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Abstract. Convolutional operations have two limitations: (1) do not
explicitly model where to focus as the same filter is applied to all the
positions, and (2) are unsuitable for modeling long-range dependencies
as they only operate on a small neighborhood. While both limitations
can be alleviated by attention operations, many design choices remain
to be determined to use attention, especially when applying attention
to videos. Towards a principled way of applying attention to videos, we
address the task of spatiotemporal attention cell search. We propose a
novel search space for spatiotemporal attention cells, which allows the
search algorithm to flexibly explore various design choices in the cell.
The discovered attention cells can be seamlessly inserted into existing
backbone networks, e.g., I3D or S3D, and improve video classification
accuracy by more than 2% on both Kinetics-600 and MiT datasets. The
discovered attention cells outperform non-local blocks on both datasets,
and demonstrate strong generalization across different modalities, back-
bones, and datasets. Inserting our attention cells into I3D-R50 yields
state-of-the-art performance on both datasets.

Keywords: Attention, Video Classification, Neural Architecture Search

1 Introduction

One major contributing factor to the success of neural networks in computer
vision is the novel design of network architectures. In early work, most net-
work architectures [I2J28/10] were manually designed by human experts based
on their knowledge and intuition of specific tasks. Recent work on neural archi-
tecture search (NAS) [AI42ITOIT5I2T] proposes to directly learn the architecture
for a specific task from data and discovered architectures have been shown to
outperform human-designed ones.

Convolutional Neural Networks (CNNs) have been the de facto architecture
choice. Most work in computer vision uses convolutional operations as the pri-
mary building block to construct the network. However, convolutional operations
still have their limitations. It has been shown that attention is complementary
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to convolutional operations, and they can be combined to further improve per-
formance on vision tasks [33I32/2].

While being complementary to convolution, many design choices remain to
be determined to use attention. The design becomes more complex when apply-
ing attention to videos, where the following questions arise: What is the right
dimension to apply an attention operation to videos? Should an operation be
applied to the temporal, spatial, or spatiotemporal dimension? How to compose
multiple attention operations applied to different dimensions?

Towards a principled way of applying attention to videos, we address the task
of spatiotemporal attention cell search, i.e., the automatic discovery of cells that
use attention operations as the primary building block. The discovered attention
cells can be seamlessly inserted into a wide range of backbone networks, e.g.,
I3D [5] or S3D [36], to improve the performance on video understanding tasks.

Specifically, we propose a search space for spatiotemporal attention cells,
which allows the search algorithm to flexibly explore all of the aforementioned
design choices in the cell. The attention cell is constrcuted by composing several
primitive attention operations. Importantly, we consider two types of primitive
attention operations: (1) map-based attention [I9I33] and (2) dot-product at-
tention (a.k.a., self-attention) [B0J3212]. Map-based attention explicitly models
where to focus in videos, compensating for the fact that convolutional operations
apply the same filter to all the positions in videos. Dot-product attention en-
ables the explicit modeling of long-range dependencies between distant positions
in videos, accommodating the fact that convolutional operations only operate
on a small and local neighborhood.

We aim to find an attention cell from the proposed search space such that
the video classification accuracy is maximized when adding that attention cell
into the backbone network. But the search process can be extremely costly. One
significant bottleneck of the search is the need to constantly evaluate different
attention cells. Evaluating the performance of an attention cell typically requires
training the selected attention cell as well as the backbone network from scratch,
which can take days on large-scale video datasets, e.g., Kinetics-600 [4].

To alleviate this bottleneck, we consider two search algorithms: (1) Gaussian
Process Bandit (GPB) [2625], which judiciously selects the next attention cell
for evaluation based on the attention cells having been evaluated so far, allow-
ing us to find high-performing attention cells within a limited number of trials;
(2) differentiable architecture search [I6], where we develop a differentiable for-
mulation of the proposed search space, making it possible to jointly learn the
attention cell design and network weights through back-propagation, without ex-
plicitly sampling and evaluating different cells. The entire differentiable search
process only consumes a computational cost similar to fully training one network
on the training videos. This formulation also allows us to learn position-specific
attention cell designs with zero extra computational cost (see Sec[4.2]for details).

We conduct extensive experiments on two benchmark datasets: Kinetics-
600 [4] and Moments in Time (MiT) [I8]. Our discovered attention cells can
improve the performance of two backbone networks I3D [5] and S3D [36] by more
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Fig. 1: Tllustration of the operation-level search space (left) and cell-level search
space (right). The example attention operations use temporal as the attention
dimension and the tuple under each feature map denotes its shape.

than 2% on both datasets, and also outperforms non-local blocks — the state-of-
the-art manually designed attention cells for videos. Inserting our attention cells
into I3D-R50 [32] yields state-of-the-art performance on both datasets. Notably,
our discovered attention cells can also generalize well across modalities (RGB
to optical flow), backbones (e.g., I3D to S3D or I3D to I3D-R50), and datasets
(MiT to Kinetics-600 or Kinetics-600 to MiT).

Contributions: (1) This is the first attempt to extend NAS beyond discov-
ering convolutional cells to attention cells. (2) We propose a novel search space
for spatiotemporal attention cells that use attention operations as the primary
building block, which can be seamlessly inserted into existing backbone networks
to improve their performance on video classification. (3) We develop a differen-
tiable formulation of the proposed search space, making it possible to learn the
attention cell design with back-propagation and learn position-specific attention
cell designs with zero extra cost. (4) Our discovered attention cells outperform
non-local blocks, on both the Kinetics-600 and MiT dataset. We achieve state-
of-the-art performance on both datasets by inserting our discovered attention
cells into I3D-R50. Our attention cells also demonstrate strong generalization
capability when being applied to different modalities, backbones, or datasets.

