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Abstract. This paper presents a new task named weakly-supervised
group activity recognition (GAR) which differs from conventional GAR
tasks in that only video-level labels are available, yet the important per-
sons within each frame are not provided even in the training data. This
eases us to collect and annotate a large-scale NBA dataset and thus
raise new challenges to GAR. To mine useful information from weak su-
pervision, we present a key insight that key instances are likely to be
related to each other, and thus design a social adaptive module (SAM)
to reason about key persons and frames from noisy data. Experiments
show significant improvement on the NBA dataset as well as the popular
volleyball dataset. In particular, our model trained on video-level anno-
tation achieves comparable accuracy to prior algorithms which required
strong labels.

Keywords: Group Activity Recognition, Video Analysis, and Scene Un-
derstanding

1 Introduction

Group activity recognition (GAR) has a variety of applications in video under-
standing, such as sports analysis, video surveillance, and public security. Com-
pared with traditional individual actions [30,38,23,14,27], group activities (a.k.a,
collective activities) [10,18,45,42] are performed by multiple persons cooperating
with each other. Thus, the models for GAR require to understand not only the
individual behaviors but also the relationship between each person.

Previous fully-supervised methods which require person-level annotation (i.e.
ground-truth bounding boxes and individual action label for each person, even
interaction label for person-person pairs) have achieved promising performance
on group activity recognition. Typically, these methods [18,45,40,39,35,42,3,4,44]
extract feature for each people according to the corresponding bounding boxes
supervised by individual action label, and then fuse person-level feature into a
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Three shot：21=5+16 Defense rebound：12=6+6 Two shot：11=6+5

Fig. 1. Best viewed in color. Illustration of the uncertain input issue under weakly-
supervised setting. For different activities, the off-the-shelf detector will generate vary-
ing numbers of proposals, most of which (in red boxes) are useless for recognizing group
activities. For instance, “Three shot: 21 = 5 + 16” means that the detector gener-
ates a total of 21 proposals, but only 5 of them are players and other 16 proposals are
outliers in an activity of three-shot

single representation for each frame. However, previous methods are sensitive to
the varying number of people in each frame and require the explicit locations of
them, which is limited in practical applications.

To this end, we investigate GAR in a weakly-supervised setting which only
provides video-level labels for each video clip. This setting not only is practical
to real-world scenarios but also provides a simpler and lower-cost way for the
annotation of new benchmarks. Benefiting from it, we collect a larger and more
challenging benchmark, NBA, consisting of 181 basketball games which involve
more long-term temporal and fast-moving activities. Meanwhile, the weakly-
supervised setting also brings uncertain input issue in each frame, as illustrated
in Fig. 1. Under this setting, lots of useless proposals will be fed into the ap-
proach. Besides, numerous irrelevant frames will also appear in the video clip, if
the temporal structure of activities (e.g., in NBA) is long.

To tackle these issues, we further propose a simple yet effective module,
namely Social Adaptive Module (SAM), which can adaptively select discrimina-
tive proposals and frames from the video for weakly-supervised GAR. SAM aims
at assisting the weakly-supervised training by leveraging a social assumption that
key instances (people/frames) are highly related to each other. Specif-
ically, we firstly construct a dense relation graph on all possible input feature to
measure the relatedness between each other, then pick the top ones according to
their relatedness. Based on the selected feature, a sparse relation graph is built
to perform relational embedding for them. Benefiting from SAM, our approach
trained without fully-supervision still obtains the comparable performance to
previous methods on the popular volleyball dataset [18].

Our contributions include: (a) The weakly-supervised setting that only pro-
vides video-level labels is introduced for GAR. (b) Thanks to this setting, a larger
and more challenging benchmark, NBA, is collected from the web at a low cost.
(c) To ease the weakly-supervised training, a SAM is proposed to adaptively
find the effective person-level and frame-level representation based on the social
assumption that key instances are usually closely related to each other.
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2 Related Work

