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Figure 1. Taxonomy overview. The sizes are relative to the number of samples within the Mapillary Traffic Sign Dataset (MTSD).

Abstract

Traffic signs are essential map features globally in the
era of autonomous driving and smart cities. To develop ac-
curate and robust algorithms for traffic sign detection and
classification, a large-scale and diverse benchmark dataset
is required. In this paper, we introduce a traffic sign bench-
mark dataset of 100K street-level images around the world
that encapsulates diverse scenes, wide coverage of geo-
graphical locations, and varying weather and lighting con-
ditions and covers more than 300 manually annotated traf-
fic sign classes. The dataset includes 52K images that are
fully annotated and 48K images that are partially anno-
tated. This is the largest and the most diverse traffic sign
dataset consisting of images from all over world with fine-
grained annotations of traffic sign classes. We have run
extensive experiments to establish strong baselines for both
the detection and the classification tasks. In addition, we
have verified that the diversity of this dataset enables ef-
fective transfer learning for existing large-scale benchmark
datasets on traffic sign detection and classification. The
dataset is freely available for academic research1.

1www.mapillary.com/dataset/trafficsign

1. Introduction

Robust and accurate object detection and classification
in diverse scenes is one of the essential tasks in computer
vision. With the development and application of deep learn-
ing in computer vision, object detection and recognition has
been studied [5, 23, 16] extensively on general scene under-
standing datasets [17, 4, 10]. In terms of fine-grained de-
tection and classification, there are also the datasets that fo-
cused on general hierarchical object classes [10] or domain-
specific datasets, e.g. on bird species [33]. In this paper,
we will focus on detection and fine-grained classification of
traffic signs.

Traffic signs are key map features for navigation, traf-
fic control, and road safety. Specifically, traffic signs en-
code information for driving directions, traffic regulation,
and early warning. For autonomous driving, accurate and
robust perception of traffic signs is essential for localization
and motion planning.

As an object class, traffic signs have specific character-
istics in their appearance. First of all, traffic signs are in
general rigid and planar. Secondly, traffic signs are de-
signed to be distinctive from their surroundings. In addi-
tion, there is limited variety in colors and shapes for traffic
signs. For instance, regulatory signs in European countries
are typically circular with a red border. To some degree, the
aforementioned characteristics limit the appearance varia-
tion and increase the distinctness of traffic signs. However,
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Dataset #Images #Classes #Signs Attributes Region BBoxes Unique

MTSD (TRAIN+VAL)
MTSD

41,907
100,000

313
∗206,388
325,172

occluded, exterior,
out-of-frame, dummy,
ambiguous, included

world-wide 3
3

7§

TT100K [36] † 100,000 ‖ 221 26,349 7 China 3 3

MVD [21] 20,000 †2 174,541 7 world-wide 3 3

GTSDB [9] 900 43 852 7 Germany 3 7

RTSD [25] ‡179,138 156 ‡104,358 7 Russia 3 7
STS [12] 3777 20 5582 7 Sweden 3 7
LISA [20] 6610 47 7855 7 USA 3 7
GTSRB [30] 7 43 39,210 7 Germany 7 7
BelgiumTS [31] 7 108 8851 7 Belgium 7 7

Table 1. Overview of traffic sign datasets. The numbers include only publicly available images and annotations (e.g. we only report numbers
for the training and validation set for MTSD). Unique refers to datasets where each traffic sign bounding box corresponds to a unique traffic
sign instance (i.e. no sequences showing the same sign again and again). ∗66,138 signs are within the taxonomy. † TT100K contains only
10,000 images containing traffic signs. ‖ only 45 classes have more than 100 examples. † MVD contains only back vs. front classes.
‡video-frames covering only 15,630 unique signs. §signs within the partially annotated set correspond to signs within the training set.

traffic sign detection and classification is still a very chal-
lenging problem due to the the following reasons: (1) traffic
signs are easily confused with other object classes in street
scenes (e.g. advertisements, banners, and billboards); (2) re-
flection, low light condition, damages, and occlusion hin-
der the classification performance of a sign class; (3) fine–
grained classification with small inter-class difference is not
trivial; (4) the majority of traffic signs—when appearing in
street-level images—are relatively small in size, which re-
quires efficient architecture designs for small objects.

Traffic sign detection and classification has been stud-
ied extensively in the computer vision community. Specifi-
cally, convolutional neural networks (CNN) [24] have ob-
tained great success for traffic sign classification in the
German Traffic Sign Benchmark [29]. Recent works on
simultaneous detection and classification of traffic signs
have also achieved good results on well-studied bench-
mark datasets [19, 36] using either the Viola-Jones frame-
work [32] or CNN-based methods [13]. However, these
studies were done in relatively constrained settings in terms
of the benchmark dataset: the images and traffic signs
are collected in a specific country; the number of traffic
sign classes is relatively small; the images lack diversity in
weather conditions, camera sensors, and seasonal changes.