2 Related Work

Video Classification. Early work on video classification extends image classi-
fication CNNs with recurrent networks [6/38] or two-stream architectures [24}g]
that take both RGB frames and optical flow frames as inputs. Recent work on
video classification are mainly based on 3D convolution [29] or its variants to
directly learn video representations from RGB frames. I3D [5] proposes to inflate
the filters and pooling kernels of a 2D CNN into 3D to leverage successful 2D
CNN architecture designs and their ImageNet pretrained weights. S3D [36] im-
proves upon I3D by decomposing a 3D convolution into a 2D spatial convolution
and a 1D temporal convolution. A similar idea is also explored in P3D [20]. CP-
Net [I7] learns video representations by aggregating information from potential
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correspondences. SlowFast [7] proposes an architecture operating at two differ-
ent frame rates, where spatial semantics are learned on low frame rates, and
temporal dynamics are learned on high frame rates. Different from them, we do
not focus on proposing novel CNN architecture designs for video classification.
Instead, we focus on discovering attention cells using attention operations as the
primary building block, which are complementary to CNNs.

Attention in Vision. Both map-based attention and dot-product attention
are useful for computer vision tasks. Map-based attention [19/33] has been used
to improve the performance of CNNs on image recognition, where spatial atten-
tion maps are learned to scale the features given by convolutional layers. Dot-
product attention [30] is successfully used in sequence modeling and transduc-
tion tasks, e.g., machine translation, and is recently used to augment CNNs and
enhances their performance on image recognition [2]. Non-local blocks [32] are
proposed to capture long-range dependencies in videos and can significantly im-
prove the video classification accuracy of CNNs. Non-local blocks can be viewed
as applying one single dot-product attention operation to the spatiotemporal
dimension. In contrast, our attention cells can contain multiple attention opera-
tions applied to different dimensions of videos. Non-local blocks are a particular
case in our proposed search space, and our attention cells are discovered auto-
matically in a data-driven way instead of being manually designed.

NAS - Search Space. Search space is crucial for NAS. Randwire [35] shows
that one random architecture from a carefully designed search space can achieve
competitive performance on image recognition. NASNet [42] proposes to search
for convolutional cells that can be stacked multiple times to form the entire
architecture. Auto-DeepLab [14] proposes a two-level hierarchical architecture
search space for semantic image segmentation. AssembleNet [23] proposes to
search for the connectivity between multi-stream convolutional blocks for video
classification. They all focus on finding convolutional cells or networks for the
end task. Different from them, our proposed search space uses attention as the
primary building component instead of convolution.

NAS - Search Algorithm. Various search algorithms have been explored
in NAS, such as random search [I3l37], reinforcement learning [1I4TI4239], evo-
lutionary algorithms [34I22I21], Bayesian optimization (BO) [I113], and differen-
tiable methods [I6]. We have tried using GPB (belonging to the category of BO)
to search for desired attention cells. We also develop a differentiable formulation
of our proposed search space. This makes it possible to conduct the search using
differentiable methods and greatly improves the search speed.

3 Attention Cell Search Space

We aim to search for spatiotemporal attention cells, which can be seamlessly
inserted into a wide range of backbone networks, e.g., I3D [5] or S3D [36], to
improve the performance on video understanding tasks.

Formally, an attention cell takes a 4D feature map of shape (T, H,W,C) as
input and outputs a feature map of the same shape. T, H, and W are the tem-
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poral dimension, height, and width of the feature map, respectively. C' denotes
the number of channels. The output of an attention cell is enforced to have the
same shape as its input by design, so that the discovered attention cells can be
easily inserted after any layers in any existing backbone networks.

An attention cell is composed of K primitive attention operations. The pro-
posed attention cell search space consists of an operation level search space and
a cell level search space (see Fig. . The operation level search space contains
different choices to instantiate an individual attention operation. The cell level
search space consists of different choices to compose the K operations to form
a cell, i.e., the connectivity between the K operations within a cell. We first
introduce the operation level search space and then the cell level search space.

3.1 Operation Level Search Space

An attention operation takes a feature map of shape (T, H, W, C},) as input and
outputs an attended featured map of shape (T, H,W, Coyt). For an attention
operation, Cj, and Cyy; can be different. To construct an attention operation, we
need to make two fundamental choices: the dimension to compute the attention
weights and the type of the attention operation.

Attention Dimension For brevity, we term the dimension to compute the at-
tention weights as attention dimension. In CNNs for video classification, previous
work [20036/7] has studied when to use temporal convolution (e.g., 3x1x 1), spa-
tial convolution (e.g., 1 x3x3), and spatiotemporal convolution (e.g., 3x3x3). It
is also a valid question to ask for attention what is the right dimension to apply
an attention operation to videos: temporal, spatial or spatiotemporal (tempo-
ral and spatial together). The choice of the attention dimension is important
as computing attention weights for different dimensions represents focusing on
different aspects of the video.

Attention Operation Type We consider two types of attention operations,
each of which helps address a specific limitation of convolutional operations, as
mentioned in the introduction:

— Map-based attention [19J33]: Map-based attention learns a weighting fac-
tor for each position in the attention dimension and scales the feature map
with the learned attention weights. Map-based attention explicitly models
what positions in the attention dimension to attend to in videos.

— Dot-product attention [B032]2]: A dot-product attention operation com-
putes the feature response at a position as a weighted sum of features of
all the positions in the attention dimension, where the weights are deter-
mined by a similarity function between features of all the positions [322].
Dot-product attention explicitly models the long-range interactions among
distant positions in the attention dimension.
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We now describe the details of the two types of attention operations. Let fi,
denote the input feature map to an attention operation and denote its shape as
(T, H,W,C},). Applying an attention operation consists of three steps, includ-
ing reshaping the input feature map fi,, computing the attention weights, and
applying the attention weights.

Reshape fi,. We reshape fi, into a 2D feature map f/ before computing the
attention weights. The first dimension of f/ is the attention dimension and
the second dimension contains the remaining dimensions. For example, f/ has
the shape of (T, HWCi,) when temporal is the attention dimension and has
the shape of (THW, Ci,) when spatiotemporal is the attention dimension. We
denote this procedure as a function ReshapeTo2D, i.e., f/, = ReshapeTo2D(fi,).