Group Activity Recognition. Initial approaches [18,45,40,42] for recognizing
group activities adopted the two-stage pipeline. They pre-extracted feature for
each person from a set of patch images and then fuse them into a single vector for
each frame by various methods (e.g., pooling strategies [18,35], attention mech-
anism [31,40,45], recurrent models [13,39,42,45], graphical models [2,25,24], and
AND-OR grammar models [1,36]). Nevertheless, these two-stage methods sepa-
rate feature aggregation from representation learning, which is not conducive to a
deep understanding of group activities. To this end, Bagautdinov et al. [4] intro-
duced an end-to-end framework to jointly detect multiple individuals, infer their
individual actions, and estimate the group activity. Wu et al. [44] extended [4] by
stacking multiple graph convolutional layer to infer the latent relation between
each person. Azar et al. [3] constructed an activity map based on bounding
boxes and explore the spatial relationships among people by iteratively refining
the map. However, all of the above methods still require the action-level supervi-
sion (action labels and bounding boxes for each person), which is time-consuming
to tag. Ramanathan et al. [32] detected events and key actors in multi-person
videos without individual action labels, but they still needed to annotate the
bounding boxes of all the players in a subset of 9, 000 frames for training a
detector. This work introduces a more practical weakly-supervised setting that
only provides video-level labels for group activity recognition.

Existing Datasets Related to GAR. Limited by the time-consuming tag-
ging, there are currently only four datasets for understanding group activities,
as shown in Table 1. Choi et al. [10] proposed the first dataset, Collective Activ-
ity Dataset (CAD), consisting of real-world pedestrian sequences. Then, Choi et
al. [11] extended CAD to CAED by adding two new actions (i.e., “Dancing”
and “Jogging”) and removing the ill-defined action (i.e., “Walking”). There is
no specific group activity defined in CAD and CAED, in which the scenar-
ios are assigned group activities based on majority voting. Moreover, Choi and
Savarese [9] collected a Choi’s New Dataset (CND) composed of many artifi-
cial pedestrian sequences. Recently, Ibrahim et al. [18] introduced a sports video
dataset, Volleyball Dataset (VD), which contains numerous volleyball games.
However, as the largest and most popular dataset, VD contains quite a few
wrong labels which directly affect the evaluation of proposed approaches. In ad-
dition, Ramanathan et al. [32] released NCAA but few researchers have used it
for GAR since only YouTube video links are provided and many of them are dead
now. Some activities (e.g., steal, slam dunk * and free-throw *) in NCAA can be
recognized using one key frame, which actually evades from some key challenges
of GAR. Limited by the size and quality of the above datasets, the recent studies
of group activity recognition have encountered the bottleneck. In this work, we
collect a larger and more challenging dataset from the basketball games and do
not provide any person-level information (i.e., the bounding boxes and action
labels for each person), thanks to the weakly-supervised setting. Moreover, com-
pared with previous benchmarks, our NBA contains more activities that involve
long-term temporal structure and are fast-moving.
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Relational Reasoning. Recently, relationships among entities (i.e., pixels,
objects or persons) have been widely leveraged in various computer vision tasks,
such as Visual Question Answering [34,20,5], Scene Graph Generation [21,26,46],
Object Detection [17,8], and Video Understanding [47,43,29]. Santoro et al. [34]
presented a relational network module to infer the potential relationships among
objects for improving the performance of visual question answering. Hu et al. [17]
embedded a relation module into existing object detection systems for simulta-
neously detecting a set of objects and interactions between their appearance and
geometry. Besides the spatial relationship among objects in the image, some re-
cent works also explored the temporal relational structure of the video. Liu et
al. [29] proposed a novel neural network to learn video representations by cap-
turing potential correspondences for each feature point. Moreover, some recent
methods [13,31,44] explored the spatial relationships between each people in
group activities. In this work, we apply relational reasoning to choose the most
relevant people from a number of proposals for weakly-supervised GAR.

3 Weakly-supervised Group Activity Recognition

3.1 Weakly-supervised Setting

For a more practical group activity recognition, i) the number of people in the
scene varies over different activities even time, and ii) the person-level annota-
tions cannot be provided in real-world applications. Therefore, we introduce a
weakly-supervised setting that only video-level labels are available, yet the loca-
tion and action label of each person are not provided.

In this work, the task of recognizing group activity under this setting is called
weakly-supervised GAR which aims to directly recognize the activity performed
by multiple collectively from the video with only a video-level label during train-
ing. Apparently, weakly-supervised GAR can be applied to more complex and
real-world applications (e.g., real-time sports analysis and video surveillance)
which cannot provide fine-grained supervision. Besides, the weakly-supervised
setting eases the annotation of benchmarks for the task. Without annotating the
person-level supervision, we only require 1

2K+1 tagging labor1 as before where
K is the number of people in the scene.

3.2 The NBA Dataset for Weakly-supervised GAR

Under the weakly-supervised setting, we introduce a new video-based dataset,
the NBA dataset. It describes the group activities that are common in basketball
games. There is no annotation for each person and only a group activity label
assigned to each clip. To the best of our knowledge, it is currently the largest and
most challenging benchmark for group activity analysis, as shown in Table. 1.