Extensive research is still needed for the task of detect-
ing and classifying traffic signs at a global scale and under
varying capture conditions and devices. In this paper, we
present the following contributions:

• We present the most diverse traffic sign dataset with
100K images from all over the world. The dataset con-
tains over 52K images that are fully annotated, cover-
ing 313 known traffic sign classes and other unknown
classes, resulting in over 250K signs in total. Addi-

tionally, the dataset also includes about 48K images,
where traffic signs are partially annotated by automat-
ically propagating labels between neighboring images.

• We establish extensive baselines for detection and clas-
sification on the dataset, shedding light on future re-
search directions.

• We study the impact of transfer learning using our traf-
fic sign dataset and other traffic sign datasets released
in the past. Our results show that pre-training on our
dataset boosts the average precision (AP) of the binary
detection task by 4–6%, thanks to the completeness
and diversity of our dataset.

Related Work. Traffic sign detection and recognition has
been studied extensively in the literature in the past. The
German Traffic Sign Benchmark Dataset (GTSBD) [29] is
one of the first datasets that was created to evaluate the
classification branch of the problem. Following that, there
have also been other traffic sign datasets focusing on re-
gional traffic signs, e.g. Swedish Traffic Sign Dataset [11],
Belgium Traffic Sign Dataset [19], Russian Traffic Sign
Dataset [26], and Tsinghua-Tencent Dataset (TT100K) in
China [36]. For generic traffic sign detection (where
no class information of the traffic signs is available),
there has been work done in the Mapillary Vistas Dataset
(MVD) [21] (global) and BDD100K [35] (US only). A de-
tailed overview and comparison of publicly available traffic
sign datasets can be found in Table 1.

For general object detection, there has been substantial
work on CNN-based methods with two main directions,
i.e. one-stage detectors [18, 22, 16] and two-stage detec-
tors [6, 5, 23, 3]. One-stage detectors are generally much



faster, trading off accuracy compared to two-stage detec-
tors. One exception is the one-stage RetinaNet [16] archi-
tecture that outperforms the two-stage Faster-RCNN [23]
thanks to a weighting scheme during training to suppress
trivial negative supervision. For simultaneous detection and
classification, one of the recent works [2] shows that decou-
pling the classification from detection head boosts the ac-
curacy significantly. Our work is related to [2] as we also
decouple the detector from the traffic sign classifier.

To handle the scale variation of objects in the scene,
many efficient multi-scale training and inference algorithms
have been proposed and evaluated on existing datasets. For
multi-scale training, in [27, 28, 14], a few schemes have
been proposed to distill supervision information from dif-
ferent scales efficiently by selective gradient propagation
and crop generation. To enable efficient multi-scale infer-
ence, feature pyramid networks (FPN) [15] were proposed
to utilize lateral connections in a top-down architecture to
construct effective multi-scale feature pyramid from a sin-
gle image.

To develop the baselines presented in this paper, we have
chosen Faster-RCNN [23] with FPN [15] as the backbone.
Given the aforementioned characteristics of traffic sign im-
agery, we have also trained a separate classifier for fine-
grained classification as in [2]. We elaborate the details of
our baseline method in Section 4.

2. Mapillary Traffic Sign Dataset
In this section, we present a large-scale traffic sign

dataset called Mapillary Traffic Sign Dataset (MTSD) in-
cluding 52,453 images with fully annotated traffic sign
bounding boxes and corresponding class labels. Addition-
ally, it includes a set of 47,547 nearby images with 87,358
automatically generated labels, making it a total of 100,000
images. In the following sections we describe how the
dataset was created and present our traffic sign class tax-
onomy consisting of 313 classes.

2.1. Image Selection

There are various conventions for traffic signs in differ-
ent parts of the world, leading to strong appearance differ-
ences. Even within a single country or state, the distribution
of signs is not uniform: some signs occur only in urban ar-
eas, some only on highways, and others only in rural areas.
With MTSD, we present a dataset that covers this diversity
uniformly. In order to do so, a proper pre-selection of im-
ages for annotation is crucial. The requirements for this
selection step are: (1) to have a uniform geographical dis-
tribution of images around the world, (2) to cover images of
different quality, captured under varying conditions, (3) to
include as many signs as possible per image, and (4) to com-
pensate for the long-tailed distribution of potential traffic
sign classes.

Figure 2. Geographical distribution of the images within MTSD.

Mapillary2 is a street-level imagery platform hosting im-
ages collected by members of their community. All images
are accessible to everyone via Mapillary’s public API under
a CC-BY-SA license. Derived data including traffic sign
detections are also available for academic research and ap-
proved applications.

In order to get a pool of pre-selected images satisfying
the aforementioned requirements, we sample images in a
per-country manner with a greedy scheme. The fraction
of target images for each country is derived from the num-
ber of images available in that country and its population
count weighted by a global target distribution over all con-
tinents (i.e. 20% North America, 20% Europe, 20% Asia,
15% South America, 15% Oceania, 10% Africa). We fur-
ther make sure to cover both rural and urban areas within
each country by binning the sampled images uniformly in
terms of their geographical locations and sample random
images from each of the resulting bins. In the last step of
our greedy image sampling scheme, we prioritize images
containing at least one traffic sign instance according to the
traffic sign detections given by the Mapillary API and make
sure to cover various image resolutions, camera manufac-
turers and scene properties3. Additionally, we add a dis-
tance constraint so that selected images are far away from
each other in order to avoid highly correlated images and
traffic sign instances.