Spatial attention requires extra handling. As video content changes over time,
when applying attention to the spatial dimension, each frame f{ should have
its own spatial attention weights, where f{ is the t'* frame in fi, and has the
shape of (H, W, Ci,). Therefore, when spatial is the attention dimension, instead
of reshaping the entire 4D feature map fi,, we reshape f into a 2D feature map

/t of shape (HW, C}y,) for every t, i.e., f/' = ReshapeTo2D(fL)(1<t<T).

Map-based attention. Assuming temporal is the attention dimension, map-based
attention generates T attention weights to scale the feature map of each temporal

frame. The attention weights are computed as follows:

Winap = Diag(¢(G2(AvgPool(G1(fiy)))))- (1)

(G1 is a 1D convolutional layer with kernel size as 1, which reduces the dimension
of the feature response of each temporal frame from HWC}, to C’ and gives a
feature map of shape (T, C”"). AvgPool denotes an average pooling operation ap-
plied to each temporal dimension and outputs a T-dim vector. The multilayer
perceptron G4 and the activation function ¢ (e.g., the sigmoid function) further
transform the T-dim vector to T attention weights. More details about the acti-
vation function are discussed later. Diag rearranges the T attention weights into
a T x T matrix, where the T attention weights are placed on the diagonal of the
matrix. The obtained attention weight matrix W is a diagonal matrix.

Similarly, when spatiotemporal is the attention dimension, map-based atten-
tion gives a THW x THW diagonal matrix containing the attention weights.
When spatial is the attention dimension, we generate one HW x HW diagonal
matrix for every f/t (1 <t < T) separately, using the above described procedure.
Note that while different frames have separate spatial attention weights, G; and
G are shared among different frames when computing attention weights.

Dot-product attention. When applying dot-product attention to the temporal
dimension, a T x T" attention weight matrix is generated as follows:

Wdot—prod = QS(Gl(fi/n)GQ (fi/n)T)' (2)

Here, G; and G5 are both a 1D convolutional layer with kernel size as 1 and
they both output a feature map of shape (T,C’). Let Q@ = G1(f!,) and K =

in
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Gao(f!). QKT computes an similarity matrix between the features of all the
temporal frames. We then use ¢, an activation function of our choice, e.g., the
softmax function, to convert the similarity matrix into attention weights. Note
that different from Winap, Waot-prod is a full matrix instead of a diagonal matrix.

When being applied to the spatiotemporal dimension, dot-product attention
generates a THW x THW attention weight matrix. When applying dot-product
attention to the spatial dimension, each frame has its own attention weights (a

HW x HW matrix), where G; and G5 are shared among different frames.

Apply the attention weights. We apply the attention weight matrix to the input
feature map through matrix multiplication to obtain the attended feature map:

fous = ReshapeTo2D ' (WWReshapeTo2D(G5(fin)))- (3)

W is the weight matrix generated by map-based attention (Wyap) or dot-product
attention (Wiyot-proda). G3 is a 1 x 1 x 1 convolutional layer to reduce the number
of channels of fi, from Cj, to Coyt. If temporal is the attention dimension, W
has the shape of (T, T) and ReshapeTo2D(Gs( fin)) has the shape (T, HW Coyy).
ReshapeTo2D ! is the inverse function of ReshapeTo2D, reshaping the attended
feature map back to the shape of (T, H, W, Cout).

For spatial attention, the attention weights are applied to each frame inde-
pendently, i.e., f!,, = ReshapeTo2D ! (W’ReshapeTo2D(G5(f!,))), where W is
the spatial attention weights for frame ¢ and f! , has the shape of (H, W, Cout).
We stack {fl, | 1 <t < T} along the temporal dimension to form the at-
tended feature map fout of shape (T, H, W, Coyt). Similar to G; and G5 used for
computing attention weights, G5 is also shared among different frames.

Note that by design Gs only changes number of channels, i.e., transforms
the features at each spatiotemporal position. The spatiotemporal structure of
the input fi, is preserved. This ensures that after the application of attention
weights, fout still follows the original spatiotemporal structure of the input fi,.

Activation function. We empirically find that the activation function ¢ (see Eq.
and Eq. [2) used in the attention operation can influence the performance. So,
we also include the choice of the activation function in the operation level search
space and rely on the search algorithm to choose the right one for each attention
operation. We consider the following four choices for the activation function: (1)
no activation function, (2) ReLU, (3) sigmoid, and (4) softmax.

3.2 Cell Level Search Space

We define an attention cell as a cell composed of K attention operations. Let
fo denote the input feature map to the entire attention cell and (T, H, W, C) be
the shape of fy. fy is usually the output of a stack of convolutional layers. An
attention cell takes fy as input and outputs a feature map of the same shape.
The connectivity between convolutional layers is essential to the performance
of CNNs, no matter if the network is manually designed, e.g., ResNet [10] and



8 X. Wang et al.

Inception [28], or automatically discovered [A14235]. Similarly, to build an at-
tention cell, another critical design choice is how the K attention operations are
connected inside the cell, apart from the design of these attention operations.
As shown in Fig. [l in an attention cell, the first attention operation always
takes fo as input and outputs feature map f;. The k**(2 < k < K) attention

operation chooses its input from {fo, f1,..., fk—1} and gives feature map fj
based on the selected input. We allow the k** operation to choose multiple
feature maps from {fo, f1,..., fr—1} and compute a weighted sum of selected

feature maps as its input, where the weights are learnable parameters. This
process is repeated for all k& and allows us to explore all possible connectivities
between the K attention operations in the cell.

We combine {f1, fa,..., fx} to obtain the output feature map of the entire
attention cell. For all attention operations inside the cell, we set their output
shape to be (T, H,W, Cyp), i.e., fi has the shape of (T, H, W, Cyp,) for all k(1 <
k < K). Cop is usually smaller than C to limit the computation in an attention
cell with multiple attention operations. We concatenate {fi, fa,..., fx} along
the channel dimension and then employ a 1 x 1 x 1 convolution to transform the
concatenated feature map back to the same shape as the input f;. We denote
the feature map after transformation as feomp. Similar to non-local blocks [32],
we add a residual connection between the input and output of the attention
cell. So the final output of the attention cell is the sum of fy and feomp. The
combination procedure is the same for all attention cells.

