
HoughNet: Integrating near and long-range
evidence for bottom-up object detection

Nermin Samet1, Samet Hicsonmez2, and Emre Akbas1

1 Department of Computer Engineering, Middle East Technical University
{nermin,emre}@ceng.metu.edu.tr

2 Department of Computer Engineering, Hacettepe University
{samethicsonmez}@hacettepe.edu.tr

Abstract. This paper presents HoughNet, a one-stage, anchor-free, voting-
based, bottom-up object detection method. Inspired by the Generalized
Hough Transform, HoughNet determines the presence of an object at
a certain location by the sum of the votes cast on that location. Votes
are collected from both near and long-distance locations based on a log-
polar vote field. Thanks to this voting mechanism, HoughNet is able
to integrate both near and long-range, class-conditional evidence for vi-
sual recognition, thereby generalizing and enhancing current object de-
tection methodology, which typically relies on only local evidence. On
the COCO dataset, HoughNet’s best model achieves 46.4 AP (and 65.1
AP50), performing on par with the state-of-the-art in bottom-up object
detection and outperforming most major one-stage and two-stage meth-
ods. We further validate the effectiveness of our proposal in another
task, namely, “labels to photo” image generation by integrating the vot-
ing module of HoughNet to two different GAN models and showing that
the accuracy is significantly improved in both cases. Code is available at
https://github.com/nerminsamet/houghnet.

Keywords: Object Detection, Voting, Bottom-up recognition, Hough
Transform, Image-to-image translation

1 Introduction

Deep learning has brought on remarkable improvements in object detection.
Performance on widely used benchmark datasets, as measured by mean average-
precision (mAP), has at least doubled (from 0.33 mAP [15] [11] to 0.80 mAP on
PASCAL VOC [17]; and from 0.2 mAP [28] to around 0.5 mAP on COCO [27])
in comparison to the previous generation (pre-deep-learning, shallow) methods.
Current state-of-the-art, deep learning based object detectors [27,30,38,41] pre-
dominantly follow a top-down approach where objects are detected holistically
via rectangular region classification. This was not the case with the pre-deep-
learning methods. The bottom-up approach was a major research focus as ex-
emplified by the prominent voting-based (the Implicit Shape Model [24]) and
part-based (the Deformable Parts Model [10]) methods. However, today, among

ar
X

iv
:2

00
7.

02
35

5v
3 

 [
cs

.C
V

] 
 2

4 
Ju

l 2
02

0

https://github.com/nerminsamet/houghnet


2 N. Samet et al.

deep learning based object detectors, the bottom-up approach has not been suf-
ficiently explored with a few exceptions (e.g. CornerNet [23], ExtremeNet [52]).

Fig. 1: (Left) A sample “mouse” detec-
tion, shown with yellow bounding box,
by HoughNet. (Right) The locations
that vote for this detection. Colors in-
dicate vote strength. In addition to the
local votes originating from the mouse
itself, there are strong votes from nearby
“keyboard” objects, which shows that
HoughNet is able to utilize both short
and long-range evidence for detection.
More examples can be seen in Fig. 4

In this paper, we propose Hough-
Net, a one-stage, anchor-free, voting-
based, bottom-up object detection
method. HoughNet is based on the
idea of voting, inspired by the Gener-
alized Hough Transform [2, 18]. In its
most generic form, the goal of GHT
is to detect a whole shape based on
its parts. Each part produces a hy-
pothesis, i.e. casts its vote, regarding
the location of the whole shape. Then,
the location with the most votes is
selected as the result. Similarly, in
HoughNet, the presence of an object
belonging to a certain class at a par-
ticular location is determined by the
sum of the class-conditional votes cast
on that location (Fig. 1). HoughNet
processes the input image using a convolutional neural network to produce an
intermediate score map per class. Scores in these maps indicate the presence of
visual structures that would support the detection of an object instance. These
structures could be object parts, partial objects or patterns belonging to the
same or other classes. We name these score maps as “visual evidence” maps.
Each spatial location in a visual evidence map votes for target areas that are
likely to contain objects. Target areas are determined by placing a log-polar
grid, which we call the “vote field,” centered at the voter location. The purpose
of using a log-polar vote field is to reduce the spatial precision of the vote as
the distance between voter location and target area increases. This is inspired
by foveated vision systems found in nature, where the spatial resolution rapidly
decreases from the fovea towards the periphery [22]. Once all visual evidence is
processed through voting, the accumulated votes are recorded in object presence
maps, where the peaks indicate the presence of object instances.

Current state-of-the-art object detectors rely on local (or short-range) visual
evidence to decide whether there is an object at that location (as in top-down
methods) or an important keypoint such as a corner (as in bottom-up methods).
On the other hand, HoughNet is able to integrate both short and long-range
visual evidence through voting. An example is illustrated in Fig. 1, where the
detected mouse gets strong votes from two keyboards, one of which is literally at
the other side of the image. In another example (Fig. 4, row 2, col 1), a ball on
the right-edge of the image is voting for the baseball bat on the left-edge. On the
COCO dataset, HoughNet achieves comparable results with the state-of-the-art
bottom-up detector CenterNet [9], while being the fastest object detector among
bottom-up detectors. It outperforms prominent one-stage (RetinaNet [27]) and



HoughNet 3

two-stage detectors (Faster RCNN [41], Mask RCNN [16]). To further show the
effectiveness of our approach, we used the voting module of HoughNet in another
task, namely, “labels to photo” image generation. Specifically, we integrated the
voting module to two different GAN models (CycleGAN [54] and Pix2Pix [20])
and showed that the performance is improved in both cases.