The heat map in Figure 2 shows the resulting geograph-
ical distribution of the images within the dataset, covering
almost all habitable areas of the world with higher density
in populous areas. Statistics of the final dataset can be found
in Section 3.

2.2. Annotation Process

The process of annotating an image including image se-
lection approval, traffic sign localization by drawing bound-

2www.mapillary.com/app
3Details on how scene properties are defined and derived are included

in the supplementary materials.



ing boxes, and class label assignment for each box is a com-
plex and demanding task. To improve efficiency and qual-
ity, we split it into 3 consecutive tasks, with each having its
own quality assurance process. All tasks were done by 15
experts in image annotation after being trained with explicit
specifications for each task.

Image Approval. Since initial image selection was done
automatically based on the greedy heuristics described in
Section 2.1, the annotators needed to reject images that did
not fulfill our criteria for the dataset. In particular, we do
not include non-street level images or images that have been
taken from unusual places or viewpoints. Also we discarded
images of very bad quality that could not be used for train-
ing at all (i.e. extremely blurry or overexposed). However,
we still sample images of low quality in the dataset which
include recognizable traffic signs as these are good exam-
ples to evaluate recognition on traffic signs in real-world
scenarios.

Sign Localization. In this task, the annotators were in-
structed to localize all traffic signs in the images and an-
notate them with bounding boxes. In contrast to previous
traffic sign datasets where only specific types of traffic signs
have been annotated (e.g. TT100K [36] includes only stan-
dard circular and triangular shaped signs), MTSD contains
bounding boxes for all types of traffic related signs includ-
ing direction, information, highway signs, etc.

To speed up the annotation process, each image was ini-
tialized with bounding boxes of traffic signs extracted from
the Mapillary API. The annotators were asked to correct
all existing bounding boxes to tightly contain the signs (or
reject them in cases of false positives) and to annotate all
missing traffic signs if their shorter sides were larger than
10 pixels. We provide a statistical evaluation of the manual
changes done by the annotators in Section 3.3.

Sign Classification. This task was done independently for
each annotated traffic sign. Each traffic sign (together with
some image context) was shown to the annotators who were
asked to provide the correct class label. This is not trivial,
since the number of possible traffic sign classes is large. To
the best of our knowledge, there is no globally valid traffic
sign taxonomy available; even then, it would be impossible
for the annotators to keep track of all the different traffic
sign classes.

To overcome this issue, we used a set of previously har-
vested template images of traffic signs from Wikimedia
Commons [1] and grouped them by similarity in appear-
ance and semantics. This set of templates (together with
their grouping) defines the possible set of traffic sign classes
that can be selected by the annotators. In fact, we store an
identifier of the actual selected template, which allows us
to link the traffic sign instances to our flexible traffic sign

taxonomy without even knowing the final set of classes be-
forehand (see Section 2.3).

Since it would still be too time-consuming to scroll
through the entire list of templates to choose the correct
one out of thousands, we trained a neural network (with
the grouped template images) to predict the similarities be-
tween an arbitrary image of a traffic sign instance and the
templates. We used this proposal network to assist the an-
notators in choosing the correct template by pre-sorting the
template list for each individual traffic sign. For cases in
which this strategy fails to provide a matching template, we
provided a text-based search for templates. For details about
the annotation UI and how the proposal network was used
to assist the annotator we refer to the supplemental material.

Additional Attributes. In addition to the bounding boxes
and the matching traffic sign templates, the annotators were
asked to provide additional attributes for each sign: oc-
cluded if the sign is partly occluded; ambiguous if the sign
is not classifiable at all (e.g. too small, bad quality, heavy
occlusion etc.); dummy if it looks like a sign but isn’t (e.g.
car stickers, reflections, etc.); out-of-frame if the sign is cut
off by the image border; included if the sign is part of an-
other bigger sign; and exterior if the sign includes other
signs. Some of these attributes were assigned during local-
ization (if context information is needed). The rest was as-
signed during classification. In Section 4 we describe how
we use some of these attributes to guide the training of our
traffic sign detector.

Annotation Quality. All annotations in MTSD were done
by expert annotators going through a thorough training pro-
cess. Their work was monitored by a continuous quality
control (QC) process to quickly identify problems during
annotations. Moreover, our step-wise annotation process
(i.e. approval followed by localization followed by classi-
fication) ensures that each traffic sign was seen by at least
two annotators. The second annotator operating in the clas-
sification step was able to reject false positive signs or to
report issues with the bounding box in which case the con-
taining image was sent back to the localization step.