4 Search Algorithm

4.1 Gaussian Process Bandit (GPB)

Given K, i.e., the number of attention operations inside the attention cell, the at-
tention cell design can be parameterized by a fixed number of hyper-parameters,
including the attention dimension, the type and the activation function of each
attention operation, and the input to each attention operation.

We employ GPB [26/25], a popular hyper-parameter optimization algorithm,
to optimize all the hyper-parameters for the attention cell design jointly. In-
tuitively, GPB can predict the performance of an attention cell at a modest
computational cost without actually training the entire network, based on those
already evaluated attention cells. Such prediction helps GPB to select promising
attention cells to evaluate in the following step and makes it possible to discover
high-performing attention cells within a limited number of search steps.

Concretely, in GPB, the performance of an attention cell is modeled as a sam-
ple from a Gaussian process. At each search step, GPB selects the attention cell
for evaluation by optimizing the Gaussian process upper confidence conditioned
on those already evaluated attention cells.

4.2 Differentiable Architecture Search

Inspired by recent progress on differentiable architecture search [16], we develop
a differentiable formulation of our proposed search space. The formulation makes
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Fig. 2: Hlustration of the supergraph used by the differentiable method.

it possible to jointly learn the attention cell design and network weights with
back-propagation, without explicitly sampling and evaluating different cells.

Differentiable Formulation of Search Space We propose to represent the
attention cell search space as a supergraph, where all the possible attention cells
are different subgraphs of this supergraph. The supergraph representation allows
us to parameterize the design of an attention cell with a set of continuous and
differentiable connection weights between the nodes in the supergraph.

To be more specific, we define the supergraph to have m levels, where each
level has n nodes. Each node is an attention operation of a pre-defined type
(map-based or dot-product attention) and a pre-defined attention dimension.
Fig. |2l shows an example supergraph with 2 levels, where each level has 4 nodes.
The input feature map to the entire attention cell is passed to all the nodes at
the first level. Starting from the second level, the input feature map to a node is
a weighted sum of the output feature maps of all the nodes at its previous level:

n

in __ level out
=Y w2 (4)
k=1

where 2 <i<m,1<j<n, f;‘} is the input to the j** node at i*" level, ok
is the output of the k¥ node at (i — 1) level, and wie]"el are the connection
weights between the j* node at i* level and all the nodes at (i — 1)** level. In
practice, wie]"el is a probability distribution obtained by softmax.

For each node in the supergraph, we also learn a probability distribution over
the possible choices of activation functions. The output of a node is a weighted

sum of the attended feature map under different activation functions:

| Al

out __ activation out,pp
= wish fig ()
k=1

where A is the set of available activation functions, ¢y is the k' activation

function in A, w5 y*°" is the weighting factor to be learned for ¢y, and fout e

%]
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is the attended feature map under the activation function ¢. The only difference
among these attended feature maps { f; ;t’d”“} is the activation function ¢ used
in Eq. [[] or Eq. 2] The layers G1, G and G35 are shared by different activation
functions within one node.

The supergraph has a sink node, receiving the output feature maps of all the
nodes. The sink node is defined as follows:

=) Wi G, (6)

1<is<m,1<j<n

where f9U is the output of the sink node, f°u is the output of the j** node at

sink 2%}

ith level, Gi,j is a 1 x 1 x 1 convolutional layer changing the number of channels
in f{f}?t to C, and wfl;‘k is the weighting factor to be learned. We enforce 2% to
have the same shape as the input to the supergraph, so that the supergraph can
be inserted into any position of the backbone network. Same as attention cells,

a residual connection is added between the input and output of the supergraph.

Attention Cell Design Learning Both the network weights, e.g., weights of
convolutional layers in the network, and the connection weights in the super-
graph ({w!evel qsink qactivationly are differentiable. During the search, we insert
supergraphs into the backbone network and jointly optimize the network weights
and connection weights by minimizing the training loss using gradient descent.
The entire search process only consumes a computational cost similar to fully
training one network on the training videos. Once the training is completed, we
can derive the attention cell design from the learned connection weights.

Note that we insert the supergraphs at positions where the final attention
cells will be inserted. In practice, usually multiple supergraphs or attention cells
(e.g., 5) are inserted into the backbone network. If we enforce the inserted su-
pergraphs to share the same set of connection weights, we will obtain one single
attention cell design, dubbed as the position-agnostic attention cell.

One significant advantage of the differentiable method is that we can also
learn separate connection weights for supergraphs inserted at different posi-
tions, which will give position-specific attention cells (see Table . Searching
for separate attention cells for different positions results in an exponentially
larger search space than searching for one single attention cell. But thanks to
the differentiable method, we can learn position-specific attention cells with zero
extra cost compared to learning one position-agnostic attention cell.

Attention Cell Design Derivation We derive the attention cell design from
the learned continuous connection weights. We first choose the top « nodes with
the highest weights in w*"¥ and add them to the set S. Then for each node in
S, we add its top B predecessors in its previous level to .S, based on the corre-
sponding connection weights in w'®¥®'. This process is conducted recursively for
every node in S until we reach the first level. a and  are two hyper-parameters.

Recall that each node is an attention operation of a pre-defined type and
attention dimension. So, S contains a set of selected attention operations. The
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construction process of S also determines how these attention operations are
connected. For all the selected attention operations, we decide its activation
function based on the corresponding weighting factors in wactivation,

5 Experiments

5.1 Experimental Setup

Datasets. We conduct experiments on two benchmark datasets: Kinetics-600 [4]
and Moments in Time (MiT) [I§]. Top-1 and top-5 classification accuracy are
used as the evaluation metric for both datasets.

Backbones. We conduct the attention cell search on two backbones: 13D [5]
and S3D [36]. Both I3D and S3D are constructed based on the Inception [28]
network. When examining the generalization of the found cells, we also consider
the backbone I3D-R50 [32], which is constructed based on ResNet-50 [10].