Our main contribution in this work is HoughNet, a voting-based bottom-up
object detection method that is able to integrate near and long-range evidence for
object detection. As a minor contribution, we created a mini training set called
“COCO minitrain”, a curated subset of COCO train2017 set, to reduce the
computational cost of ablation experiments. We validated COCO minitrain in
two ways by (i) showing that the COCO val2017 performance of a model trained
on COCO minitrain is strongly positively correlated with the performance of
the same model trained on COCO train2017, and (ii) showing that COCO
minitrain set preserves the object instance statististics.

2 Related Work

Methods using log-polar fields/representations. Many biological systems
have foveated vision where the spatial resolution decreases from the fovea (point
of fixation) towards the periphery. Inspired by this phenomenon, computer vision
researchers have used log-polar fields for many different purposes including shape
description [4], feature extraction [1] and foveated sampling/imaging [44].

Non-deep, voting-based object detection methods. In the pre-deep learn-
ing era, generalized Hough Transform (GHT) based voting methods have been
used for object detection. The most influential work was the Implicit Shape
Model (ISM) [24]. In ISM, Leibe et al. [24] applied GHT for object detec-
tion/recognition and segmentation. During the training of the ISM, first, interest
points are extracted and then a visual codebook (i.e. dictionary) is created using
an unsupervised clustering algorithm applied on the patches extracted around
interest points. Next, the algorithm matches the patches around each interest
point to the visual word with the smallest distance. In the last step, the positions
of the patches relative to the center of the object are associated with the corre-
sponding visual words and stored in a table. During inference, patches extracted
around interest points are matched to closest visual words. Each matched visual
word casts votes for the object center. In the last stage, the location that has
the most votes is identified, and object detection is performed using the patches
that vote for this location. Later, ISM was further extended with discriminative
frameworks [3, 14, 32, 33, 37]. Okada [33] ensembled randomized trees using im-
age patches as voting elements. Similarly, Gall and Lempitsky [14] proposed to
learn a mapping between image patches and votes using random forest frame-
work. In order to fix the accumulation of inconsistent votes of ISM, Razavi et
al. [37] augmented the Hough space with latent variables to enforce consistency
between votes. In Max-margin Hough Transform [32], Maji and Malik showed



4 N. Samet et al.

the importance of learning visual words in a discriminative max-margin frame-
work. Barinova et al. [3] detected multiple objects using energy optimization
instead of non-maxima suppression peak selection of ISM.

HoughNet is similar to ISM and its variants described above only at the
idea level as all are voting based methods. There are two major differences:
(i) HoughNet uses deep neural networks for part/feature (i.e. visual evidence)
estimation, whereas ISM uses hand-crafted features; (ii) ISM uses a discrete set
of visual words (obtained by unsupervised clustering) and each word’s vote is
exactly known (stored in a table) after training. In HoughNet, however, there
is not a discrete set of words and vote is carried through a log-polar vote field
which takes into account the location precision as a function of target area.

Bottom-up object detection methods. Apart from the classical one-stage [12,
27,30,39,40] vs. two-stage [16,41] categorization of object detectors, we can also
categorize the current approaches into two: top-down and bottom-up. In the
top-down approach [27, 30, 39, 41], a near-exhaustive list of object hypotheses
in the form of rectangular boxes are generated and objects are predicted in a
holistic manner based on these boxes. Designing the hypotheses space (e.g. pa-
rameters of anchor boxes) is a problem by itself [45]. Typically, a single template
is responsible for the detection of the whole object. In this sense, recent anchor-
free methods [43, 51] are also top-down. On the other hand, in the bottom-up
approach, objects emerge from the detection of parts (or sub-object structures).
For example, in CornerNet [23], top-left and bottom-right corners of objects are
detected first, and then, they are paired to form whole objects. Following Cor-
nerNet, ExtremeNet [52] groups extreme points (e.g. left-most, etc.) and center
points to form objects. Together with corner pairs of CornerNet [23], Center-
Net [9] adds center point to model each object as a triplet. HoughNet follows
the bottom-up approach based on a voting strategy: object presence score is
voted (aggregated) from a wide area covering short and long-range evidence.

Deep, voting-based object detection methods. Qi et al. [36] apply Hough
voting for 3D object detection in point clouds. Sheshkus et al. [42] utilize Hough
transform for vanishing points detection in the documents. For automatic pedes-
trian and car detection, Gabriel et al. [13] proposed using discriminative gener-
alized Hough transform for proposal generation in edge images, later to further
refine the boxes, they fed these proposals to deep networks. In the deep learning
era, we are not the first to use a log-polar vote field in a voting-based model.
Lifshitz et al. [25] used a log-polar map to estimate keypoints for single person
human pose estimation. Apart from the fact that [25] is tackling the human pose
estimation task, there are several subtle differences. First, they prepare ground
truth voting maps for each keypoint such that keypoints vote for every other one
depending on its relative position in the log polar map. This requires manually
creating static voting maps. Specifically, their model learns H×W ×R×C vot-
ing map, where R is the number of bins and C is the augmented keypoints. In
order to produce keypoint heatmaps they perform vote agregation at test phase.
Second, this design restricts the model to learn only the keypoint locations as



HoughNet 5

Visual Evidence
Prediction

Width & Height
Prediction

Center Offset
Prediction

Backbone
CNN

3x3 conv ReLU 1x1 conv:

Voting module

Visual Evidence Tensors Object Presence Maps

sta
ck

vote fieldInput Image

Fig. 2: Overall processing pipeline of HoughNet

voters. When we consider the object detection task and its complexity, it is not
trivial to decide the voters of the objects and prepare supervised static voting
maps as in human pose estimation. Moreover, this design limits the voters to
reside only inside of the object (e.g. person) unlike our approach where an ob-
ject could get votes from far away regions. To overcome these issues, unlike their
model we apply vote aggregation during training (they perform vote agregation
only at test phase). This allows us to expose the latent patterns between objects
and voters for each class. In this way, our voting module is able to get votes from
non-labeled objects (see the last row of Fig. 4). To the best of our knowledge, we
are the first to use a log-polar vote field in a voting-based deep learning model
to integrate the long range interactions for object detection.