In additional quality assurance (QA) experiments done
by a 2nd annotator on 5K images including 26K traffic
signs we found that

• only 0.5% of bounding boxes needed correction.

• the false negative rate was 0.89% (corresponding to a
total number of only 212 missing signs; most of them
being very small).

• the false positive rate was at 2.45%. Note that is in the
localization step before classification, where a second
annotator would have been asked to classify the sign
and could potentially fix false positives.



Figure 3. Example templates in traffic sign taxonomy. Each row
represent a traffic sign class based on semantics and appearance.

2.3. Traffic Sign Class Taxonomy

Traffic signs vary across different countries. For many
countries, there exists no publicly available and complete
catalogue of signs. The lack of a known set of traffic sign
classes leads to challenges in assigning class labels to traffic
signs annotated in MTSD. The potential magnitude of this
unknown set of traffic signs is in the thousands as indicated
by the set of template images described in Section 2.2.

For MTSD, we did a manual inspection of the templates
that have been chosen by the annotators and selected a sub-
set of them to form the final set of 313 classes included in
the dataset as visualized in Figure 1. This subset was cho-
sen and grouped such that there are no overlaps or confusion
(visual or semantic) among the classes. Templates with the
same semantics and similar appearance form a class. How-
ever, different groups of templates that share the same se-
mantics but are different in terms of appearance form dif-
ferent classes as shown in Figure 3.

All these classes defined by disjoint sets of templates
build up our traffic sign class taxonomy. We map all an-
notated traffic signs in MTSD that have a template selected
within this taxonomy to a class label. We would like to
emphasize that our flexible traffic sign taxonomy allows
us to incrementally extend MTSD by adding more classes
together with already annotated traffic sign instances with
known templates.

2.4. Partial Annotations

In addition to the fully-annotated images, we provide an-
other set of images with partially annotated bounding boxes
and labels of traffic signs. Given the fully-annotated im-
ages, the annotations of this set of images are generated
automatically. We achieve this by finding correspondences
between the manual annotations in the fully-annotated im-
ages and automatic detections in geographically neighbor-
ing images from the Mapillary API. To find these correspon-
dences, we first use Structure from Motion (SfM) [7] to re-

cover the relative camera poses between the fully-annotated
images and the partially annotated images. With these esti-
mated relative poses, we generate the correspondences be-
tween annotated signs and automatically detected signs by
triangulating and verifying the re-projection errors for the
centers of the bounding boxes between multiple images.
Having these correspondences, we propagate the manually
annotated class labels to the automatic detections in the par-
tially annotated images. Since there is no guarantee that all
traffic signs are detected through Mapillary’s platform, we
obtained a set of images with partially annotated bounding
box annotations and labels. Note that, for unbiased evalua-
tion, we ensure that the extension is done only in the geo-
graphical neighborhood of images in the training set (based
on the split discussed in Section 2.5). Example images can
be found in Figure 4. A more detailed description of how
this set was created can be found in supplemental material.

We see this set of partially annotated images serving as
a data source for further research in semi-supervised learn-
ing for traffic sign detection and recognition. In addition,
the correspondence information between the traffic sign ob-
servations will pave the ways for other learning tasks like
semantic matching with street-level objects.

2.5. Dataset Splits

As common practice with other datasets such as
COCO [17], MVD [21] and PASCAL VOC [4], we split
MTSD into training, validation and test sets, consisting of
36,589, 5320, and 10,544 images, respectively. We provide
the image data for all images as well as the annotations for
the training and validation set; the annotations for the test
set will not be released in order to ensure a fair evaluation.
Additionally, we provide a set of 47,547 images with partial
annotations as discussed in Section 2.4 that can be used for
training as well.

Each split is created in a way to match the distributions
described in Section 2.1. Especially, we ensure that the dis-
tribution of class instances is similar for each split, to avoid
that rare classes are under-represented in the smaller sets
(i.e. validation/test sets). The same holds true for the addi-
tional sign attributes (e.g. ambiguous, etc.).

3. Statistics
In this section, we provide statistics of image and traffic

sign properties of MTSD and also a comparison with previ-
ous datasets such as TT100K [36] and MVD [21]. Further-
more, we provide statistical insights about annotator actions
during the creation of MTSD.

3.1. Image Properties

For a diverse dataset to reflect a real-world image captur-
ing setting, it is important to cover a broad range of different
image qualities and other image properties such as aspect



Figure 4. Example from the partially annotated set: The leftmost image is from the fully annotated set. The other 3 images show the same
sign from different perspectives in the partially annotated set. Best viewed zoomed in.
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Figure 5. Distribution of camera devices used for image capture.

ratio, focal length and other sensor-specific properties. The
image selection strategy described in Section 2.1 used for
MTSD ensures a good distribution over different capturing
settings. In Figure 5, we show the distribution of camera
manufacturers used for capturing the images of MTSD. In
total, the dataset covers over 200 different sensor manufac-
turers (we group the tail of the distribution for displaying
purposes) which results in a large variety of image proper-
ties similar to the properties described in [21]. This is in
contrast to the setup used for the TT100K [36] which con-
tains only images taken by a single sensor setup, making
MTSD more challenging in comparison.