1The fully-supervised setting requires K boxes, K actions, and 1 group activity, but
the weakly-supervised setting only needs 1 group activity label. We roughly assumed
the same labor for each annotation.
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Table 1. Comparison of the existing datasets for group activity recognition

Dataset # Videos # Clips
# Individual

Actions
# Group
Activities

Activity
Speed

Camera
Moving

CAD [10] 44 ≈ 2, 500 5 5 slow N
CAED [11] 30 ≈ 3, 300 6 6 slow N
CND [9] 32 ≈ 2, 000 3 6 slow N
VD [18] 55 4, 830 9 8 medium Y
NBA (ours) 181 9, 172 - 9 fast Y

We will introduce the NBA dataset from the following aspects: the source of the
video data, the effective annotation strategy, and the statistics of this dataset.

Data Source. It is a natural choice to collect videos of team sports for
studying group activity recognition. In this work, we collect a subset of the 181
NBA games of 2019 periods from the web. Compared with the activities in vol-
leyball games [18], the ones in basketball games have more long-term temporal
structure and fast moving-speed, which brings up new challenges to group ac-
tivity analysis. For one thing, the number of players may vary over different
frames. On the other hand, the activity is so fast that the single-frame based
person-level annotation is useless to track these players. Therefore, it is diffi-
cult to label all people in these videos which differs from volleyball games, thus
we annotate this benchmark under the weakly-supervised setting. Due to the
copyright restriction, this dataset is available upon request.

Annotation. Given a video, the goal of annotation is to assign the group
activities to the corresponding segments. It is time-consuming to manually label
such a huge dataset with conventional annotation tools. To improve the annota-
tion efficiency, we take full advantage of the logs provided by the NBA’s official
website and design a simple and automatic pipeline to label our dataset. There
are three steps: i) Filter out some unwanted records in the log file corresponding
with a video. ii) Identify the timer in each frame by Tesseract-OCR [37] and
match it with the valid records generated from step i. iii) Save the segments
with a fixed length according to the time points obtained from step ii.

Statistics. We collect a total of 181 videos with a high resolution of 1920×
1080. Then we divide each video into 6-second clips by the above-mentioned
annotation method and sub-sample them to 12fps. Besides, we remove some
abnormal clips which contain close-up shots of players or instant replays. Ulti-
mately, there are a total of 9, 172 video clips, each of which belongs to one of
the 9 activities. Here, we drop some activities such as “dunk” and “turnover”
due to the limited sample size, and do not use “free-throw” that is easy to be
distinguished. We randomly select 7, 624 clips for training and 1, 548 clips for
testing. Table 2 shows the sample distributions across different categories of
group activities and the corresponding average number of people in the scene.
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Table 2. Statistics of the group activity labels in NBA. “2p”, “3p”, “succ”, “fail”,
“def” and “off” are abbreviations of “two points”, “three points”, “success”, “failure”,
“defensive rebound” and “offensive rebound”, respectively

Group Activity
2p

-succ.

2p
-fail.
-off.

2p
-fail.
-def.

2p
-layup
-succ.

2p
-layup
-fail.
-off.

2p
-layup
-fail.
-def.

3p
-succ.

3p
-fail.
-off.

3p
-fail.
-def.

# clips
Train 798 434 1316 822 455 702 728 519 1850

Test 163 107 234 172 89 157 183 83 360

4 Approach

4.1 Mining Key Instances via Social Relationship

In general, the key and difficult point in obtaining category information from
visual input is to construct and learn their intermediate representation. For the
task of group activity recognition, such intermediate representation made up
of individual feature and underlying relationships among them, refers to social-
representation in this paper. The previous fully-supervised setting [18,42,45] pro-
vides a variety of extra fine-grained supervision information (e.g., ground-truth
bounding box and action label for each person, and even the interaction label for
each person-person pair) to ensure that social-representation can be constructed
and learned stably during training. However, under the weakly-supervised set-
ting which only provides video-level labels, it is difficult for models to define and
learn discriminative social-representation stably.