Similar to HoughNet, Non-local neural networks (NLNN) [46] and Relation
networks (RN) [19] integrate long-range features. As a fundamental difference,
in NLNN, the relative displacement between interacting features is not taken
into account. However, HoughNet uses this information encoded through the
regions of the log-polar vote field. RN models object-object relations explicitly
for proposal-based two-stage detectors.

3 HoughNet: the method and the models

The overall processing pipeline of our method is illustrated in Fig. 2. To give
a brief overview, the input image first passes through a backbone CNN, the
output of which is connected to three different branches carrying out the predic-
tions of (i) visual evidence scores, (ii) objects’ bounding box dimensions (width
and height), and (iii) objects’ center location offsets. The first branch is where
the voting occurs. Before we describe our voting mechanism in detail, we first
introduce the log-polar vote field.

3.1 The log-polar “vote field”

We use the set of regions in a standard log-polar coordinate system to define
the regions through which votes are collected. A log-polar coordinate system is
defined by the number and radii of eccentricity bins (or rings) and the number
of angle bins. We call the set of cells or regions formed in such a coordinate



6 N. Samet et al.

system as the “vote field” (Fig. 3). In our experiments, we used different vote
fields with different parameters (number of angle bins, etc.) as explained in the
Experiments section. In the following, R denotes the number of regions in the
vote field and Kr is the number of pixels in a particular region r. ∆r(i) denotes
the relative spatial coordinates of the ith pixel in the rth region, with respect
to the center of the field. We implement the vote field as a fixed-weight (non-
learnable) transposed-convolution filter as further explained below.

3.2 Voting module

13

12

11

10

9

8
7

6

5
4

3

2
1

Fig. 3: A log-polar “vote field”
used in the voting module
of HoughNet. Numbers indi-
cate region ids. A vote field
is parametrized by the number
of angle bins, and the number
and radii of eccentricity bins,
or rings. In this particular vote
field, there are a total of 13 re-
gions, 6 angle bins and 3 rings.
The radii of the rings are 2, 8
and 16, respectively

After the input image is passed through the
backbone network and the “visual evidence”
branch, the voting module of HoughNet re-
ceives C tensors E1,E2, . . . ,EC , each of size
H×W ×R, where C is the number of classes,
H and W are spatial dimensions and R is the
number of regions in the vote field. Each of
these tensors contains class-conditional (i.e.
for a specific class) “visual evidence” scores.
The job of the voting module is to produce C
“object presence” maps O1,O2, . . . ,OC , each
of size H × W . Then, peaks in these maps
will indicate the presence of object instances.
The voting process, which converts the visual
evidence tensors (e.g. Ec) to object presence
maps (e.g. Oc), works as described below.

Suppose we wanted to process the visual
evidence at the ith row, jth column and the
rth channel of an evidence tensor E. When we
place our vote field on a 2D map, centered at
location (i, j), the region r marks the target
area to be voted on, whose coordinates can be
computed by adding the coordinate offsets∆r(·) to (i, j). Then, we add the visual
evidence score E(i, j, r) to the target area of the object presence map. Note that
this operation can be efficiently implemented using the “transposed convolution”
(or “deconvolution”) operation. Visual evidence scores from locations other than
(i, j) are processed in the same way and the scores are accumulated in the object
presence map. We formally define this procedure in Algorithm 1, which takes in
a visual evidence tensor as input and produces an object presence map3.

3.3 Network architecture

Our network architecture design follows that of “Objects as Points” (OAP) [51].
HoughNet consists of a backbone and three subsequent branches which predict

3 We provide a step-by-step animation of the voting process at https://shorturl.

at/ilOP2.

https://shorturl.at/ilOP2
https://shorturl.at/ilOP2


HoughNet 7

Algorithm 1 Vote aggregation algorithm

Input: Visual evidence tensor Ec, Vote field relative coordinates ∆
Output: Object presence map Oc

Initialize Oc with all zeros
for each pixel (i, j, r) in Ec do

/* Kr: number of pixels in the vote field region r */
for k = 1 to Kr do

(y, x)← (i, j) +∆r(k)
Oc(y, x)← Oc(y, x) + 1

Kr
Ec(i, j, r)

end for
end for

(i) visual evidence scores, (ii) bounding box widths and heights, and (iii) center
offsets. Our voting module is attached to the visual evidence branch (Fig. 2).

The output of our backbone network is a feature map of size H ×W × D,
which is a result of inputting an image of size 4H × 4W × 3. The backbone’s
output is fed to all three branches. Each branch has one convolutional layer with
3× 3 filters followed by a ReLU layer and another convolutional layer with 1× 1
filters. The visual evidence branch outputs H ×W ×C ×R sized output where
C and R correspond to the number of classes and vote field regions, respectively.
The width/height prediction branch outputs H × W × 2 sized output which
predicts heights and widths for each possible object center. Finally, center offset
branch predicts relative displacement of center locations across the spatial axes.

Objective functions For the optimization of the visual evidence branch, we use
the modified focal loss [27] introduced in CornerNet [23] (also used in [51, 52]).
In order to recover the lost precision of the center points due to down-sampling
operations through the network, center offset prediction branch outputs class-
agnostic local offsets of object centers. We optimize this branch using the L1

loss as the other bottom-up detectors [23,51,52] do. Finally, our width & height
prediction branch outputs class-agnostic width and height values of objects. For
the optimization of this branch, we use L1 loss by scaling the loss by 0.1 as
proposed in OAP [51]. The overall loss is the sum of the losses from all branches.

4 Experiments

This section presents the experiments we conducted to show the effectiveness of
our proposed method. First, we studied how different parameters of the vote field
affect the final object detection performance. Next, we present several perfor-
mance comparisons between HoughNet and the current state-of-the-art methods,
on the COCO dataset. After presenting sample visual results for qualitative in-
spection, we describe our experiments on the “labels to photo” task. We used
PyTorch [35] to implement HoughNet.