The diversity in camera sensors further results in a di-
verse distribution over image resolutions as shown in Fig-
ure 6. MTSD covers a broad range of image sizes start-
ing from low-resolution images with 1MPixels going up to
images of more than 16MPixels. Additionally, we include
1138 360-degree panoramas stored as standard images with
equi-rectangular projection. Besides the overall larger im-
age volume compared to other datasets, MTSD also covers
a larger fraction of low-resolution images, which is espe-
cially interesting for pre-training and validating detectors
applied on similar sensors e.g. built-in automotive cameras.
For comparison, TT100K only contains images of 20482 px
and even for this resolution the volume of images is smaller
than in MTSD.

(0,1k] (1k,2k] (2k,3k] (3k,4k] (4k, ]
Image size
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ag

e 
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TT100K

Figure 6. Distribution of image sizes (square root of pixel area).

3.2. Traffic Sign Properties

The fully-annotated set of MTSD includes a total num-
ber of 257,543 traffic sign bounding boxes out of which
82,724 have a class label within our traffic sign taxonomy
covering 313 different traffic sign classes. The remaining
traffic signs sum up as 85,122 ambiguous signs, 23,407
directional signs, 9141 information signs, 3416 highway
shields, 6451 exterior signs, 1917 barrier signs, 23,468
signs without a selected template, and 21,897 signs with
a template not included by our current taxonomy (but po-
tentially in future releases of the dataset).

The left plot in Figure 7 shows a comparison of the traffic
sign class distribution between MTSD and TT100K. Note
that MVD is not included here since it does not have labels
of traffic sign classes. MTSD has approximately twice as
many traffic sign classes than TT100K; if we use the defi-
nition of a trainable class in [36] (which are classes with at
least 100 traffic sign instances within the dataset) this factor
increases to approximately 3 between TT100K and MTSD.
This difference gets even higher if we consider the instances
from the partially annotated set of MTSD as well.

The plot in the middle of Figure 7 compares the areas of
signs in terms of pixels in the original resolution of the con-
taining image. MTSD covers a broad range of traffic sign
sizes with an almost uniform distribution up to 2562 px.
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traffic sign instances.

Figure 8. Example images in MTSD from different geographical locations under varying lighting and weather conditions. Top: Bounding
box and class label annotation of traffic signs (green boxes without neighboring template indicts a other-sign); Bottom: Results from our
detection and classification baseline on the validation set (green colored: true positive, red: missing detections)

MVD has a similar distribution with a lower overall vol-
ume. In comparison to TT100K, MTSD provides a higher
fraction of extreme sizes which poses another challenge for
traffic sign detection.

Finally, the plot on the right of Figure 7 shows the dis-
tribution of images over the number of signs within the im-
age. Besides the higher volume of images, MTSD contains
a larger fraction of images with a large number of traffic
sign instances (i.e. > 12). One reason for this is that the an-
notations in MTSD cover all types of traffic signs, whereas
TT100K only contains annotations for very specific types
of traffic signs in China.

3.3. Annotator Interactions

To gather some insights about the work of the annota-
tors, we analyzed their interactions with the bounding boxes
fetched from the Mapillary API as described in Section 2.2
and present the results in Table 2. We found that 52% of

Count Mean

Images worked on 52,608 -
Signs worked on 266,238 -

Originated from detection 128,601 0.52
IoU with original detection - 0.76

New signs per image - 2.63

Table 2. Statistics of manual annotator interactions.

the bounding boxes annotated in MTSD originated from an
automatic detection already present. However, when com-
paring the final boxes within MTSD to the original ones,
we find an overlap of only 76% in terms of IoU, proving
the improvement of detection accuracy. Additionally, we
found that the annotators on average added approximately
3 completely new bounding boxes that were missing before
in each image.



4. Traffic Sign Detection
The first task defined on MTSD is detecting traffic signs

as bounding boxes without inferring the specific class la-
bels. The goal is to predict a set of bounding boxes with
corresponding confidence scores as traffic signs.

Metrics. Given a set of detections with estimated scores
for each image, we first compute the matching between the
detections and annotated ground truth within each image
separately. A detection can be successfully matched to a
ground truth if their Jaccard overlap (IoU) [4] is > 0.5; if
multiple detections match the same ground truth, only the
detection with the highest score is a match while the rest is
not (double detections); each detection will only be matched
to one ground truth bounding box with the highest overlap.

Having this matching indicator (TP vs. FP) for every de-
tection, we define define average precision (AP) similar to
COCO [17] (i.e. APIoU=0.5 which resembles AP definition
of PASCAL VOC [4]) and compute precision as a function
of recall by sorting the matching indicators by their corre-
sponding detection confidence scores in descending order
and accumulate the number of TPs and FPs. AP is then de-
fined as the area under the curve of this step function. Addi-
tionally, we follow [17] and compute AP for traffic signs of
different scales: APs, APm, and APl refer to AP computed
for boxes with area a < 322, 322 < a < 962, and a > 962,
respectively.