Baselines. Non-local blocks [32] are the state-of-the-art manually designed
attention cell for video classification and are the most direct competitor of our
automatically searched attention cells. We mainly focus on the relative improve-
ment brought by our attention cells after being inserted into backbones. Besides
non-local blocks, we also compare with other state-of-the-art methods for video
classification, such as TSN [3I], TRN [40], and SlowFast [7].

5.2 Search Results

Table [ shows the search results of GPB and Table Pl summarizes the search
results using the differentiable method. Notably, attention cells found by the
differentiable method can improve the accuracy of both backbones by more than
2% on both datasets, and consistently outperform non-local blocks on all the
combinations of backbones and datasets.

In Table [2} ‘Pos-Agnostic’ refers to that one attention design is learned for
all the positions where the cells are inserted. ‘Pos-Specific’ means that we learn
a separate attention cell design for each position where a cell is inserted, i.e., the
cells inserted at different positions can be different. We observe that position-
specific attention cells consistently outperform position-agnostic attention cells.

5.3 Generalization of Discovered Cells

We examine how well the discovered attention cells can generalize to new set-
tings. We do not perform any search in the following experiments, but directly
apply attention cells searched for one setting to a different setting and see if the
attention cells can improve the classification performance. Concretely, we evalu-
ate whether our discovered attentions can generalize across different modalities,
different backbones, and different datasets.

Modality. We insert the attention cells discovered on RGB frames into the
backbone and train the network on optical flow only. The results are summa-
rized in Table [3] ‘GPB’ refers to cells discovered by GPB and ‘Differentiable’
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Table 1: Search results on Kinetics-600 and MiT using GPB. Our attention cells
improve the classification accuracy for both backbones and on both datasets.

Kinetics MiT
Model Top-1 Top-5 ATop-1 Top-1 Top-5 ATop-1

13D Backbone [5]  75.58 92.93 - 27.38 54.29 -
Non-local [32] 76.87 93.44 1.29 28.54 55.35 1.16
Ours - GPB 77.39 93.63 1.81 28.41 55.49 1.03

S3D Backbone [36] 76.15 93.22 - 27.69 54.68 -
Non-local [32] 77.56 93.68 1.41 29.5256.91 1.83
Ours - GPB 78.28 94.04 2.13 29.23 56.22 1.54

Table 2: Search results on Kinetics-600 and MiT using the differentiable method.
Our attention cells consistently outperform non-local blocks on all the combina-
tions of backbones and datasets. Position-specific attention cells (‘Pos-Specific’)
consistently outperform position-agnostic attention cells (‘Pos-Agnostic’).

Kinetics MiT
Model Top-1 Top-5 ATop-1 Top-1 Top-5 ATop-1
I3D Backbone [5] 75.58 92.93 - 27.38 54.29 -
Non-local [32] 76.87 93.44 1.29 28.54 55.35 1.16

Ours - Pos-Agnostic 77.56 93.63 1.98 28.18 55.01 0.80
Ours - Pos-Specific 77.86 93.75 2.28 29.58 56.62 2.20

S3D Backbone [36] 76.15 93.22 - 27.69 54.68 -
Non-local [32] 77.56 93.68 1.41 29.52 56.91 1.83
Ours - Pos-Agnostic 77.82 93.72 1.67 29.19 55.96 1.50
Ours - Pos-Specific  78.51 93.88 2.36 29.82 57.02 2.13

refers to cells discovered by the differentiable method. Our attention cells sig-
nificantly improve the classification accuracy when being applied on optical flow
and consistently outperform non-local blocks for both backbones and on both
datasets. For example, our attention cells improve the accuracy of 13D by 5.67%
on Kinetics-600. Note that the cells are discovered by maximizing its performance
on RGB frames and no optical flow is involved during search. This demonstrates
that our cells discovered on RGB frames can generalize well to optical flow.
Backbone. Table 4] summarizes the results of inserting cells discovered for
one backbone to another backbone. The second row shows that cells discovered
for S3D can still improve the classification accuracy of I3D by about 2% on both
datasets, even though these cells are never optimized to improve the performance
of I3D. We observe similar improvement when inserting cells found for I3D to
S3D (third row), or cells found for I3D/S3D to I3D-R50 (last row). Notably, our
attention cells can still outperform non-local blocks even after being inserted into
a different backbone. For example, cells found for S3D achieve 77.81% accuracy
on Kinetics-600 after being inserted to I3D, which outperforms non-local blocks
(76.87%) and performs similar to cells specifically discovered for I3D (77.86%).
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Table 3: Generalization across different modalities (RGB to Optical flow).

Kinetics MiT

Model Top-1 Top-5 ATop-1 Top-1 Top-5 ATop-1
13D Backbone [5] 61.14 82.77 - 20.01 42.42 -

Non-local [32] 64.88 85.77 3.74 21.86 46.59 1.85

Ours - GPB 65.81 87.04 4.67 21.83 4545 1.82

Ours - Differentiable 66.81 87.85 5.67  21.94 45.57 1.93
S3D Backbone [36] 62.46 84.59 - 20.50 42.86 -

Non-local [32] 65.79 86.85 3.33 22.13 46.48 1.63

Ours - GPB 67.02 87.72 4.56 22.29 46.16 1.79

Ours - Differentiable 66.29 86.97 3.83 22.52 46.30 2.02

Table 4: Generalization across different backbones.