To this end, we propose a simple yet effective framework, as illustrated in
Fig. 2, to stabilize the weakly-supervised training for GAR. The core idea of our
approach is to firstly construct all possible social-representation and then find
the effective ones based on the social assumption that key instances (peo-
ple/frames) are closely related to each other. Formally, given a sequence
of frames (V1, V2, · · · , VT ), our approach models them as follow:

O = O(F(V1;D(V1);W),F(V2;D(V2);W), · · · ,F(VT ;D(VT );W)). (1)

Here, D(Vt) represents detecting Np proposals from each frame. There are two
choices to determine the value of Np as follows, i) Quantity-aware: empirically
select top-Np boxes from numerous proposals; ii) Probability-aware: choose
the boxes whose probability is larger than a threshold θ.

The spatial modeling function F(Vt;D(Vt);W)) represents that i) adopt
CNN with parameters W to extract the convolutional feature map for frame
Vt, ii) apply RoIAlign [15] to extract person-level features according to the cor-
responding proposals from D(Vt), and iii) fuse person-level features into a single
frame-level vector. However, without person-level annotation, it is unavoidable
for D(·) to get many useless proposals from each frame. Moreover, the number
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Frame-level 
feature

Detector

Feature map

RoIAlign

K persons

Sparse Relation Graph
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Activity 
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Temporal SAM
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Fig. 2. Overview of our approach for weakly-supervised GAR. The inputs are a set of
frames and the associating pre-detected bounding boxes for people. We apply SAM to
concurrently select discriminative person-level feature in spatial domain and effective
frame-level representations in temporal domain (Best viewed in color)

of proposals (Np) varies over samples in practical applications. Thus, F(·) needs
to be able to choose Kp discriminative person-level features in the spatial do-
main. O(·) is a temporal modeling function that samples a set of N f frames from
the entire video sequence (T frames) as the input of our approach according to
the sampling strategy used in [41]. However, the long temporal structure of the
activities in our NBA dataset will bring numerous irrelevant frames that may
affect the construction of social-representation. Therefore, we also hope O(·) can
select Kf effective frame-level representations in the temporal domain.

It is clear that F(·) and O(·) need to have similar properties that attend-
ing to effective person/frame-level features in the spatial and temporal domain,
respectively. Therefore, this work aims at endowing the function F(·) and O(·)
with the ability of feature selection according to the social assumption that key
instances are highly related to each other.

4.2 Social Adaptive Module (SAM)

Inspired by relational reasoning [34,43,47], we build a generic module, namely
Social Adaptive Module, to implement the idea of assisting weakly-supervised
training with the social assumption. Specifically, we abstract F(·) and O(·) into
a unified form as

Z =M(X) = {a | a ∈ {λ1E(x1), λ2E(x2), · · · , λNE(xN )},
a 6= 0,xi ∈ X, λi ∈ {0, 1}, ‖λ‖1 = K}, (2)

where X ∈ RN×D and Z ∈ RK×D are the input and output ofM(·), respectively,
and K ≤ N . Put simply, M(·) aims to learn the parameter λ ∈ RN , a zero-one
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vector used to select K discriminative feature from N input feature. E(·) is the
embedding function for input and is optional. We hold that λ will be effective
for feature selection only if driven by X. Moreover, not only N 6= K but also the
value of N varies over samples. Therefore, directly replacing the function F(·)
and O(·) in Eq.(1) with M(·) is difficult for our approach to be optimized.

In this work, we approximate the solution of λ via pruning a Dense Relation
Graph with N nodes to a Sparse Relation Graph with K nodes via a pruning
operation. Specifically, we build a dense relation graph on N input feature to
measure relationships between each other. During the process of pruning, we
aim at maintaining the top-K feature nodes of the graph according to their
relatedness. Based on the K selected features, a sparse relation graph is built to
perform relational embedding for them. The details are described as follows.

Dense Relation Graph. We first build dense relationships between each
input node, based on their visual feature. More specifically, given a set of feature
vectors as {x1,x2, · · · ,xN}, we compute the directional relation between them
as rij = g(xi,xj) where i, j are indices and g(·, ·) is the relation function. There
are several common implementations [29,34] of g(·, ·). For instance, we can mea-
sure the L2 distance between each feature, but which is not a data-driven and
learnable method. Besides that, we can treat the concatenation [xi, xj ] as the in-
put of a multi-layer perceptron to get the relation score. However, as the number
of pairs increases, this approach will consume a lot of memory and computation.
In this work, we adopt a learnable and low-cost function to measure the relation
between i-th and j-th feature node as g(xi,xj) = Φ(xi)

>
Ψ(xj), where Φ(·) and

Ψ(·) are two embeddings of i-th and j-th feature node, respectively. Based on
this formulation, the calculation of relation matrices, R = {rij}N×N , can be
implemented by only two embedding processes and a matrix multiplication. We
also apply a softmax computation along the dimension j of the matrix R.