8 N. Samet et al.

Training and inference details We ran our experiments on 4 V100 GPUs.
For training, we used 512×512 images unless stated otherwise. The training setup
is not uniform across different experiments, mainly due to different backbones.

The inference pipeline is common for all HoughNet models. We extract cen-
ter locations by applying a 3 × 3 max pooling operation on object presence
heatmaps and pick the highest scoring 100 points as detections. Then, we adjust
these points using the predicted center offset values. Final bounding boxes are
generated using the predicted width & height values on these detections. For
testing, we follow the other bottom-up methods [23, 51, 52] and use two modes:
(i) single-scale, horizontal-flip testing (SS testing mode), and (ii) multi-scale,
horizontal-flip testing (MS testing mode). In MS, we use the following scale val-
ues, 0.6, 1.0, 1.2, 1.5, 1.8. To merge augmented test results, we use Soft-NMS [5],
and keep the top 100 detections. All tests are performed on a single V100 GPU.

4.1 Mini COCO

For faster analysis in our ablation experiments, we created “COCO minitrain”
as a statistically validated mini training set. It is a subset of the COCO train2017

dataset, containing 25K images (about 20% of train2017) and around 184K
objects across 80 object categories. We randomly sampled these images from the
full set while preserving the following three quantities as much as possible: (i)
proportion of object instances from each class, (ii) overall ratios of small, medium
and large objects, (iii) per class ratios of small, medium and large objects.

To validate COCO minitrain, we computed the correlation between the
val2017 performance of a model when it is trained on minitrain with the same
of when it is trained on train2017. Over six different object detectors (Faster
R-CNN, Mask R-CNN, RetinaNet, CornerNet, ExtremeNet and HoughNet), the
Pearson correlation coefficients turned out to be 0.74 and 0.92 for AP and AP50,
respectively. These values indicate strong positive correlation. Further details on
minitrain can be found at https://github.com/giddyyupp/coco-minitrain.

4.2 Ablation experiments

Here we analyze the effects of the number of angle and ring bins of the vote
field on performance. Models are trained on COCO minitrain and evaluated
on val2017 set with SS testing mode. The backbone is Resnet-101 [17]. In order
to get higher resolution feature maps, we add three deconvolution layers on top
of the default Resnet-101 network, similar to [47]. We add 3×3 convolution filters
before each 4×4 deconvolution layer, and put batchnorm and ReLU layers after
convolution and deconvolution filters. We trained the network with a batch size
of 44 for 140 epochs with Adam optimizer [21]. Initial learning rate 1.75 × 10−4

was divided by 10 at epochs 90 and 120.

Angle bins We started with a large, 65 by 65, vote field with 5 rings. We set
the radius of these rings from the most inner one to the most outer one as 2, 8,
16, 32 and 64 pixels, respectively. We experimented with 60◦, 90◦, 180◦ and 360◦

https://github.com/giddyyupp/coco-minitrain


HoughNet 9

bins. We do not split the center ring (i.e. region with id 1 in Fig. 3) into further
regions. Results are presented in Table 1a. For the 180◦ experiment, we divide
the vote field horizontally. 90◦ yields the best performance considering both AP
and AP50. We used this setting in the rest of the experiments.

Table 1: Ablation experiments for the
vote field. (a) Effect of angle bins on per-
formance. Vote field with 90◦ has the
best performance (considering AP and
AP50). (b) Effect of central and periph-
eral regions. Here, the angle bin is 90◦

and the ring count is four. Disabling
any of center or periphery hurts perfor-
mance, cf. (a). (c) Effect of number of
rings. Angle is 90◦ and vote field size is
updated according to the radius of the
last ring. Using 3 rings yields the best
result. It is also the fastest model

Model AP AP50 AP75 APS APM APL FPS

60◦ 24.6 41.3 25.0 8.2 27.7 36.2 3.4
90◦ 24.6 41.5 25.0 8.2 27.7 36.2 3.5
180◦ 24.5 41.1 24.8 8.1 27.7 36.3 3.5
360◦ 24.6 41.1 25.1 8.0 27.8 36.3 3.5

(a) Varying the number of angle bins

Only Center 23.8 39.5 24.5 7.9 26.8 34.7 3.5
No Center 24.4 40.9 24.9 7.4 27.6 37.1 3.3
Only Context 23.6 39.7 24.2 7.4 26.4 35.9 3.4

(b) Effectiveness of votes from center or periphery

5 Rings 24.6 41.5 25.0 8.2 27.7 36.2 3.5
4 Rings 24.5 41.1 25.3 8.2 27.8 36.1 7.8
3 Rings 24.8 41.3 25.6 8.4 27.6 37.5 15.6

(c) Varying ring counts

Effects of center and periphery
We conducted experiments to analyze
the importance of votes coming from
different rings of the vote field. Re-
sults are presented in Table 1b. In
the Only Center case, we only keep
the center ring and disable the rest.
In this way, we only aggregate votes
from features of the object center
directly. This case corresponds to a
traditional object detection paradigm
where only local (short-range) evi-
dence is used. This experiment shows
that votes from outer rings help im-
prove performance. For the No Cen-
ter case, we only disable the center
ring. We observe that there is only
0.2 decrease in AP. This suggests that
the evidence for successful detection is
embedded mostly around the object
center not directly inside the object
center. In order to observe the power
of long-range votes, we conducted an-
other experiment called “Only Con-
text,” where we disabled the two most
inner rings and used only the three
outer rings for vote aggregation. This
model reduced AP by 1.0 point compared to the full model.