Kinetics MiT

Model Top-1 Top-5 ATop-1 Top-1 Top-5 ATop-1
13D Backbone [5] 75.58 92.93 - 27.38 54.29 -

S3D - GPB 77.47 93.67 1.89 28.92 56.09 1.54

S3D - Differentiable 77.81 93.74 2.23  29.26 56.61 1.88
S3D Backbone [36] 76.15 93.22 - 27.69 54.68 -

13D - GPB 78.23 94.07 2.08 29.45 56.50 1.76

13D - Differentiable 78.46 94.05 2.31 29.67 57.05 1.98
I3D-R50 Backbone [32] 78.10 93.79 - 30.63 58.15 -

I3D - Differentiable 79.83 94.37 1.73  32.48 60.31 1.85
S3D - Differentiable 79.71 94.28 1.61 31.91 59.87 1.28

Dataset. We insert attention cells discovered on MiT to the corresponding
backbone, fully train the network on Kinetics-600 and report its accuracy on
Kinetics-600 in the middle column (‘MiT to Kinetics’) of Table [5} We observe
that cells discovered on MiT can improve the accuracy on Kinetics-600 by more
than 2%, although they are never optimized to improve the Kinetics-600 perfor-
mance during the search. Similarly, the right column (‘Kinetics to MiT") demon-
strates that the cells searched on Kinetics-600 can also generalize gracefully to
MiT. We conclude that our attention cells generalize well across datasets.

5.4 Comparison with State-of-the-art

We insert our attention cells found on I3D into I3D-R50 (‘I3D-R50+Cell’) and
compare with the state-of-the-art methods in Table[6] On Kinetics-600, we obtain
similar performance with SlowFast-R50 [7] with fewer inference FLOPs. On MiT,
we achieve 32.48% top-1 accuracy and 60.31% top-5 accuracy only using the
RGB frames. This significantly outperforms the previous state-of-the-art method
AssembleNet-50 [23], which uses both RGB frames and optical flow.
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Table 5: Generalization across different datasets.
MiT to Kinetics Kinetics to MiT

Model Top-1 Top-5 ATop-1 Top-1 Top-5 ATop-1
I3D Backbone [5]  75.58 92.93 - 27.38 54.29 -
GPB 77.34 9347 1.76 27.62 56.70 0.24

Differentiable 77.85 93.89 2.27  29.45 56.83 2.07

S3D Backbone [36] 76.15 93.22 - 27.69 54.68 -
GPB 77.54 93.62 1.39 28.80 56.16 1.11
Differentiable 78.19 93.98 2.04 29.33 56.33 1.64

Table 6: Comparison with the state-of-the-art methods. Our method (‘I3D-
R50+Cell’) obtains similar or higher performance with the state-of-the-art meth-
ods on both Kinetics-600 and MiT.

(a) Kinetics-600. (b) MiT.
Model Top-1 Top-5 GFLOPs Model Top-1 Top-5 Modality
13D [5] 75.58 92.93 1136 13D [5] 27.38 54.29 RGB
S3D [36] 76.15 93.22 656 S3D [36] 27.69 54.68 RGB
I3D-R50 [32] 78.10 93.79 938 I3D+NL [32] 28.54 55.35 RGB
D3D [27] 77.90 - S3D+NL [32] 29.52 56.91 RGB

I3D+NL [32]  76.87 93.44 1305  R50-ImageNet [I8] 27.16 51.68 RGB
S3D+NL [32]  77.56 93.68 825  TSN-Spatial [31]  24.11 49.10 RGB
TSN-IRv2 [31] 76.22 - 411 I3D-R50 [32] 30.63 58.15 RGB
StNet-IRv2 [9]  78.99 - 440  I3D-R50+Cell  32.48 60.31 RGB
SlowFast-R50 [7] 79.9 94.5 1971
I3D-R50+4Cell 79.83 94.37 1034

TSN-2stream [3I]  25.32 50.10 R+F
TRN-Multiscale [40] 28.27 53.87 R+F
AssembleNet-50 [23] 31.41 58.33 R+F

6 Conclusions

We propose a novel search space for spatiotemporal attention cells for the appli-
cation of video classification. We also propose a differentiable formulation of the
search space, allowing us to learn position-specific attention cell designs with
zero extra cost compared to learning a single position-agnostic attention cell.
We show the significance of our discovered attention cells on two large-scale
video classifications benchmarks. The discovered attention cells also outperform
non-local blocks and demonstrate strong generalization performance when being
applied to different modalities, backbones, or datasets.

Acknowledgement. We thank Guanhang Wu and Yinxiao Li for insightful
discussions and the larger Google Cloud Video Al team for the support.
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Supplementary Materials

A Attention Cell Search Space Details

A.1 Keys and Values in Dot-product Attention

We introduce an additional design choice in dot-product attention. In Sec 3.1, a
dot-product attention operation is defined as:

[, = ReshapeTo2D( fi,),

in

Wdot—prod = ¢(G1(fi/n)G2(fi/n)T)v (A)
fous = ReshapeTo2D ! (WReshapeTo2D(G3( fin))),

where fi, and fo, are the input and output feature map of the attention oper-
ation respectively, Waot-prod is the attention weight matrix, and G, G2 and G's
are all 1 x 1 x 1 convolutional layers.

Let Q = G1(f!,), K = Ga(f},) and V = ReshapeTo2D(G3(fin)). @, K and
V are termed as query, keys and values in dot-product attention [30]. In Eq
the query, keys and values are computed based on the same feature map, i.e.,
the operation input fi,. It is also common practice in dot-product attention to
compute the keys and values based on feature maps other than f;,. For example,
dot-product attention has been used in Transformer [30] in the following way:
the query comes from the decoder while the keys and values come from the
encoder, so that every position in the decoded sequence can attend to positions
in the input sequence.

In our search space, for a dot-product attention operationin, we also allow
computing its keys and values based on the cell input fy. This allows positions
in the operation input fi, to attend to positions in the cell input fy. When
computing keys and values based on fj, the dot-product attention becomes:

f, = ReshapeTo2D( fy),

Wdot—prod = ¢(G1(fi/n)G2(f6)T)a (B)
fout = ReshapeTo2D ! (IWReshapeTo2D(G5(fo))).

The differences between Eq. [A] and Eq. [B] are highlighted in boldface and red.