Pruning Operation. To approximate the solution of λ in Eq.(2), this paper
select the K most relevant nodes from the above dense graph based on the social
assumption that key instances are likely to be related to each other. Concretely,
after obtaining the N × N relation matrix for all feature pairs, we construct
the relatedness for each feature node as αi =

∑N
j=1 (rij + rji), where ri∗ and

r∗i denote the out-edges and in-edges of i-th feature node in the dense relation
graph. Intuitively, the nodes with strong connections can be easily retained in the
graph. Thus, we hold that the sum of a specific nodes corresponding connections
can depict the importance (relatedness) of itself.

Based on the social assumption, we sort the values of α ∈ RN in descend-
ing order and select the top-K values denoted as topk(α) ∈ RK . Thus, the
satisfactory λ can be expressed as

λi =

{
1, αi ∈ topk(α),

0, otherwise.
(3)

Sparse Relation Graph. According to λ, we can get the corresponding K
selected feature, X̂ ∈ RK×D, namely sparse feature. However, λ is driven by R,
but X̂ is unrelated to it. Therefore, λ will be unlearnable if we directly regard X̂
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as the output of this module. To tackle this problem, we construct a relational
embedding E(·) for the sparse feature X̂ by combing with relation matrix R.

Similarly, we obtain a sparse relation matrix R̂ = {r̂ij}K×K associating to the
K selected feature, and then perform relational embedding as

zi = E(x̂i) = Wz

( K∑
j=1

r̂ijΩ(x̂j)
)

+ x̂i. (4)

Here “+” denotes a residual connection, Ω(·) is the embedding of sparse feature
x̂j , and Wz is a weight vector that projects the relational feature to the new
representation with the same dimension as the sparse feature x̂i.

SAM is the first to introduce the social assumption that helps a lot in the
GAR scenario where many uncertain inputs are involved. More importantly, this
makes our method more appropriate to work in the weakly-supervised setting.
In comparison: i) [45] and [40] only built the pair-wise relationship between each
player and the scene, but SAM captured the relationship among all people that
provides richer information for understanding complex scenes. ii) [13], [31], [39]
and [44], as graph-based methods, indeed built relationships among different peo-
ple, but they did not provide a mechanism to handle uncertain inputs. Therefore,
we believe that SAM can also be used upon these methods.

4.3 Implementation details

Person Detection & Feature Extraction. For each frame, we first adopt
Faster-RCNN [33] pre-trained on the MS-COCO [28] to detect possible persons
in the scene, based on the mmdetection toolbox [7]. Then, we track them over
all frames by correlation tracker [12] implemented by Dlib [22]. After that, we
adopt ResNet-18 [16] as the backbone to extract the convolutional feature map
for each frame. Finally, we get the aligned feature for each proposal from the map
by RoIAlign [15] with the crop size of 5 × 5 and embed it to 1024 dimensional
feature vector by a fully connected layer.

Social Adaptive Module. This module is designed to select out K effective
feature from N input ones. However, the values of N and K depend on the
situation and will be explained in experiments. If N varies over samples (e.g.,
different numbers of proposals are generated by the Probability-aware strategy
mentioned in Section 4.1), we feed data into this module with a batch-size of 1
but do not change the batch-size of the entire framework. The Φ(·), Ψ(·), and
Ω(·) used to embed input feature are implemented by 1×1 convolutional layers.

Optimization. We adopt the ADAM to optimize our approach with fixed
hyper-parameters (β1 = β2 = 0.9, ε = 10−4) and train it in 30 epochs with an
initial learning rate of 0.0001 that is reduced to 1/10 of the previous value for ev-
ery 5 epochs. Compared with SSU [4] and ARG [44], which require pre-training
the CNN backbone and fine-tuning the top model separately, our approach ex-
cluding detection can be optimized in an end-to-end fashion.
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Table 3. Ablation studies on NBA. Quan-Np and Prob-Np are two different strategies
of deciding the number of input proposals, as described in Section 4.1. θ is the prob-
ability threshold used in Prob-Np, N f is the number of input frames, and K∗ denote
the number of feature selected by our SAM

Type Options of Our Approach Acc (%) Mean Acc (%)