Baseline and Results. In Table 3, we show experimen-
tal results using a Faster R-CNN based detector [23] with
FPN [15] and residual networks [8] as the backbone.

During training we randomly sample crops of size
1000 × 1000 at full resolution instead of down-scaling the
image to avoid vanishing of small traffic signs, as traffic
signs can be very small in terms of pixels and MTSD cov-
ers traffic signs from a broad range of scales in different im-
age resolutions. We use a batch size of 16 distributed over
4 GPUs during training for the ResNet50 models; for the
ResNet101 version, we use batches of size 8. Unless stated
otherwise, we train using stochastic gradient descent (SGD)
with an initial learning rate of 1× 10−2 and lower the learn-
ing rate when the validation error plateaus. For inference,
we down-scale the input images such that their larger side
does not exceed a certain number of pixels (either 2048 px
or 4000 px) or operate on full resolution if the original im-
age is smaller.

Besides training on MTSD, we conduct transfer-learning
experiments on TT100K and MVD4 to test the general-
ization properties of the proposed dataset. We use the

4We convert the segmentation of traffic-sign–front instances to bound-
ing boxes by taking the minimum and maximum in the x, y axes. Note that
this conversion can be inaccurate if signs are occluded by other objects.
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Figure 9. Network architecture of the baseline classifier.

Figure 10. Failure cases of the baseline classification network on
MTSD.

same baseline as for the MTSD experiments and train it on
both datasets, once with ImageNet initialization and once
with MTSD initialization. The models trained with Ima-
geNet initialization are trained to convergence. To ensure
a fair comparison, we fine-tune only for half the number of
epochs when initializing with MTSD weights. The results
in Table 3 show that MTSD pre-training boosts detection
performance by a large margin on both datasets regardless
of the input resolution. This is a clear indication for the
generalization qualities of MTSD.

5. Simultaneous Detection and Classification

The second task on MTSD is simultaneous detection and
classification of traffic signs (i.e. multi-class detection). It
extends the detection task to additionally predict a class la-
bel for each traffic sign instance that is in our taxonomy. For
the traffic signs that do not have a label within our taxonomy
we introduce a general class other-sign.

Metric. The main metric for this task is mean average pre-
cision (mAP) over all 313 classes; per-class AP is calcu-
lated as described in Section 4. The matching between pre-
dicted and ground truth boxes is done in a binary way by
ignoring the class label. After that, we filter out all other-
sign ground-truth instances and detections since we do not
want to evaluate on this general class.

Baseline. A trivial baseline for this task would be to ex-
tend the binary detection baseline from Section 4 to the
multi-class setting by adding a 314-way classification head.
However, preliminary experiments showed that a straight-
forward training of such a network does not yield acceptable



Max 4000px Max 2048px

AP APs APm APl AP APs APm APl

MTSD

ResNet50 FPN 87.3 73.03 91.91 93.56 80.22 52.31 88.87 94.73
ResNet101 FPN 88.44 74.00 92.14 93.70 81.80 56.55 89.22 94.82

TT100K

[36] multi-scale∗ 91.79 84.56 96.40 92.60 - - - -

ResNet50 FPN - - - - 91.27 84.01 95.87 90.13
+ pre-trained on MTSD - - - 97.60 (+6.33) 93.13 99.03 98.44

MVD (traffic signs)

ResNet50 FPN 72.90 46.60 79.93 85.42 64.00 30.70 75.28 86.50
+ pre-trained on MTSD 76.31 (+3.41) 51.00 83.49 88.33 68.29 (+4.29) 33.60 79.45 89.53

Table 3. Detection results on MTSD, TT100K and MVD. Numbers in brackets refer to absolute improvements when pre-training on MTSD
in comparison to ImageNet. ∗ They evaluate using multi-scale inference with scales 0.5, 1, 2, and 4.

mAP mAPs mAPm mAPl

MTSD

FPN50 + classifier 81.1 69.4 85.0 87.2
FPN101 + classifier 83.4 76.4 85.8 87.3

TT100K

[36] multi-scale 81.6 68.3 86.5 85.7

FPN50 + classifier 89.9 (+8.3) 83.9 93.0 84.3
+ det pre-trained 93.4 (+11.8) 88.2 94.8 93.6
+ cls pre-trained 95.7 (+14.1) 91.3 96.9 96.7

Table 4. Simultaneous detection and classification results. The
numbers in brackets are absolute improvements over [36]. det pre-
trained and cls pre-trained refer to experiments with additionally
MTSD pre-trained detector and classifier, respectively.

performance. We hypothesize that this is due to (1) scale is-
sues for small signs before RoI pooling and, (2) under-rep-
resented class variation within the training batches given
that the majority of traffic sign instances are other-sign.

