labels
are very precise 3D bounding box tracks with a maximum distance from the
self-driving vehicle of 100 meters. There are 6500 snippets in total, each 25 sec-
onds long. In each city, we have access to high definition maps capturing the
geometry and the topology of each road network. Following previous works in
joint perception and motion forecasting [9, 10, 40] we consider a rectangular re-
gion centered around the self-driving vehicle that spans 144 meters along the
direction of its heading and 80 meters across. In these experiments, the model is
given one second of LiDAR history and has to predict 5 seconds into the future.

nuScenes This dataset consists of 1,000 snippets of 20 seconds each, collected
in Boston and Singapore (right-side vs. left-side driving). Their 32-beam LiDAR
captures a sparser point cloud than the one in ATG4D, making object detection
more challenging. High definition maps are also provided. We use the evaluation
setup proposed in their perception benchmark, where the previous 10 LiDAR
sweeps (0.5 seconds) are fed to the model, and the region of interest is a circle
of 50 meters radius around the SDV. The prediction horizon is 5 seconds.

C Implementation Details

In this section, first we provide implementation details about each component in
our joint perception and motion forecasting model. We then discuss the required
adaptations for the baselines.

C.1 ILVM Details

LiDAR Pointcloud Parameterization: Following [62], we use a voxelized
representation of the 3D LiDAR point cloud in Bird’s Eye View (BEV) as
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the main input to our model. As in its follow-up work [61], we normalize the
height dimension with dense ground-height information provided by HD maps
for ATG4D dataset only (nuScenes does not provide this information). To
exploit motion cues, we leverage multiple LiDAR sweeps by compensating the
ego-motion (i.e. projecting the past sweeps to the coordinate frame of the cur-
rent sweep), as proposed by [40]. Following [10], we ravel the height and time
dimension into the channel dimension, to use 2D convolution to process spatial-
temporal information efficiently. The final representation is a 3D occupancy ten-
sor of dimensions ( L

∆L ,
W
∆W , H·T

∆H·∆T ). Here, L = 144, W = 80, and H = 5 are
the spatial dimensions in meters. ∆L = ∆W = ∆H = 0.2 m/pixel are the reso-
lutions for the spatial dimensions, T = 5 seconds is the prediction horizon, and
∆T = 0.5 seconds/time-step is the time resolution.

High-Definition Maps Parameterization: We use a rasterized map repre-
sentation encoding traffic elements such as intersections, lanes, roads, and traffic
lights. Elements with different semantics are encoded into different channels in
the raster, as proposed by [10].

The map elements we rasterize are the following: drivable surface polygons,
road polygons, intersection polygons, vehicle lane polygons going straight, ded-
icated left and right vehicle lane polygons, dedicated bike lane polygons, ded-
icated bus lane polygons, centerline markers for all lanes, lane dividers for all
lanes with semantics (allowed to cross, not allowed to cross, might be allowed
to cross). This gives us a total of 13 different map channels combining these
elements.

Shared Perception Backbone: We use a lightweight backbone network adapted
from [62] for feature extraction. In particular, we instantiate two separate streams
such that the voxelized LiDAR and rasterized map are processed separately first.
The resulting features from both streams are then concatenated feature-wise
since they share the same spatial resolution, and finally fused by a convolutional
header. Our LiDAR backbone uses 2, 2, 3, and 6 layers in its 4 residual blocks.
The convolutions in the residual blocks of our LiDAR backbone have 32, 64,
128 and 256 filters with a stride of 1, 2, 2, 2 respectively. The backbone that
processes the high-definition maps uses 2, 2, 3, and 3 layers in its 4 residual
blocks. The convolutions in the residual blocks of our map backbone have 16,
32, 64 and 128 filters with a stride of 1, 2, 2, 2 respectively. For both back-
bones, the final feature map is a multi-resolution concatenation of the outputs
of each residual block, as explained in [15]. This gives us 4x down-sampled fea-
tures with respect to the input. The header network consists of 4 convolution
layers with 256 filters per layer. We use GroupNorm [59] because of our small
batch size (number of frames) per GPU. These extracted features inform both
the downstream detection and motion forecasting networks, explained next.