Quan-Np

B1: w/o SAM (Np = 8) 44.6 39.5
B2: w/ Spatial-SAM (Np = 14,Kp = 14) 46.8 41.3
B3: w/ Spatial-SAM (Np = 14,Kp = 8) 50.3 43.6
B4: w/ Spatial-SAM (Np = 8,Kp = 8) 47.4 41.4

B5: w/ Spatial-SAM (Np = 14,Kp = 8)

+ w/ Temporal-SAM (N f = 20,Kf = 6)
49.1 47.5

Prob-Np B6: w/ Spatial-SAM (θ = 0.9,Kp = 8) 47.5 42.6

5 Experiments

5.1 Quantitative Analysis on the NBA Dataset

We first evaluate our approach on the new benchmark by compared with several
variants and baseline methods. For this dataset, we sample N f = 20 frames from
the entire video clip as the input for all methods and train them with a batch-size
of 16. Because of the fast speed of activities in this benchmark, we do not track
pre-detected proposals over frames. Moreover, we do not apply any strategy to
handle the class-imbalance issue in this benchmark.

Ablation Study. To evaluate the effectiveness of our SAM, different variants
of our approach are performed on NBA, and the results are reported in Table 3.
B1 that does not use the proposed SAM achieves the base accuracy of 44.6%
and 39.5% on Acc and Mean Acc, respectively. Compared with B1, B2 that
employs Spatial-SAM to build relational embedding among Np = 14 proposals
but does not prune useless ones, only obtains 2.2% and 1.8% improvement on
Acc and Mean Acc. Similarly, B4 which directly adapts Spatial-SAM to generate
relation representation from Np = 8 proposals has small improvement. However,
by selecting Kp = 8 persons from Np = 14 proposals and modeling relationship
among them, B3 improves Acc and Mean Acc by 5.7% and 4.1%, respectively,
compared with B1. Moreover, our Quan-Np based approach (B6) suffering an
uncertain number of proposals also gets a satisfactory Mean Acc of 42.6%. Based
on B3, B5 obtains the best Mean Acc by applying the SAM on the temporal
domain. It demonstrates that the ability of feature selection of SAM can also be
used to capture the long temporal structure in our NBA dataset. The further
analysis on the parameters of N∗ and K∗ are present in Section 5.2.

Comparison with the baselines. We also compare our approach with
recent work in video classification domain, including TSN [41], TRN [47], I3D [6],
I3D+NLN [43]. To be fair, all these baseline methods are built on ResNet-18
and the input modality is RGB. The results are reported in Table 4. We see that
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Table 4. Comparison on NBA. “Ours w/o SAM”, “Ours w/ SAM (S)”, and “Ours w/
SAM (S+T)” are the B1, B3, and B5 reported in Table 3, respectively

Group Activity
Frame Classification Our Approach

TSN
[41]

TRN
[47]

I3D
[6]

I3D+NLN
[43]

w/o SAM
w/ SAM

(S)
w/ SAM
(S+T)

2p-succ. 38.7 44.8 33.1 22.1 46.6 39.3 47.2
2p-fail.-off. 30.8 23.4 14.0 20.6 28.0 25.2 42.1
2p-fail.-def. 49.1 50.0 39.3 45.3 49.6 53.4 48.3
2p-layup-succ. 52.9 54.7 50.6 48.8 44.2 57.6 53.5
2p-layup-fail.-off. 10.1 22.5 22.5 22.5 20.2 19.1 32.6
2p-layup-fail.-def. 44.6 46.5 43.3 31.2 44.6 51.6 59.9
3p-succ. 39.3 37.7 31.1 26.8 39.9 41.0 30.1
3p-fail.-off. 10.8 20.5 4.8 12.0 24.1 38.6 55.4
3p-fail.-def. 63.9 62.8 55.3 61.7 58.6 66.9 58.1

Mean Acc (%) 37.8 40.3 32.7 32.3 39.5 43.6 47.5

“Ours w/o SAM” is hardly improved or worse due to noise input (irrelevant pre-
detected proposals), compared with methods (“TSN” and “TRN”) only using
frame-level information. By introducing SAM to select discriminative proposals
in the spatial domain, “Ours w/ SAM (S)” achieves significant improvement on
Mean Acc but still overfits on some classes. As expected, “Ours w/ SAM (S+T)”
outperforms all baselines by a good margin and obtained the best Mean Acc by
simultaneously applying SAM to the spatial and temporal domain. Nevertheless,
“Ours w/ SAM (S+T)” performs poorly on the activity of “3p-succ.” which does
not have long-term temporal structure. Moreover, “I3D” and “I3D+NLN” which
depend on dense frames perform poorly on this benchmark.