To overcome the scale issue and to have better control
over batch statistics during training, we opted for a two-
stage architecture with using our binary detector in the first
stage and a decoupled shallow classification network in the
second stage. This form of decoupling has been shown to
improve the detection and recognition accuracy [2]. The
classification network consists of seven 3 × 3 convolutions
(each followed by batch normalization) with 2 max-pooling
layers after the 2nd and 6th convolution layer. The last
convolution is followed by spatial average pooling and a
fully-connected stage resulting in a 314-way classification
head with softmax activation (313 and other-sign) and a sin-
gle sigmoid activation for foreground/background classifi-
cation. The network architecture is depicted in Figure 9.

We use image crops predicted by the detector (both
foreground and background) together with crops from the
ground-truth as input during training and optimize the net-
work using cross-entropy loss. To balance the distribution
of traffic sign classes in a batch, we uniformly sample 128
different classes with 3 samples each class and add another
128 background crops per batch. We train the network
with SGD for 30 epochs starting with a learning rate of
1× 10−2, lowered by a factor of 0.1 after 10 and 20 epochs.

Results. We show the results of our baseline in Table 4.
Our classifier in combination with ResNet101 binary detec-
tor reaches 83.4 mAP over all 313 classes; the ResNet50
variant is only about 2 points lower. Figure 8 shows visual
examples of our baseline’s predictions and Figure 10 shows
typical failure cases of the classification network.

To verify our baseline, we train with the same setup on
TT100K and compare the results with the baseline in [36]5.
Our two-stage approach outperforms their baseline by 8.3
points, even though the performances of the binary detec-
tors are similar (see Table 3). This validates that the decou-
pled classifier (even with a very shallow network) is able
to yield good results. Moreover, the accuracy is improved
further after pre-training the classifier (and the detector) on
MTSD before fine-tuning it on TT100K, which further val-
idate the generalization effectiveness of the MTSD.

6. Conclusion
In this work, we have introduced MTSD, a large-scale

traffic sign benchmark dataset that includes 100K images
with full and partial bounding-box annotations, covering
313 traffic sign classes from all over the world. MTSD

5We convert their results to the format used by MTSD and evaluate
using our metrics.



is the most diverse traffic sign benchmark dataset in terms
of geographical locations, scene characteristics, and traffic
sign classes. We have shown in baseline experiments that
decoupling detection and fine-grained classification yields
superior results on previous traffic sign datasets. Addition-
ally, in transfer-learning experiments, we show that MTSD
facilitates fine-tuning and improves accuracy substantially
for traffic sign datasets in a narrow domain.

We see MTSD as the first step to drive the research ef-
forts towards solving fine-grained traffic sign detection and
classification at a global scale. With the partial annotated
dataset, we would also like to pave the way for further re-
search in semi-supervised learning. In the future, we would
like to extend the dataset towards a complete traffic sign
taxonomy globally. To achieve this, we see the potential of
applying zero-shot learning to efficiently model the seman-
tic and appearance attributes of traffic sign classes. With
the global taxonomy built, we can optimize the performance
further with hierarchical classification [22, 34].
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1. Scene Classification for Image Selection

An important requirement during image selection for
MTSD was to ensure high diversity of images with differ-
ent image properties. Since the frequency of occurrence
of certain traffic sign classes can be very different depend-
ing on the scene, we trained a neural network to predict the
scene classes of the images and used the predicted labels
to guide the image selection in order to diversify the scene
classes in the final dataset. To train the scene classification
network, we have used a subset of the scene classes of the
BDD100K dataset [7]. After filtering BDD100K for images
that have either the residential, highway, or city street class
label, we trained a ResNet50 [6] that was pre-trained on
ImageNet with a cross-entropy loss using stochastic gradi-
ent descent (SGD). The network was trained to convergence
with an initial learning rate of 1× 10−2 which was reduced
by a factor of 0.1 until validation accuracy plateaued.

Figure 1 shows the distribution of scene classes within
the supervised set of MTSD according to predictions of
this model as targeted during our greedy image selection
scheme. We opted for a uniform distribution after treating
city street and residential as a single class, since we found
that these two classes (as annotated in BDD100K) are not
always clearly distinguishable even for human. Given the
large number of candidate images, this weakly-supervised
image selection scheme facilitated increasing the diversity
in scene classes.

2. Template Proposal Network

As mentioned in Section 2.2 of the main paper, we used
a neural network to predict similarities between sampled
crops and grouped template images in order to assist the
annotators in choosing a valid template in the annotation
process. The predicted similarities were used to propose
template images for each sign in a similarity-ordered way.
Without such a mechanism, it would be extremely time-
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Figure 1. Distribution of scene categories within MTSD as pre-
dicted by our scene prediction network.

consuming for the annotators to handle the large set of dif-
ferent template images that are available.