Ring count To find out how far an object should get votes from, we discard
outer ring layers one by one as presented in Table 1c. The models with 5 rings,
4 rings and 3 rings have 17, 13 and 9 voting regions and 65, 33 and 17 vote field
sizes, respectively. The model with 3 rings yields the best performance on AP
metric and is the fastest one at the same time. On the other hand, the model
with 5 rings yields 0.2 AP50 improvement over the model with 3 rings.

From all these ablation experiments, we decided to use the model with 5 rings
and 90◦ as our Base Model. Considering both speed and accuracy, we decided
to use the model with 3 rings and 90◦ as our Light Model.

Voting module vs. dilated convolution Dilated convolution [48], which
can include long-range features, could be considered as an alternative to our



10 N. Samet et al.

voting module. To compare performance, we trained models on train2017 and
evaluated them on val2017 using the SS testing mode.

Table 2: Comparing our voting mod-
ule to an equivalent (in terms of num-
ber of parameters and the spatial fil-
ter size) dilated convolution filter on
COCO val2017 set. Models are trained
on COCO train2017 and results are
presented on SS testing mode

Method AP AP50 AP75 APS APM APL

Baseline 36.2 54.8 38.7 16.3 41.6 52.3
+ Dilated Conv. 36.6 56.1 39.2 16.7 42.0 53.6
+ Voting Module 37.3 56.6 39.9 16.8 42.6 55.2

Baseline: We consider OAP with
ResNet-101-DCN backbone as base-
line. The last 1×1 convolution layer of
center prediction branch in OAP, re-
ceives H ×W ×D tensor and outputs
object center heatmaps with a tensor
of size H ×W × C.

Baseline + Voting Module: We
first adapt the last layer of center pre-
diction branch in baseline to output
H ×W × C × R tensor, then attach
our voting module on top of the cen-
ter prediction branch. Adding the voting module increases parameters of the
layer by R times. The log-polar vote field is 65× 65, and has 5 rings (90◦). With
5 rings and 90◦ we end up with R = 17 regions.

Baseline + Dilated Convolution: We use dilated convolution with kernel size
4 × 4 and dilation rate 22 for the last layer of the center prediction branch in
baseline. Using 4×4 kernel increases parameters 16 times which is approximately
equal to R in the Baseline + Voting Module. Using dilation rate 22, the filter
size becomes 67 × 67 which is close to 65 × 65 log-polar vote field.

For a fair comparison with Baseline, both Baseline + Voting Module and
the Baseline + Dilated Convolution use Resnet-101-DCN backbone. Our voting
module outperforms dilated convolution in all cases (Table 2).

Table 3: HoughNet results on COCO val2017 set for different training setups.
† indicates initialization with CornerNet weights, ∗ indicates initialization with
ExtremeNet weights. Results are given for SS and MS testing modes, respectively

Models Backbone AP AP50 AP75 APS APM APL FPS

Base R-101 36.0 / 40.7 55.2 / 60.6 38.4 / 43.9 16.2 / 22.5 41.7 / 44.2 52.0 / 55.7 3.5 / 0.5
Base R-101-DCN 37.3 / 41.6 56.6 / 61.2 39.9 / 44.9 16.8 / 22.6 42.6 / 44.8 55.2 / 58.8 3.3 / 0.4
Light R-101-DCN 37.2 / 41.5 56.5 / 61.5 39.6 / 44.5 16.8 / 22.5 42.5 / 44.8 54.9 / 58.4 14.3 / 2.1
Light HG-104 40.9 / 43.7 59.2 / 61.9 44.1 / 47.3 23.8 / 27.5 45.3 / 45.9 52.6 / 56.2 6.1 / 0.8
Light HG-104∗ 41.7 / 44.7 60.5 / 63.2 45.6 / 48.9 23.9 / 28.0 45.7 / 47.0 54.6 / 58.1 5.9 / 0.8
Light HG-104∗ 43.0 / 46.1 62.2 / 64.6 46.9 / 50.3 25.5 / 30.0 47.6 / 48.8 55.8 / 59.7 5.7 / 0.8

4.3 Performance of HoughNet and comparison with baseline

In Table 3, we present the performance of HoughNet for different backbone net-
works, initializations and our base-vs-light model, on the val2017 set. There is
a significant speed difference between Base and Light models. Our light model
with R-101-DCN backbone is the fastest one (14.3 FPS) achieving 37.2 AP and
56.5 AP50. We observe that initializing the backbone with a pretrained model
improves the detection performance. In Table 4, we compare HoughNet’s per-
formance with its baseline OAP [51] for two different backbones. HoughNet is
especially effective for small objects, it improves the baseline by 2.1 and 2.2



HoughNet 11

AP points for R-101-DCN and HG-104 backbones, respectively. We also provide
results for the recently introduced moLRP [34] metric, which combines localiza-
tion, precision and recall in a single metric. Lower values are better.

Table 4: Comparison with baseline (OAP) on val2017. Results are given for
single scale and multi scale test modes, respectively

Method AP AP50 AP75 APS APM APL moLRP ↓

Baseline w R-101-DCN 36.2 / 39.2 54.8 / 58.6 38.7 / 41.9 16.3 / 20.5 41.6 / 42.6 52.3 / 56.2 71.1 / 68.3
+ Voting Module 37.2 / 41.5 56.5 / 61.5 39.6 / 44.5 16.8 / 22.5 42.5 / 44.8 54.9 / 58.4 69.9 / 66.6

Baseline w HG-104 42.2 / 45.1 61.1 / 63.5 46.0 / 49.3 25.2 / 27.8 46.4 / 47.7 55.2 / 60.3 66.1 / 63.9
+ Voting Module 43.0 / 46.1 62.2 / 64.6 46.9 / 50.3 25.5 / 30.0 47.6 / 48.8 55.8 / 59.7 65.6 / 63.1