Object Detection: We use two convolutional layers to output a classification
(i.e. confidence) score and a bounding box for each anchor location following
the output parameterization proposed in [62], which are finally reduced to the
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final set of candidates by applying non-maximal suppression (NMS) with an IoU
of 0.1, and finally thresholding low probability detections (given by the desired
common recall).

Actor Feature Extraction: To arrive at the final actor level features xn,
we apply rotated ROI Align [22] to extract fixed size spatial feature maps for
bounding boxes with arbitrary shapes and rotations from our global feature
map extracted by the backbone. We pool a region around each actor in its frame
with an axis defined by the actor’s centroid orientation. The region in BEV space
spans for 10m backwards, 70m in front, and 40m to both sides of the actor. After
applying the rotated ROI Align operator, we get a feature map for each actor of
size 40 x 40 x 256. We then apply a 4-layer down-sampling convolutional network
followed by max-pooling along the spatial dimensions to reduce the feature map
to a 512-dimensional feature vector per actor. The convolutional network uses a
dilation factor of 2 for the convolutional layers to enlarge the receptive field for
the per-actor features, which we found to be important. We use ReLU as the
non-linearity and GroupNorm for normalization.

Scene Interaction Module: Our scene interaction module is inspired by [9],
and is used in our Prior, Encoder, and Decoder networks. Our edge or message
function consists of a 3-layer MLP that takes as input the hidden states of the
2 terminal nodes at each edge in the graph at the previous propagation step as
well as the projected coordinates of their corresponding bounding boxes. We use
feature-wise max-pooling as our aggregate function in order to be more robust to
changes in the graph topology between training and inference, since at training
we use the ground-truth bounding boxes but at inference employ the detected
bounding boxes. To update the hidden states we use a GRU cell. Finally, to
output the results from the graph propagations, we use a 2-layer MLP.

Motion Forecasting: The inference of our motion forecasting model is ex-
plained step-by-step in Algorithm 2. Our Priorγ and Encoderφ modules are both
composed of 2 SIMs with different parameters, one that predicts the latent means
Zµ and one that predicts the latent sigmas Zσ. We use the same input, hidden,
and output dimension of 64 for these SIMs. To obtain the 64-dimensional input
H0 to the Priorγ SIMs, we use a 2-layer MLP to summarize the 512-dimensional
actor feature X. For Encoderφ, we use an additional 2-layer MLP to embed the
ground truth future trajectories YGT into a 64-dimensional embedding first, then
summarize the concatenated 576-dimensional vector into the 64-dimensional in-
put H0 to the SIMs. The Decoderθ is implemented with a single SIM, which takes
a 576-dimensional input H0 (i.e. direct concatenation of 512-dimensional actor
features X and 64-dimensional latent sample Zs), and outputs a 20-dimensional
vector Y s (i.e. 10 waypoints with (x, y) coordinates) for each actor. Although
we have described the algorithm as sequential over scenes 1 . . . S for clarity in
the algorithm, the sampling and decoding of all scenes can be done in parallel.
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Algorithm 2 Motion Forecasting

Input: Actor features X =
{
x1, x2, · · · , xN

}
. BEV locations of object detections

C =
{
c0, c1, ..., cN

}
Number of scene samples to generate S.

Output: Scene trajectory samples in bird’s-eye-view space
{
Y 1, Y 2, · · · , Y S

}
, where

Y s =
{
ys1, y

s
2, ..., y

s
N

}
(N is the number of detected actors).