In summary, for dot-product attention operations in the attention cell, we
can choose to compute its keys and values based on the operation input fi, or
the cell input fy. We include this choice in the cell level search space, i.e., all the
dot-product attention operations make the same choice, either computing the
keys and values based on their own operation input or the cell input fj.
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A.2 Channel Attention

While our search space mainly focuses on spatiotemporal attention, we include
channel attention as an additional choice in the search space. Concretely, when
building an attention operation, the search algorithm can choose whether to
apply a feature gating layer [36] to the attended feature map fout. The feature
gating layer is a typical channel attention mechanism. It first applies average
pooling to a 4D feature map across space and time, then learns a weighting factor
for each channel, and finally multiplies features at each channel of the original
feature map with the learned weighting factor. Note that channel attention does
not replace the attention operation described above and is only an additional
layer choice within the attention operation.

When using differentiable search, we learn a 2-dim probability distribution
wi?‘-mng for each node, indicating whether to include a feature gating layer [36]
in the attention operation represented by the node.

B Experimental Details

B.1 Training and Inference

We conduct experiments on two benchmark datasets: Kinetics-600 [4] and Mo-
ments in Time (MiT) [I8]. Kinetics-600 contains about 392K training videos
and 30K validation videos from 600 classes. MiT consists of about 800K training
videos and 34K validation videos from 339 classes.

After obtaining the attention cells found by our method, we fully train the
backbone networks and cells on training videos and report their performance on
validation videos. Following non-local blocks [32], we insert 5 cells or non-local
blocks into the backbone. For I3D or S3D, they are inserted 5 inception modules
(4a to 4e, see Table 1 in [28]). For I3D-R50, we insert them after 5 residual
blocks, where 2 cells are inserted after every other residual block in resz and 3
cells are inserted after every other residual block in resy.

During training, we resize the spatial resolution of videos to 256 x 256 and ran-
domly crop 224 x 224 pixels or its horizontal flip from videos, for both Kinetics-
600 [4] and MiT [18]. For I3D or S3D, we randomly crop 64 consecutive frames
from the full-length video as the input clip during training. For I3D-R50, we
randomly crop 16 frames with stride 4 from the full-length video.

During inference, we perform fully-convolutional inference both spatially and
temporally. We resize the spatial resolution to 256 x 256, pass the full-length video
to the network, and predict the class based on the softmax scores. Our inference
procedure does not require the sampling of multiple temporal clips and spatial
crops in previous works [7]. The input clip to I3D or I3D has 250 frames for
Kinetics-600 and has 75 frames for MiT. The input clip to I3D-50 has 64 frames
for Kinetics-600 and has 18 frames for MiT, which is obtained by temporally
downsampling the full-length video with stride 4.

We initialize the backbone in all the models (backbone, backbone + non-
local blocks or our attention cells) with its ImageNet pre-trained weights. I3D
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or S3D based models are trained for 135 epochs, and I3D-R50 based models are
trained for 150 epochs on Kinetics-600. All the models are trained for 45 epochs
on MiT. We adopt a cosine learning rate schedule with a linear warm-up. The
initial learning rate is 0.1 for I3D or S3D and 0.4 for I3D-R50. All the models
are trained on 50 GPUs with synchronized SGD. The momentum is 0.9. The
batch size per GPU is 6 for I3D or S3D and 4 for I3D-R50.

B.2 Attention Cell Implementation

We have three pre-processing steps for the input to the entire attention cell: (1)
channel reduction, (2) spatial resize, and (3) temporal grouping. These steps can
not only reduce the computation consumed by the cell, but also allow the cell
to process feature maps of different temporal and spatial resolutions.

Let (B, T, H,W,C) be the shape of the input to the entire cell. We explicitly
write out the batch size dimension B for better explanation. We first reduce the
number of channels from C' to Crequetion With a 1x1x 1 convolutional layer. After
channel reduction, the shape becomes (B, T, H, W, Cycduction)- Then, we resize
the spatial resolution of the feature map with bilinear interpolation from (H, W)
to (Hresizea Wresize)a so the shape becomes (B7T7 Hiesize, Whesizes C(reduction)~ Fi-
nally, we divide the feature map into multiple groups of Tyoup frames and ob-
tain a feature map of Shape (nBngroupa Hresizea WI‘GSiZe7 Creduction)» where T' =
1 - Tyroup and zero padding frames are added when necessary. The feature map
of shape (nB, Tgroup, Hresizes Whresize;s Creduction) 1S then passed to attention op-
erations in the cell. During the combination procedure, we resize the spatial
resolution back to (H, W) and merge temporal groups back to T frames.

It is not difficult to see that these steps can reduce the computation. We
elaborate on the second advantage. Note that the temporal and spatial resolution
of test videos can vary (e.g., 250 x 256 x 256) and be different from sampled
training clips (e.g., 64 x 224 x 224). This causes the shape of the feature map
output by each layer to be different between training and test. However, temporal
attention requires the spatial resolution of the feature map to be fixed and spatial
attention requires the number of frames to be fixed. To address this issue, we
adopt these pre-processing steps so that the input to attention operations always
has a fixed shape of (Tgroupa Hesizes Wresizes Creduction)~

B.3 Search Algorithm

GPB We sample training videos from the original dataset as the search-train
and search-validation split. No validation videos are used during the search. We
maximize the validation performance using GPB. We set the number of trails
of GPB to 50, i.e., 50 attention cells are sampled by GPB and evaluated on the
search-validation split after trained on the search-train split. Both the search-
train split for Kinetics-600 and MiT contain about 360K videos. We train for
60 epochs for Kinetics-600 and 20 epochs for MiT during the search on their
corresponding search-train split. We set K = 4 and search for an attention cell
consisting of 4 attention operations. We use GPB to find one position-agnostic
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attention cell and insert the same cell architecture at different positions in the
backbone network. To simplify the search space explored by GPB, we restrict
the k' operation to select only one feature from {fy, f1,..., fr_1} as its input.