5.2 Qualitative Analysis on the NBA dataset

Analysis of parameters. We first diagnose N , the number of nodes of the
dense relation graph. Limited by the computation resource, we only analyze the
Np of Spatial-SAM and it indicates how many pre-detected proposals should
be fed into our approach. It can be decided by two strategies as mentioned
in Section 4.1. Thus, we first run our Quan-Np based approach on the NBA
dataset by fixing Kp = 8 and changing Np from 8 to 64 with a step of 4. As
shown in Fig. 3(a), although Np is increasing, the performance of our approach
has been persistently higher than the baseline. Moreover, we also conduct our
Prob-Np based approach on NBA by using fixed Kp = 8 and adjust θ from 0.05
to 0.95 with a mini-step of 0.05. As shown in Fig. 3(b), our approach can achieve
promising results when θ ≥ 0.3 and is more likely to get high performance when
θ around 0.4. Overall, our Spatial-SAM is not sensitive to Np whether decided
by Quan-Np or Prob-Np. We also diagnose K, the number of nodes of the sparse
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Fig. 3. (a)-(d) Experimental analysis on parameters. (e) The confusion matrix of OURS
w/ Spatial-SAM and Temporal-SAM. (f) t-SNE visualization of embeddings of 2/3-
points based activities. These experiments are carried out on the NBA dataset

relation graph, and it decides how many feature nodes need to be selected for
modeling. As shown in Fig. 3(c), the performance of Spatial-SAM maintains over
the baseline and it obtains the best result at Kp = 1. Therefore, we hold that
Spatial-SAM is not sensitive to Kp. By contrast, the performance of Temporal-
SAM cannot get satisfactory performance when the Kf is too small or large, due
to the different temporal length of activities in NBA. However, our approach
with Temporal-SAM significantly improves Mean Acc when 4 < Kf < 10.

Confusion matrix. To figure out the confusion between each activity in the
NBA dataset, we report the confusion matrix of our approach in Fig.3(d). We
can see that the activities involving “defense” and “offense” are easily confused,
due to the class-imbalance issue between these two kinds of activities. However,
it is relatively easy to distinguish 2-points and 3-points, as embeddings shown
in Fig.3(f). Because 3-point players usually jump to shot behind the 3-point line
without blocking. By contrast, 2-point players are often blocked by others.

Visualization. To further understand the discriminative learning process
of SAM, we show some typical cases of NBA in Fig.4. The group activities
in NBA have long-term temporal information, thus top-K proposals vary over
time. Take the rightmost one as an example, a 3p-failure-defense has 3 parts:
(1) preparation, (2) shooting, (3) defensive rebound. For (1) and (2), the players
controlling the ball are the key instances, but for (3), the players that quickly
turn back are the key instances. It is not hard to find that SAM aims at focusing
on the players who are controlling the basketball or close to it and these people
can form a group semantically.
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2p-success 3p-success 3p-failure-defense

Fig. 4. A visualization of the top-K proposals focused by SAM over time on the NBA
dataset, where K = 3. Each column shows three different frames of an activity. We
highlight the top-K players (in cyan boxes) at three time steps of different activities.
The people in red boxes are treat as noisy data by our model

5.3 Quantitative Analysis on Volleyball Dataset

We also evaluate our approach on the existing largest and most common bench-
mark, Volleyball Dataset (VD) [18] consisting of 4830 volleyball game sequences.
The middle frame of each sequence is labeled with 9 action labels (not used in
our approach) and 8 group activity labels. However, we find that there are many
wrong annotations between “pass” and “set”, which seriously affects the evalu-
ation for models, thus we merged them into “pass-set”. To be fair, we follow the
train/test split provided in [18] and sample N f = 3 from the video clip similar
to [44]. Because the activities in VD always occur in the middle frame, we do
not apply our SAM to the temporal domain for this benchmark.