1:
{
Zµ, Zσ

}
← Priorγ(X,C) . Use SIM modules to output latent distribution

2: for s = 1, ..., S do . Run for all requested number of samples
3: Zs ∼ N

({
Zµ, Zσ · I

})
. Sample a scene latent from diagonal gaussian

4: Hs =
{

MLP(xn ⊕ zsn) : ∀n ∈ 1 . . . N
}

5: Y s = Decoderθ(H
s, C) . Use SIM module to decode trajectory sample

6: return
{
Y 1, Y 2, · · · , Y S

}

Optimization Details: We use the Adam optimizer [28] with an initial learning
rate of 1.25e-5 and no weight decay. To weigh the multi-task objective, we use
[α, λ, β] = [0.1, 0.5, 0.05]. We follow [16] in using a cyclic annealing schedule for
β. More specifically, we perform warmup for 40k steps in 10k step cycles.

C.2 Baseline Details

Here we provide the implementation details behind how we updated our baseline
models to meet our perception and prediction setting. There are basically two
options for comparison:

(a) use an off-the-shelf detector and tracker to provide past trajectories, or
(b) replace their past trajectory encoders by our backbone and per actor feature

extraction.

SpAGNN [9] showed that (a) using an off-the-shelf tracker (Unscented Kalman
Filter + Hungarian matching) results in much worse performance than option
(b), so we stick to the latter for a fair comparison where all methods use the
same architecture to extract actor features X from sensor data, which is trained
end-to-end with the motion forecasting module for each baseline.

Explicit Marginal Likelihood Models: SpAGNN [9] was originally proposed
in the joint perception and prediction setting and therefore does not require
any adaptation. We adapt MTP [12] and MultiPath [11] to use our backbone
network, object detection and per actor feature extraction and then apply their
proposed mixture of trajectories output parameterization, where each way-point
is a gaussian.

A detail worth noting is that these baselines do not propose a way to get
temporally consistent samples, since the gaussians are independent across time
(the models are not auto-regressive). Thus, we introduce a heuristic sampler to
get temporally consistent samples from this model. The sampled trajectories are
extracted using the re-parameterization trick for a bi-variate normal:

ysn,t = µn,t +An,t · εsn
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where the model predicts a normal distribution N
(
ysn,t|µn,t, Σn,t

)
per waypoint

t, (An,t)
T · An,t = Σn,t is the cholesky decomposition of the covariance matrix,

and εsn ∼ N (0, I) is the noise sampled from a standard bi-variate normal dis-
tribution. Note that the noise εsn is constant across time t for a given sample
s and actor n. Intuitively, having a constant noise across time steps allows us
to sample waypoints whose relative location with respect to its predicted mean
and covariance is constant across time (i.e. translated by the predicted mean
and scaled by the predicted covariance per time).

Autoregressive Models While many papers that utilize auto-regressive mod-
els [50,51,57] use fully observed states as dynamic inputs, we extend these models
to the joint detection and motion forecasting task. For all auto-regressive mod-
els, we use the detection backbone and the actor feature extraction modules that
we use for all models, including ours.

Due to the compounding error problem [53] found in auto-regressive models,
we had to make some adjustments to the training procedure to account for the
noise in the t−1 conditioning space. Typically during training for auto-regressive
models, a one-step prediction distribution given the previous ground-truth value
p (yt+1|x, yt,GT ) is learned. This can cause a catastrophic mismatch between the
input distribution that the model sees during training and that it sees during
inference. To help simulate the noise it sees during inference, we add gaussian
noise to the conditioning state ỹ = yGT +ε where ε ∼ N (0, I · α). The parameter
α defines to the amount of noise we expect in meters between time-steps (we
use a value of 0.2m in our experiments.) We note that we also tried scheduled
sampling [5], but adding white noise worked better.