Table 5: Comparison with the state-of-the-art on COCO test-dev. The methods
are divided into three groups: two-stage, one-stage top-down and one-st age
bottom-up. The best results are boldfaced separately for each group. Backbone
names are shortened: R is ResNet, X is ResNeXt, F is FPN and HG is HourGlass.
∗ indicates that the FPS values were obtained on the same AWS machine with
a V100 GPU using the official repos in SS setup. The rest of the FPS are from
their corresponding papers. F. R-CNN is Faster R-CNN

Method Backbone Initialize Train size Test size AP AP50 AP75 APS APM APL FPS

Two-stage detectors:
R-FCN [8] R-101 ImageNet 800×800 600×600 29.9 51.9 - 10.8 32.8 45.0 5.9
CoupleNet [55] R-101 ImageNet ori. ori. 34.4 54.8 37.2 13.4 38.1 50.8 -
F. R-CNN+++ [17] R-101 ImageNet 1000×600 1000×600 34.9 55.7 37.4 15.6 38.7 50.9 -
F. R-CNN [26] R-101-F ImageNet 1000×600 1000×600 36.2 59.1 39.0 18.2 39.0 48.2 5.0
Mask R-CNN [16] X-101-F ImageNet 1300×800 1300×800 39.8 62.3 43.4 22.1 43.2 51.2 11.0
Cascade R-CNN [6] R-101 ImageNet - - 42.8 62.1 46.3 23.7 45.5 55.2 12.0
PANet [29] X-101 ImageNet 1400×840 1400×840 47.4 67.2 51.8 30.1 51.7 60.0 -

One-stage detectors:
Top Down:
SSD [30] VGG-16 ImageNet 512×512 512×512 28.8 48.5 30.3 10.9 31.8 43.5 -
YOLOv3 [39] Darknet ImageNet 608×608 608×608 33.0 57.9 34.4 18.3 35.4 41.9 20.0
DSSD513 [12] R-101 ImageNet 513×513 513×513 33.2 53.3 35.2 13.0 35.4 51.1 -
RefineDet (SS) [49] R-101 ImageNet 512×512 512×512 36.4 57.5 39.5 16.6 39.9 51.4 -
RetinaNet [27] X-101-F ImageNet 1300×800 1300×800 40.8 61.1 44.1 24.1 44.2 51.2 5.4
RefineDet (MS) [49] R-101 ImageNet 512×512 ≤2.25× 41.8 62.9 45.7 25.6 45.1 54.1 -
OAP (SS) [51] HG-104 ExtremeNet 512×512 ori. 42.1 61.1 45.9 24.1 45.5 52.8 9.6∗

FSAF (SS) [53] X-101 ImageNet 1300×800 1300×800 42.9 63.8 46.3 26.6 46.2 52.7 2.7
FSAF (MS) [53] X-101 ImageNet 1300×800 ∼≤2.0× 44.6 65.2 48.6 29.7 47.1 54.6 -
FCOS [43] X-101-F ImageNet 1300×800 1300×800 44.7 64.1 48.4 27.6 47.5 55.6 7.0∗

FreeAnchor (SS) [50] X-101-F ImageNet 1300×960 1300×960 44.9 64.3 48.5 26.8 48.3 55.9 -
OAP (MS) [51] HG-104 ExtremeNet 512×512 ≤1.5× 45.1 63.9 49.3 26.6 47.1 57.7 -
FreeAnchor (MS) [50] X-101-F ImageNet 1300×960 ∼≤2.0× 47.3 66.3 51.5 30.6 50.4 59.0 -
Bottom Up:
ExtremeNet (SS) [52] HG-104 - 511×511 ori. 40.2 55.5 43.2 20.4 43.2 53.1 3.0∗

CornerNet (SS) [23] HG-104 - 511×511 ori. 40.5 56.5 43.1 19.4 42.7 53.9 5.2∗

CornerNet (MS) [23] HG-104 - 511×511 ≤1.5× 42.1 57.8 45.3 20.8 44.8 56.7 -
ExtremeNet (MS) [52] HG-104 - 511×511 ≤1.5× 43.7 60.5 47.0 24.1 46.9 57.6 -
CenterNet (SS) [9] HG-104 - 511×511 ori. 44.9 62.4 48.1 25.6 47.4 57.4 4.8∗

CenterNet (MS) [9] HG-104 - 511×511 ≤1.8× 47.0 64.5 50.7 28.9 49.9 58.9 -

HoughNet (SS) HG-104 - 512×512 ori. 40.8 59.1 44.2 22.9 44.4 51.1 6.4∗

HoughNet (MS) HG-104 - 512×512 ≤1.8× 44.0 62.4 47.7 26.4 45.4 55.2 -
HoughNet (SS) HG-104 ExtremeNet 512×512 ori. 43.1 62.2 46.8 24.6 47.0 54.4 6.4∗

HoughNet (MS) HG-104 ExtremeNet 512×512 ≤1.8× 46.4 65.1 50.7 29.1 48.5 58.1 -



12 N. Samet et al.

4.4 Comparison with the state-of-the-art

For comparison with the state-of-the-art, we use Hourglass-104 [23] backbone.
We train Hourglass model with a batch size of 36 for 100 epochs using the Adam
optimizer [21]. We set the initial learning rate to 2.5×10−4 and divided it by 10
at epoch 90. Table 5 presents performances of HoughNet and several established
state-of-the-art detectors. First, we compare HoughNet with OAP [51] since it
is the model on which we built HoughNet. In OAP, they did not present any
results for “from scratch” training. Instead they fine-tuned their model from
ExtremeNet weights. When we do the same (i.e. initialize HoughNet with Ex-
tremeNet weights), we obtain better results than OAP. However as expected,
HoughNet is slower than OAP. Among the one-stage bottom-up object detec-
tors, HoughNet performs on-par with the best bottom-up object detector by
achieving 46.4 AP against 47.0 AP of CenterNet [9]. HoughNet outperforms
CenterNet on AP50 (65.1 AP50 vs. 64.5 AP50). Note that, since our model is ini-
tialized with ExtremeNet weights, which makes use of the segmentation masks
in its own training, our model effectively uses more data compared to CenterNet.
HoughNet is the fastest among one-stage bottom-up detectors. It is faster than
CenterNet, CornerNet and more than twice as fast as ExtremeNet.