Ablation Study. We also perform ablation study on VD and the experimen-
tal results are reported in Table 5(a). All these variants do not use person-level
supervision information (bounding boxes and action labels) provided by [18] and
are built on ResNet-18. Compared with the baseline method B1, our B2 and B3
which only apply SAM to generate relational embedding for proposals but do
not prune the irrelevant ones, only improve the accuracy by 0.9% and 0.4%,
respectively. Besides, by using SAM to build relationships among N = 16 pro-
posals and choosing K = 12 effective proposals from them, B3 and B5 improve
the accuracy of 1.6% based on whether Quan-N or Prob-N . This observation
indicates again that useless proposals will affect the weakly-supervised training
and SAM is effective for pruning them.
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Table 5. Results on VD. (a) Ablation studies. (b) Comparison with SOTA. “Ours”
represents “Ours w/ Spatial-SAM” with Np = 16 and Kp = 12 based on Quan-Np

(a)

Type Our Approach Acc (%)

Quan-Np

B1: w/o SAM 91.5

B2: w/ Spatial-SAM
(Np=16, Kp=16)

92.4

B3: w/ Spatial-SAM
(Np=16, Kp=12)

93.1

B4: w/ Spatial-SAM
(Np=12, Kp=12)

91.9

Prob-Np B5: w/ Spatial-SAM
(θ = 0.9,Kp = 12)

93.1

(b)

Method Supervision Acc (%)

HTDM Fully 89.7
PCTDM Fully 90.2
CCGL Fully 91.0
StagNet Fully 90.0
‡ARG Fully 94.0
‡ARG Weakly 90.7

†Ours Weakly 93.1
‡Ours Weakly 94.0

† ResNet-18
‡ Inception-v3

Comparison with the state-of-the-art. Referring to [42], we report the
results of HTDM [18,19], PCTDM [45], CCGL [39], and StagNet [31] by com-
puting their corresponding confusion matrices. We reproduce the state-of-the-art
method, ARG [44], with fully-supervised and weakly-supervised settings, respec-
tively. As shown in Table 5(b), our weakly-supervised approach with the back-
bone of ResNet-18 is superior to almost all previous fully-supervised methods,
except ARG which is built on Inception-v3. But our approach goes far beyond
ARG under the weakly-supervised setting, suggesting that useless pre-detected
proposals seriously affect the construction of relation graphs in ARG. Further-
more, our approach with Inception-v3 can achieve the best performance.

6 Conclusions

In this work, we introduce a weakly-supervised setting for GAR, which is more
practical and friendly for real-world scenarios. To investigate this problem, we
collect a larger and more challenging dataset from high-resolution basketball
videos of NBA. Furthermore, we propose a social adaptive module (SAM) for
assisting the weakly-supervised training by leveraging the social assumption that
discriminative features are highly related to each other. SAM can be easily
plugged into existing frameworks and be optimized in an end-to-end fashion.
As demonstrated on two datasets, our approach achieves state-of-the-art results
while it can attend to key proposals/frames automatically.

This work reveals that social relationship among visual entities is helpful for
high-level semantic understanding. We look forward to applying this method to
more challenging scenarios, in particular, for mining semantic knowledge from
weakly-annotated or un-annotated visual data.



Social Adaptive Module 15

Acknowledgements

This work was supported by the National Key Research and Development Pro-
gram of China under Grant 2018AAA0102002, the National Natural Science
Foundation of China under Grants 61732007, 61702265, and 61932020.

References

1. Amer, M.R., Xie, D., Zhao, M., Todorovic, S., Zhu, S.C.: Cost-sensitive top-
down/bottom-up inference for multiscale activity recognition. In: ECCV (2012)

2. Amer, M.R., Lei, P., Todorovic, S.: Hirf: Hierarchical random field for collective
activity recognition in videos. In: ECCV (2014)

3. Azar, S.M., Atigh, M.G., Nickabadi, A., Alahi, A.: Convolutional relational ma-
chine for group activity recognition. In: CVPR (2019)

4. Bagautdinov, T., Alahi, A., Fleuret, F., Fua, P., Savarese, S.: Social scene un-
derstanding: End-to-end multi-person action localization and collective activity
recognition. In: CVPR (2017)

5. Cadene, R., Ben-Younes, H., Cord, M., Thome, N.: Murel: Multimodal relational
reasoning for visual question answering. In: CVPR (2019)

6. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: CVPR (2017)

7. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z.,
Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R.,
Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C.C., Lin, D.: MMDetection:
Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155
(2019)

8. Chen, X., Gupta, A.: Spatial memory for context reasoning in object detection. In:
ICCV (2017)

9. Choi, W., Savarese, S.: A unified framework for multi-target tracking and collective
activity recognition. In: ECCV (2012)

10. Choi, W., Shahid, K., Savarese, S.: What are they doing?: Collective activity clas-
sification using spatio-temporal relationship among people. In: ICCV Workshops
(2009)

11. Choi, W., Shahid, K., Savarese, S.: Learning context for collective activity recog-
nition. In: CVPR (2011)
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