For ESP [51], we extended our R2P2-MA implementation with the ”whisker”
indexing technique to get added context into the feature map at the location
of the conditioning state ỹt. Due to memory constraints, we had to limit the
radii of the whiskers to [1m, 2m, 4m] while keeping the seven angle bins. We
also reproduced the social context conditions but with a minor modification.
While the original paper specified a fixed number of actors, we used k-nearest
neighbors to select a set amount of M = 4 neighbors to gather social features and
model the distribution p (yn,t+1|x, yn,t, y1,t, y2,t, · · · , yM,t). Lastly, We note that
the originally proposed SocialLSTM and NRI do not leverage any sensor or map
data, but since we share the feature extraction architecture for all models, their
adaptations do have access to these cues making their methods more powerful
than originally proposed.

D Additional Evaluation Details and Results

In this section, we present additional evaluation details and quantitative results
on detection and motion forecasting.



26 S. Casas, C. Gulino, S. Suo, R. Liao, K. Luo, R. Urtasun

Fig. 7: Precision-Recall curve at IoU 0.5 and 0.7. Legend shows mAP (mean
Average Precision) for each model. Note: horizontal axis starts at 0.7 recall.

D.1 Detection

Fig. 7 shows that our model achieves the best detection performance at both
IoU thresholds. Since all models have the same backbone and detection header,
we conjecture that our learning objective eases the joint optimization of both
detection and motion forecasting.

D.2 Motion Forecasting

For ATG4D experiments, we operate the object detector at a 90% common
recall point. In nuScenes experiments, we operate the object detector at an
80% common recall point, since detection is more challenging in this dataset
due to the sparser 32-beam LiDAR sensor (as opposed to 64-beam in ATG4D).

Diversity vs. Precision in multimodal prediction Fig. 8 showcases three
different predictions that exhibit different qualities, which we use to illustrate
the language used throughout the paper. On the left we show an accurate model
that can nicely capture the bimodal distribution due to the branching map
topology. On the middle, a prediction model predicts high diversity samples
(high recall), but has low precision as it predicts unrealistic samples that are out
of distribution. On the right, we show a high-precision prediction, meaning that
all the samples are within the true data distribution, but low recall or diversity,
meaning that it misses some modes of the ground-truth distribution.
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Ground truth distribution Prediction

Accurate model Low precision, high recall High precision, low recall

Fig. 8: Diversity vs. Precision for an individual actor

Ground-truth Predicted Scene 3Predicted Scene 2 minFDE minSFDEPredicted Scene 1

Fig. 9: Coverage metrics: actor-level (minFDE) vs. scene-level (minSFDE). The
first column shows the groun-truth trajectories, the next 3 are possible futures
predicted by the model, the last 2 show the trajectory samples selected by each
metric (which are different), as well as their error (red arrows).

Actor-level vs. Scene-level metrics Fig. 9 motivates the need for scene-level
metrics to evaluate the characterization of the joint distribution over actors.
In particular, minFDE (actor-level minimum displacement error) will take the
minimum error trajectory for each actor regardless of which scene prediction it
belongs to. In contrast, minSFDE (our proposed scene-level counterpart) takes
the trajectories from the predicted scene with less average error across vehicles,
thus selecting the scene that is most consistent with the ground-truth as a whole.

Scene Consistency – Sample Collisions Here, we demonstrate that our
models produce scene-level samples that are more socially consistent regardless
of which recall point we operate our object detector. Figure 10 shows our Scene
Collision Rate (SCR) at different detection recall points (also known as operating
point). As the recall point is chosen to be higher and higher there are more low
probability actors in the scene which greatly increases the chances of a predicted
collision, as expected. When analyzing the results, it is clear that just sharing
social features as [9] does is not enough to create scene consistent samples.
Models that do joint sampling such as ILVM and ESP [51] do markedly better
on this measure. Interestingly, ILVM barely sees an increase in the amount of
collisions as recall increases, which shows that our model is able to generate
scene consistent samples no matter the complexity of the scene.
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Fig. 10: ILVM models social interaction consistently well at different recall levels.