We use a metric learning approach [2] to train a 3-layer
network (similar to but shallower than the baseline clas-
sification network in the main paper) to learn a function
f(x) : Rd → Rk that maps a d-dimensional input vector
to a k-dimensional embedding space. In our case, x are in-
put images encoded as vectors of size d = 40× 40× 3 and
k = 128. We train the network with a contrastive loss [3]
such that the cosine similarity

sim(x1, x2) =
xT
1x2

‖x1‖2 ‖x2‖2
(1)

between two embedding vectors x1 and x2 with corre-
sponding group labels ŷ1, ŷ2 should be high if the samples
are within the same template group, whereas the similarity
should be lower than a margin m if the samples are from
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Figure 2. The classification UI used by the annotators. The traffic sign to be annotated is shown with its bounding box on the left. On the
right, one can see the current selection (green bounding box in the 1st column) as well as the proposed templates. Each column starting
with the second one shows a proposed template group based on the similarity of the real image crop and the templates as predicted by our
proposal network; if the similarity is below a certain threshold, the templates are grayed out (starting from 5th column in this example).
The other templates in the 1st column show proposals based on the currently selected template; note how this enables the annotator to find
even more similar templates that are not proposed based on the image crop.

different groups:

L =

{
1− sim(x1, x2), if ŷ1 = ŷ2

max [0, sim(x1, x2)−m] else
. (2)

We choose m = 0.2 and train the network using a generated
training set by blending our traffic sign templates to random
background images after scaling, rotating and sheering it by
a reasonable amount.

Note that the goal of the model is not necessarily to pre-
dict the correct class in terms of the most similar template
but to have the matching template together with similar ones
at least within the top-k predictions. In this way, the anno-
tator can browse the template groups either ordered by sim-
ilarity to the traffic sign crop under question, or ordered by
the similarity between a selected template image and other
templates. The latter ordering allows to browse through
the template images in a semantically meaningful way if
a matching template is not proposed in the first place. Fur-
ther, we want to point out that this approach allowed us to
add new missing templates to the UI on demand without the
need of training data or re-training of the proposer network.
Figure 2 shows a screenshot of the user interface using the
described network to propose templates.

Besides the proposer based navigation, we additionally
provided a text-based template search. This was necessary
for cases where the proposer failed to provide good tem-
plates.

3. Partial Annotation

In this section, we elaborate on how we automatically
generated the partially annotated images using a structure
from motion pipeline. For each fully-annotated image
within the training set of MTSD, we query for a set of
neighboring images from Mapillary that locate within a pre-
defined distance to form a image cluster. Then, we recov-
ered the relative camera poses between images in the clus-
ter using a pipeline based on OpenSfM [1]. To create ten-
tative correspondences between annotated signs and auto-
matic detections (by Mapillary) in the neighboring images,
we rely on the class labels i.e. a pair of signs with the same
labels form a tentative correspondence. With such tentative
correspondences, we further triangulate the 3D positions
of the signs [4] and vote for the most geometrically feasi-
ble correspondences based on the estimated relative camera
poses. Here, we triangulate the traffic signs as 3D points
with the centers of corresponding 2D bounding boxes.

To this end, we have established geometrically and se-
mantically consistent correspondences between the anno-
tated signs and automatic detections. The correspondences
are then utilized to generate the partial annotated dataset as
described in main paper by propagating the human verified
class labels of the corresponding traffic sign instances in the
fully annotated training set to the automatically generated
ones.



4. Qualitative Examples
In the following we show additional examples of anno-

tated MTSD images in Section 4.1. Further, we show re-
sults of our transfer learning experiments on TT100K [8]
and MVD [5] in Section 4.2. For qualitative comparisons
of detections, we make sure that we choose score thresh-
olds so that either recall or precision are comparable.

4.1. Examples in MTSD

We show some examples of annotated images from the
MTSD training set in Figure 3. MTSD covers a broad range
of capture settings including cities, highways, residential
areas, and rural areas with different lighting and weather
conditions from varying view points. This variety makes
MTSD the most diverse traffic sign dataset available.

4.2. Impact of Transfer Learning

To illustrate the gains of our baseline on TT100K by pre-
training the model on MTSD, we show qualitative compar-
isons of detections in Figure 4. The model pre-trained on
MTSD is able to detect more traffic signs in many cases
while preserving a high precision. For fair qualitative com-
parison, both models operate on the same level of precision
(0.95), however, the model pre-trained on MTSD achieves
a higher recall (0.91 vs. 0.81).

A similar qualitative comparison for MVD is shown in
Figure 5. Again, both models operate on the same precision
level of 0.8, while the model pre-trained on MTSD obtains a
higher recall of 0.67 compared to 0.61 for the model trained
solely on MVD. Besides the higher recall, the pre-trained
model has less confusion with billboards and other planar
objects that are similar to traffic signs.
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Figure 3. Examples of annotated images from the MTSD training set, covering diverse lighting and weather conditions



Figure 4. Qualitative comparisons between our baseline trained on TT100K only (left), and our baseline pre-trained on MTSD and fine-
tuned on TT100K (right). The score thresholds are chosen such that both models operate on the same level of precision.



Figure 5. Qualitative comparisons between our binary baseline detector trained on MVD only (left), and our baseline pre-trained on MTSD
and fine-tuned on MVD (right). The score thresholds are chosen such that both models operate on the same level of precision.