Differentiable Method When using the differentiable search method, we con-
sider a supergraph consisting of 2 levels. Each level in the supergraph has 6
nodes. We do not include more nodes in one level due to the GPU memory con-
straint. At eacl level, we repeat each attention dimension twice and only include
dot-product attention. So the 6 nodes are 2 temporal dot-product, 2 spatial
dot-product, and 2 spatiotemporal dot-product attention operations. We also
fix that the keys and values of dot-product attention are computed based on the
attention cell input (see Eq. . This is the default supergraph design and we
study other supergraph designs in Sec [C}

The connection weights and the network weights are learned jointly on train-
ing videos. The entire search process of the differentiable method consumes a
computational cost similar to fully training one network on the training videos.
For example, training I3D with the found attention cells on Kinetics-600 takes
about 2.5 days. Searching attention cells for 13D, i.e., training I3D with super-
graphs, takes about 3.5 days on Kinetics-600. The increase in the time is due to
that supergraphs consume more computation than the final attention cells.

When deriving the attention cell design from the learned connection weights,
the hyper-parameters o and (8 are set to a = 3, 8 = 2. Attention cells found by
the differentiable method do not have a fixed number of operations, which are
determined by the determined connection weights and « and 5. Each operation
may receive up to § feature maps and computes a weighted sum of these feature
maps as its input. We slightly revisit the combination procedure for cells found by
the differentiable method. Instead of combining all the operation output feature
maps, we only combine the output of the top a nodes (operations) with the
highest weights in ws"k,

B.4 Comparison of FLOPs

We compare the inference FLOPs of all the models on Kinetics-600 in Table [A]
Note that although our cells contain multiple operations, the aforementioned pre-
processing applied on the cell input can effectively reduce the FLOPs consumed
by attention operations. As shown in Table[A] our cells only add a small amount
of computation to the backbone network and use fewer FLOPs than non-local
blocks. The FLOPs are computed when the input clip has 250 frames with spatial
resolution 256 x 256.

C Ablation Study of Supergraph Designs

In the differentiable method, we represent the attention cell search space as a
supergraph. Using different supergraph designs allows us to analyze what des-
gin choice is important for the performance of the discovered attention cells.
Specifically, we compare the following three supergraph designs:
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Table A: Inference FLOPs on Kinetics-600.

Model Top-1 Top-5 GFLOPs
13D [5] 75.58 92.93 1136
I3D+NL [32] 76.87 93.44 1305
I3D+-Cell 77.86 93.75 1170
S3D [36] 76.15 93.22 656
S3D+NL [32) 77.56 93.68 825
S3D+Cell 78.51 93.88 692
I3D-R50 [32] 78.10 93.79 938

I3D-R50+Cell 79.83 94.37 1034

Table B: Comparison between different supergraph designs.
Model Top-1 Top-5

13D [5] 75.58 92.93
I3D+NL [32]  76.87 93.44
I13D+SG-1 Cell 77.86 93.75
13D+SG-2 Cell 77.82 93.75
I3D+SG-3 Cell 77.71 93.87

SG-1. SG-1 is our default choice described Sec [B:3] It contains 2 levels,
where each level has 6 nodes. SG-1 only contains dot-product attention and the
6 nodes at each level are 2 temporal dot-product, 2 spatial dot-product, and 2
spatiotemporal dot-product attention operations. In SG-1, the keys and values
of dot-product attention are computed based on the cell input (see Eq. .

SG-2. Same SG-1, SG-2 also contains 2 levels and each level has 6 nodes.
SG-2 include both map-based attention and dot-product attention. The 6 nodes
at each level are 1 temporal dot-product, 1 spatial dot-product, 1 spatiotemporal
dot-product, 1 temporal map-based, 1 spatial map-based, and 1 spatiotemporal
map-based attention operation. In SG-2, the keys and values of dot-product
attention are also computed based on the cell input (see Eq. .

SG-3. SG-3 is the same as SG-1 except that the keys and values of dot-
product attention are computed based on the input to each attention operation
(see Eq. , instead of the cell input.

Comparing SG-1 and SG-2 tells us which attention type (map-based or dot-
product) is more important. As shown in Table SG-1 and SG-2 achieve a very
close top-1 accuracy and the same top-5 accuracy on Kinetics-600. However,
we observe that most operations (20 of out 28) in the 5 position-specific cells
discovered from SG-2 are dot-product attention. This shows that dot-product
attention is more important than map-based attention, and explains why SG-1
can achieve high accuracy with only dot-product attention.
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SG-3 achieves similar performance with SG-1 and also outperforms non-local
blocks. This shows that our search space is not sensitive to whether to compute
the keys and values based on the input to each dot-product operation or based
on the cell input.

D Attention Cell Visualization

Map-based
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Fig. A: Visualization of the position-agnostic cell discovered by GPB and the
differentiable method for I3D and on Kinetics-600. ‘Spa-Temp’ stands for the
spatiotemporal attention dimension.
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Fig. B: Visualization of the position-specific cells discovered by the differentiable
method for I3D and on Kinetics-600. ‘Spa-Temp’ stands for the spatiotemporal
attention dimension. The text under each cell indicates the inception module
after which the cell is inserted (4a to 4e, see Table 1 in [28]) in the Inception
network. The learned attention cell for 4a and 4d are the same.

We visualize the position-agnostic attention cell found by GPB and the differ-
entiable method in Fig. [A] The position-specific cells found by the differentiable
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method are shown in Fig. [B] These cells are found for I3D and on Kinetics-600.
We show the attention dimension and type of each operation, as well as the
connectivity between the operations.

The cell found by GPB contains both map-based attention and dot-product
attention and contains one path that first applies spatial attention and then
temporal attention. Cells found by the differentiable method only contain dot-
product attention as we only include dot-product attention in the supergraph
(SG-1). We observe that all the cells found by the differentiable method pre-
fer decomposing spatiotemporal attention into temporal and spatial attention,
as they all contain paths that first apply temporal attention and then spatial
attention. This shares a similar spirit to S3D [36] that decomposes a 3D convo-
lution into a 2D spatial convolution and a 1D temporal convolution. As a side
note, our cells choose to first apply temporal and then spatial attention, while
S3D first applies spatial convolution and then temporal convolution.
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