We provide visualization of votes for sample detections of HoughNet for qual-
itative visual inspection (Fig. 4). These detections clearly show that HoughNet
is able to make use of long-range visual evidence.

4.5 Using our voting module in another task

Table 6: Comparison of FCN scores
for the “labels to photo” task on the
Cityscapes [7] dataset

Method Per-pixel acc. Per-class acc. Class IOU

CycleGAN 0.43 0.14 0.09
+ Voting 0.52 0.17 0.13

pix2pix 0.71 0.25 0.18
+ Voting 0.76 0.25 0.20

One task where long-range interac-
tions could be useful is the task of
image generation from a given label
map. There are two main approaches
to solve this task; using unpaired and
paired data for training. We take Cy-
cleGAN [54] and Pix2Pix [20] as our
baselines for unpaired and paired ap-
proaches, respectively. We attach our
voting module at the end of CycleGAN [54] and Pix2Pix [20] models.

For quantitative comparison, we use the Cityscapes [7] dataset. In Table 6,
we present FCN scores [31] (which is used as the measure of success in this task)
of CycleGAN and Pix2Pix with and without our voting module. To obtain the
“without” result, we used the already trained model shared by the authors. We
obtained the “with” result using the official training code from their repositories.
In both cases evaluation was done using the official test and evaluation scripts
from their repos. Results show that using the voting module improves FCN scores
by large margins. Qualitative inspection also shows that when our voting module
is attached, the generated images conform to the given input segmentation maps
better (Fig. 5). This is the main reason for the quantitative improvement. Since
Pix2Pix is trained with paired data, generated images follow input segmentation
maps, however, Pix2Pix fails to generate small details.



HoughNet 13

Detection Voters Detection Voters Detection Voters

Fig. 4: Sample detections of HoughNet and their vote maps. In the “detection”
columns, we show a correctly detected object, marked with a yellow bounding
box. In the “voters” columns, the locations that vote for the detection are shown.
Colors indicate vote strength based on the standard “jet” colormap (red is high,
blue is low; Fig. 1). In the top row, there are three “mouse” detections. In
all cases, in addition to the local votes (that are on the mouse itself), there
are strong votes coming from nearby “keyboard” objects. This voting pattern is
justified given that mouse and keyboard objects frequently co-appear. A similar
behavior is observed in the detections of “baseball bat”, “baseball glove” and
“tennis racket” in the second row, where they get strong votes from “ball”
objects that are far-away. Similarly, in the third row, “vase” detections get
strong votes from the flowers. In the first example of the bottom row, “dining
table” detection gets strong votes from the candle object, probably because
they co-occur frequently. Candle is not among the 80 classes of COCO dataset.
Similarly, in the second example in the bottom row, “dining table” has strong
votes from objects and parts of a standard living room. In the last example,
partially occluded bird gets strong votes (stronger than the local votes on the
bird itself) from the tree branch



14 N. Samet et al.

Input CycleGAN + Voting Input Pix2Pix + Voting

Fig. 5: Sample qualitative results for the “labels to photo” task. When integrated
with CycleGAN, our voting module helps generate better images in the sense
that the image conforms to the input label map better. In all three images,
CycleGAN fails to generate sky, buildings and falsely generates vegetation in the
last image. When used with Pix2Pix, it helps generate more detailed images. In
the first row, cars and buildings can be barely seen for Pix2Pix. Similarly, a bus
is generated as a car and a bicycle is silhouetted in the second and third images,
respectively. Our voting module fixes these errors

5 Conclusion

In this paper, we presented HoughNet, a new, one-stage, anchor-free, voting-
based, bottom-up object detection method. HoughNet determines the presence
of an object at a specific location by the sum of the votes cast on that location.
Voting module of HoughNet is able to use both short and long-range evidence
through its log-polar vote field. Thanks to this ability, HoughNet generalizes and
enhances current object detection methodology, which typically relies on only
local (short-range) evidence. We show that HoughNet performs on-par with the
state-of-the-art bottom-up object detector, and obtains comparable results with
one-stage and two-stage methods. To further validate our proposal, we used
the voting module of HoughNet in an image generation task. Specifically, we
showed that our voting module significantly improves the performance of two
GAN models in a “labels to photo” task.

Acknowledgments This work was supported by the Scientific and Technologi-
cal Research Council of Turkey (TÜBİTAK) through the project titled “Object
Detection in Videos with Deep Neural Networks” (grant #117E054). The numer-
ical calculations reported in this paper were partially performed at TÜBİTAK
ULAKBİM, High Performance and Grid Computing Center (TRUBA resources).
We also gratefully acknowledge the support of the AWS Cloud Credits for Re-
search program.



HoughNet 15

References

1. Akbas, E., Eckstein, M.P.: Object detection through search with a foveated visual
system. PLoS computational biology 13(10), e1005743 (2017)

2. Ballard, D.H., et al.: Generalizing the hough transform to detect arbitrary shapes.
Pattern Recognition (1981)

3. Barinova, O., Lempitsky, V., Kholi, P.: On detection of multiple object instances
using hough transforms. IEEE Transactions on Pattern Analysis and Machine In-
telligence 34(9), 1773–1784 (2012)

4. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using
shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence
24(4), 509–522 (April 2002). https://doi.org/10.1109/34.993558

5. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-nms–improving object detec-
tion with one line of code. In: IEEE International Conference on Computer Vision.
pp. 5561–5569 (2017)

6. Cai, Z., Vasconcelos, N.: Cascade R-CNN: Delving into high quality object de-
tection. In: IEEE Conference on Computer Vision and Pattern Recognition. pp.
6154–6162 (2018)

7. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: IEEE Conference on Computer Vision and Pattern Recognition.
pp. 3213–3223 (2016)

8. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: Object detection via region-based fully
convolutional networks. In: Advances in Neural Information Processing Systems.
pp. 379–387 (2016)

9. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: Centernet: Keypoint triplets
for object detection. In: IEEE International Conference on Computer Vision (2019)

10. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part based models. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2010)

11. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE Transactions on Pattern
Analysis and Machine Intelligence 32(9), 1627–1645 (2009)

12. Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: Dssd: Deconvolutional single
shot detector. arXiv preprint arXiv:1701.06659 (2017)

13. Gabriel, E., Schleiss, M., Schramm, H., Meyer, C.: Analysis of the discriminative
generalized hough transform as a proposal generator for a deep network in auto-
matic pedestrian and car detection. Journal of Electronic Imaging 27(5), 051228
(2018)

14. Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: IEEE
Conference on Computer Vision and Pattern Recognition (2009)

15. Girshick, R.B., Felzenszwalb, P.F., McAllester, D.: Discriminatively trained
deformable part models, release 5. http://people.cs.uchicago.edu/ rbg/latent-
release5/

16. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask r-cnn. IEEE International
Conference on Computer Vision pp. 2980–2988 (2017)

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778
(2016)

https://doi.org/10.1109/34.993558


16 N. Samet et al.

18. Hough, P.V.C.: Machine Analysis of Bubble Chamber Pictures C590914, 554–558
(1959)

19. Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection.
In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 3588–3597
(2018)

20. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: IEEE Conference on Computer Vision and Pattern
Recognition. pp. 1125–1134 (2017)

21. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

22. Land, M., Tatler, B.: Looking and acting: vision and eye movements in natural
behaviour. Oxford University Press (2009)

23. Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. In: European
Conference on Computer Vision. pp. 734–750 (2018)

24. Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved
categorization and segmentation. International Journal of Computer Vision 77(1),
259–289 (May 2008)

25. Lifshitz, I., Fetaya, E., Ullman, S.: Human pose estimation using deep consensus
voting. In: European Conference on Computer Vision (2016)

26. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature
pyramid networks for object detection. In: IEEE Conference on Computer Vision
and Pattern Recognition. pp. 936–944 (2017)

27. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object
detection. In: IEEE International Conference on Computer Vision (2017)

28. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár,
P., Zitnick, C.L.: Microsoft COCO: Common objects in context. In: European
Conference on Computer Vision. pp. 740–755. Springer (2014)

29. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance
segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition.
pp. 8759–8768 (2018)

30. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.:
Ssd: Single shot multibox detector. In: European Conference on Computer Vision
(2016)

31. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition.
pp. 3431–3440 (2015)

32. Maji, S., Malik, J.: Object detection using a max-margin hough transform. In:
IEEE Conference on Computer Vision and Pattern Recognition (2009)

33. Okada, R.: Discriminative generalized hough transform for object detection. In:
IEEE International Conference on Computer Vision (2009)

34. Oksuz, K., Cam, B., Akbas, E., Kalkan, S.: Localization recall precision (lrp): A
new performance metric for object detection. In: European Conference on Com-
puter Vision (ECCV) (2018)

35. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep
learning library. In: Advances in Neural Information Processing Systems, pp.
8024–8035. Curran Associates, Inc. (2019), http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


HoughNet 17

36. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object de-
tection in point clouds. In: IEEE International Conference on Computer Vision
(2019)

37. Razavi, N., Gall, J., Kohli, P., Van Gool, L.: Latent hough transform for object
detection. In: European Conference on Computer Vision (2012)

38. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE Conference
on Computer Vision and Pattern Recognition (2017)

39. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

40. Ren, J., Chen, X., Liu, J., Sun, W., Pang, J., Yan, Q., Tai, Y.W., Xu, L.: Accurate
single stage detector using recurrent rolling convolution. In: IEEE Conference on
Computer Vision and Pattern Recognition (2017)

41. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems. pp. 91–99 (2015)

42. Sheshkus, A., Ingacheva, A., Arlazarov, V., Nikolaev, D.: Houghnet: neural network
architecture for vanishing points detection (2019)

43. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object
detection. In: IEEE International Conference on Computer Vision (2019)

44. Traver, V.J., Bernardino, A.: A review of log-polar imaging for visual perception
in robotics. Robotics and Autonomous Systems 58(4), 378–398 (2010)

45. Wang, J., Chen, K., Yang, S., Loy, C.C., Lin, D.: Region proposal by guided an-
choring. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

46. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: IEEE
Conference on Computer Vision and Pattern Recognition. pp. 7794–7803 (2018)

47. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking.
In: European Conference on Computer Vision. pp. 466–481 (2018)

48. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. CoRR
(2015)

49. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural net-
work for object detection. In: IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4203–4212 (2018)

50. Zhang, X., Wan, F., Liu, C., Ji, R., Ye, Q.: Freeanchor: Learning to match anchors
for visual object detection. In: Advances in Neural Information Processing Systems
(2019)

51. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. In: arXiv preprint
arXiv:1904.07850 (2019)

52. Zhou, X., Zhuo, J., Krähenbühl, P.: Bottom-up object detection by grouping ex-
treme and center points. In: IEEE Conference on Computer Vision and Pattern
Recognition (2019)

53. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot
object detection. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (2019)

54. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: IEEE International Conference on
Computer Vision. pp. 2223–2232 (2017)

55. Zhu, Y., Zhao, C., Wang, J., Zhao, X., Wu, Y., Lu, H.: Couplenet: Coupling global
structure with local parts for object detection. In: IEEE International Conference
on Computer Vision. pp. 4126–4134 (2017)


	HoughNet: Integrating near and long-range evidence for bottom-up object detection