Sample Quality – Cumulative Hit Rate: So far in the motion forecasting
literature, actor-level precision (meanFDE) and recall (minFDE) metrics of the
trajectory samples have been proposed, but no attempt has been made to com-
bine them in a single metric, despite the fact that the previous metrics have
evident drawbacks. For instance, meanFDE disregards the fact that multiple
plausible futures could be very far apart and overly penalizes multi-modality,
while a low minFDE can be achieved by just predicting fanned out distributions
that cover big spaces. Here, we propose to use a cumulative Hit Rate curve,
where the horizontal axis corresponds to the L2 error threshold, and the vertical
axis to the percentage of samples that fall under such error. Moreover, we extend
this notion to also capture failures in the object detector, by considering that
false positive and false negative detections always have error higher than the
threshold, thus obtaining a holistic metric for joint perception and prediction.
We now define this metric mathematically. We use ŷ to denote the ground truth
future yGT .

Hit Rate (y, ŷ, t, ε) =
1

NS

N∑
n=1

S∑
s=1

Hit
(
yt,sn , ŷtn, y

0
n, ŷ

0
n, ε
)

Hit
(
yt,sn , ŷtn, y

0
n, ŷ

0
n, ε
)

=

{
1 if IoU

(
y0n, ŷ

0
n

)
> 0.5 and ||yt,sn − ŷtn||2 < ε

0 otherwise

Thus Hit Rate finds the percentage of samples that are true positive detec-
tions and have an L2 error below a threshold ε. We sweep ε values of 0.0m to



Implicit Latent Variable Model for Scene-Consistent Motion Forecasting 29

5.0m to get the broader curve which gives us the distribution on how likely each
model is to get a detection and sample close to the ground-truth. We do not
compute the metric above 5 meter error since we consider that to always be a
bad sample or ”miss”. Fig. 11 shows that Our ILVM significantly outperforms
all baselines in cumulative hit rate across across all time steps.

Fig. 11: ILVM obtains the best hit rate at all time-steps in the prediction horizon.

Sample Quality – Breakdown We define Along-Track and Cross-Track dis-
tance as the longitudinal and lateral distance after projecting motion forecasts
into the ground-truth actor trajectory coordinate. This breakdown is important,
since lateral error is semantically more significant than longitudinal error for the
downstream task of ego-motion planning.

Fig. 12 provides an in-depth analysis of the sample quality of our motion fore-
casts by examining the error breakdown between Along-Track and Cross-Track.
Furthermore, we highlight the robustness of our model in recovering ground-
truth scenes when given different number of samples.

The results showcase that model rankings may not be consistent in the break-
down of Along-Track vs. Cross-Track. In particular, we find the main contributor
to ILVM’s advantage is better Along-Track forecast, while having equal or bet-
ter Cross-Track. This implies that our model is able to better estimate overall
current and future velocity of the actors while having the same precision on their
path as ESP, and significantly better than the other baselines.

Sample Quality – Precision Diversity Tradeoff In Fig. 13, we showcase the
progression of scene-level sample quality metrics of Our ILVM during training.
While the precision metric (meanSFDE) continues to improve past 50k itera-
tions, the diversity metric (minSFDE) reaches its optimum. This sheds light
on the inherent tradeoff between the diversity and precision aspect of sample
quality measure, particularly when we only have access to a single ground truth
realization of the multiple plausible futures.
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Fig. 12: Our ILVM outperforms more significantly in along track error than cross
track error for both scene-level minADE and minFDE metrics.

Fig. 13: Tradeoff between minSFDE and meanSFDE as model training pro-
gresses. Note that the minSFDE curve follows the y-axis on the left, and the
meanSFDE curve follows the y-axis on the right.

Ablation – KL Term We include an analysis of how the beta weight on the
KL term trades off diversity and precision in Fig. 5.

We observe that:
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β SCR5s (%) min SFDE
(m)

min SADE
(m)

mean SFDE
(m)

mean SADE
(m)

0.01 1.41 1.70 0.84 2.58 1.17
0.03 0.89 1.59 0.79 2.37 1.06
0.05 0.70 1.53 0.76 2.27 1.02
0.5 0.64 1.85 0.85 1.90 0.86
1 0.64 1.87 0.87 1.95 0.88

Table 5: [ATG4D] KL loss ablation study

1. High beta: model loses multimodality and predicts a single future without
variance. Low recall (minSADE) and high precision (meanSADE, collision).
High KL loss constrains the posterior to be close to the prior, thus limiting
the flexibility to encode useful information.

2. Low beta: model produces very high entropy distributions that try to cover
all possible futures at the expense of producing unrealistic samples. High
recall (minSADE) and low precision (meanSADE, collision). Low KL loss
allows the posterior to diverge from the prior, which creates a gap between
training and inference. Then at inference, the decoder struggles to interpret
latent samples from the prior distribution, which its not trained on.

E Additional Visualizations

Scene Consistency: In Figure 14, 15, 16, 17 we showcase the scene consistency
of the samples generated from our model. For these visualizations, each row
corresponds to a model, and we show 2 scene-level samples for each model to
characterize the joint distribution.

More concretely, we show the two most distinct samples by averaging the
pairwise Euclidean distance between all samples. We empirically find that this
selection methodology yields representative samples and insight into how well
the models learn scene-level social interaction between agents.

Latent Space Interpolation: In Figs. 18 and 19, we take the 2 most distinct
samples as in the previous scene sample visualizations, and show the resulting
futures when performing linear interpolation in the latent space. We show that
the interpolated latent points still produce semantically meaningful trajectories
for all the actors in the scene, and capture scene level variations including multi-
agent interactions. More precisely, Z1 and Z2 are the latent samples that map
into the most distinct futures out of 50. The rows in between correspond to
the linear interpolation of the latent space, and different columns to different
scenarios.

Overall Sample Quality: In Figs. 20, 21, 22, we show additional qualitative
results for motion forecasting, comparing our method to the baselines in a wide
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range of urban scenarios, one per column. We blend 50 scene sample trajectories
with transparency. Time is encoded in the rainbow color map ranging from
red (0s) to pink (5s). This can be seen as a sample-based characterization of the
per-actor marginal distributions. We can see that our method generally produces
more accurate and less entropic distributions that better understand the map
topology and multi-agent interactions.

Ego-motion Planning: In Figs. 24, 23, 25, we show qualitative comparison
between ego-motion planning open-loop results when using motion forecast from
some of the strongest baselines and our model. Open-loop means that the SDV
acts as if it does not receive new sensor information for the future horizon of 5
seconds, and thus needs to rely completely on the motion forecasts at the start of
these scenarios. Thus, many of the collisions on these results could be potentially
avoided by obtaining more accurate information in subsequent time steps and
re-planning, but closed-loop experiments are out of scope of this paper.

The predicted bounding box samples into the future for other traffic par-
ticipants are shown in yellow. The ground-truth future trajectories are shown
in white if not in collision with the ground-truth SDV trajectory (shown as an
empty black box) and in red if colliding with the SDV plan. Overall, we can see
how ego-vehicle harmful events are avoided with more precise motion forecasts
from our model. In particular, we observe that the main reason the baseline
motion forecasting models tend to cause more collisions than our predictions is
because the entropy of their distributions is too high, leaving the motion planner
no space to plan a safe trajectory.
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Fig. 14: Scene-level samples. Our latent variable model captures complex in-
teractions at intersections. In this example, the car facing south will yield/go if
the car facing west goes straight/turns right, respectively. The baselines do not
capture this complex interaction, and most show inconsistent (colliding) samples
for the 2 highlighted actors.



34 S. Casas, C. Gulino, S. Suo, R. Liao, K. Luo, R. Urtasun

Sample 1 Sample 2

S
p
A
G
N
N

M
T
P

M
u
lt
iP

a
th

R
2
P
2

E
S
P

M
F
P

R
o
R

IL
V
M

Fig. 15: Scene-level samples. Our latent variable model captures the different
scene outcomes for possible states of a given traffic light intersection (vertical
vs. horizontal traffic).
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Fig. 16: Scene-level samples. Our latent variable model captures whether the
bus will proceed with the right turn, or the left-turning vehicle will.
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Fig. 17: Scene-level samples. Our latent variable model captures multiple re-
alistic futures (including lane changes) that respect the map geometries and are
dynamically feasible.
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Scenario 1 Scenario 2 Scenario 3

Z1

Z2

Fig. 18: Latent space interpolation: Scenario 1 showcases a complex inter-
action between 3 vehicles: when the 2 vehicles in the road predict turning or
slow moving trajectories, the third vehicle pulls out of the driveway, and when
the 2 vehicles in the road keep constant velocity to go straight, the vehicle in
the driveway yields. Scenario 2 turning vs. going straight behavior with smooth
transitions. Scenario 3 we can see how the speed of 2 cars that follow each other
vary consistently.
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Scenario 4 Scenario 5 Scenario 6

Z1

Z2

Fig. 19: Latent space interpolation: Scenario 4 and Scenario 5 showcase
smooth transitions between different speed profiles when turning and going
straight at an intersection. Scenario 6 we can see all the range of possibilities
from a left-turn to a u-turn, which is a pretty rare event.
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Scenario 1 Scenario 2 Scenario 3
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Fig. 20: Overall Sample Quality: Scenario 1 showcases a T-intersection with
fast-moving turns. Scenario 2 is interesting because there is a vehicle coming out
of a parking spot, which is not very frequent in driving logs. Scenario 3 captures
a vehicle maneuvering into a parking spot, also an unusual event.
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Scenario 4 Scenario 5 Scenario 6
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Fig. 21: Overall Sample Quality: Scenario 4 showcases a complex interac-
tion between 3 vehicles at a 4-way intersection, where our model identifies sharp
”modes”. However, like all other baselines, it misses (or predicts with very low
probability) the true mode of the vehicle facing south and left-turning. Scenario
5 showcases fast moving traffic, where our model can predict an accurate distri-
bution with very low entropy even at 5 seconds into the future. Scenario 6 Our
model captures a vehicle performing a U-turn.
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Scenario 7 Scenario 8 Scenario 9
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Fig. 22: Overall Sample Quality: We highlighted the accuracy and sharpness
of our predictions in Scenarios 7, 8 and 9.
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Fig. 23: In this scenario, both MultiPath and ESP generate motion forecasts that
get into the SDV lane, forcing it to lane change to its right, where it collides
with an actual vehicle that is lane changing from behind the SDV and is not
well captured by the prediction models, including ours.



Implicit Latent Variable Model for Scene-Consistent Motion Forecasting 43

Multipath ESP ILVM

t
=

0
s

t
=

1
s

t
=

2
s

t
=

3
s

t
=

4
s

t
=

5
s

Fig. 24: In this scenario, the 3 models generate pulling out trajectories for a big
vehicle, forcing the SDV to maneuver to an unoccupied region. However, ILVM
captures well the distribution of the rest of the actors and the SDV performs
a safe left lane change. However, in ESP and MultiPath the trajectory of the
vehicle to the left is not well captured and the SDV proceeds too aggressively,
resulting in a collision.
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Fig. 25: ESP predicts that the vehicle that starts at the right of the SDV is going
to cut-off the SDV by lane changing left, causing the SDV to hard break and
causing a collision with the vehicle behind. MultiPath and ILVM successfully
drive through the scenario, even though we can see how MultiPath’s prediction
go even into opposite traffic, but luckily do not interfere the SDV.
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