Skip to main content

Deep Near-Light Photometric Stereo for Spatially Varying Reflectances

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

This paper presents a near-light photometric stereo method for spatially varying reflectances. Recent studies in photometric stereo proposed learning-based approaches to handle diverse real-world reflectances and achieve high accuracy compared to conventional methods. However, they assume distant (i.e., parallel) lights, which can in practical settings only be approximately realized, and they fail in near-light conditions. Near-light photometric stereo methods address near-light conditions but previous works are limited to over-simplified reflectances, such as Lambertian reflectance. The proposed method takes a hybrid approach of distant- and near-light models, where the surface normal of a small area (corresponding to a pixel) is computed locally with a distant light assumption, and the reconstruction error is assessed based on a near-light image formation model. This paper is the first work to solve unknown, spatially varying, diverse reflectances in near-light photometric stereo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\max (0, x)\) is differentiable everywhere except at \(x=0\), which is in practice not a problem with numerical differentiation as in many other works.

  2. 2.

    PyTorch v1.1.0: http://pytorch.org.

  3. 3.

    Mitsuba v0.5.0: http://mitsuba-renderer.org.

References

  1. Ackermann, J., Fuhrmann, S., Goesele, M.: Geometric point light source calibration. In: Vision, Modeling, and Visualization, pp. 161–168 (2013)

    Google Scholar 

  2. Ahmad, J., Sun, J., Smith, L., Smith, M.: An improved photometric stereo through distance estimation and light vector optimization from diffused maxima region. Pattern Recogn. Lett. 50, 15–22 (2014)

    Article  Google Scholar 

  3. Blinn, J.F.: Models of light reflection for computer synthesized pictures. In: SIGGRAPH (1977)

    Google Scholar 

  4. Bony, A., Bringier, B., Khoudeir, M.: Tridimensional reconstruction by photometric stereo with near spot light sources. In: European Signal Processing Conference (2013)

    Google Scholar 

  5. Burley, B.: Physically-based shading at Disney. In: SIGGRAPH 2012 Course Notes (2012)

    Google Scholar 

  6. Chen, G., Han, K., Wong, K.Y.K.: PS-FCN: a flexible learning framework for photometric stereo. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  7. Chen, L., Zheng, Y., Shi, B., Subpa-Asa, A., Sato, I.: A microfacet-based reflectance model for photometric stereo with highly specular surfaces. In: International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  8. Collins, T., Bartoli, A.: 3D reconstruction in laparoscopy with close-range photometric stereo. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 634–642. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33418-4_78

    Chapter  Google Scholar 

  9. Georghiades, A.S.: Incorporating the Torrance and Sparrow model of reflectance in uncalibrated photometric stereo. In: International Conference on Computer Vision (ICCV) (2003)

    Google Scholar 

  10. Huang, X., Walton, M., Bearman, G., Cossairt, O.: Near light correction for image relighting and 3D shape recovery. In: 2015 Digital Heritage (2015)

    Google Scholar 

  11. Ikehata, S.: CNN-PS: CNN-based photometric stereo for general non-convex surfaces. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  12. Iwahori, Y., Sugie, H., Ishii, N.: Reconstructing shape from shading images under point light source illumination. In: International Conference on Pattern Recognition (ICPR) (1990)

    Google Scholar 

  13. Johnson, M.K., Adelson, E.H.: Shape estimation in natural illumination. In: Computer Vision and Pattern Recognition (CVPR) (2011)

    Google Scholar 

  14. Kingma, D., Ba, J.: Adam: a method for stochastic optimization (2014)

    Google Scholar 

  15. Ma, L., Liu, J., Pei, X., Hu, Y., Sun, F.: Calibration of position and orientation for point light source synchronously with single image in photometric stereo. Opt. Express 27(4), 4024–4033 (2019)

    Article  Google Scholar 

  16. Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. Trans. Graph. (TOG) 22(3), 759–769 (2003)

    Article  Google Scholar 

  17. Mecca, R., Quéau, Y.: Unifying diffuse and specular reflections for the photometric stereo problem. In: Winter Conference on Applications of Computer Vision (WACV) (2016)

    Google Scholar 

  18. Mecca, R., Rodolà, E., Cremers, D.: Realistic photometric stereo using partial differential irradiance equation ratios. Comput. Graph. 51, 8–16 (2015)

    Article  Google Scholar 

  19. Mecca, R., Wetzler, A., Bruckstein, A.M., Kimmel, R.: Near field photometric stereo with point light sources. SIAM J. Imaging Sci. 7(4), 2732–2770 (2014)

    Article  MathSciNet  Google Scholar 

  20. Nie, Y., Song, Z.: A novel photometric stereo method with nonisotropic point light sources. In: International Conference on Pattern Recognition (ICPR), pp. 1737–1742. IEEE (2016)

    Google Scholar 

  21. Park, J., Sinha, S.N., Matsushita, Y., Tai, Y., Kweon, I.: Calibrating a non-isotropic near point light source using a plane. In: Computer Vision and Pattern Recognition (CVPR), pp. 2267–2274 (2014)

    Google Scholar 

  22. Quéau, Y., Durix, B., Wu, T., Cremers, D., Lauze, F., Durou, J.D.: LED-based photometric stereo: modeling, calibration and numerical solution. J. Math. Imaging Vis. 60(3), 313–340 (2018). https://doi.org/10.1007/s10851-017-0761-1

    Article  MathSciNet  MATH  Google Scholar 

  23. Quéau, Y., Durou, J.D., Aujol, J.F.: Variational methods for normal integration. J. Math. Imaging Vis. 60(4), 609–632 (2018). https://doi.org/10.1007/s10851-017-0777-6

    Article  MathSciNet  MATH  Google Scholar 

  24. Quéau, Y., Wu, T., Lauze, F., Durou, J.D., Cremers, D.: A non-convex variational approach to photometric stereo under inaccurate lighting. In: Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  25. Rodolà, E., Albarelli, A., Bergamasco, F., Torsello, A.: A scale independent selection process for 3D object recognition in cluttered scenes. Int. J. Comput. Vis. (IJCV) 102(1–3), 129–145 (2013). https://doi.org/10.1007/s11263-012-0568-x

    Article  MathSciNet  Google Scholar 

  26. Santo, H., Samejima, M., Sugano, Y., Shi, B., Matsushita, Y.: Deep photometric stereo network. In: ICCV Workshop on Physics Based Vision meets Deep Learning (PBDL) (2017)

    Google Scholar 

  27. Santo, H., Waechter, M., Lin, W.Y., Sugano, Y., Matsushita, Y.: Light structure from pin motion: geometric point light source calibration. Int. J. Comput. Vis. (IJCV) 128(7), 1889–1912 (2020). https://doi.org/10.1007/s11263-020-01312-3

    Article  MathSciNet  Google Scholar 

  28. Shi, B., Mo, Z., Wu, Z., Duan, D., Yeung, S.K., Tan, P.: A benchmark dataset and evaluation for non-Lambertian and uncalibrated photometric stereo. Trans. Pattern Anal. Machi. Intell. (PAMI) 41(2), 271–284 (2019)

    Article  Google Scholar 

  29. Shi, B., Tan, P., Matsushita, Y., Ikeuchi, K.: Bi-polynomial modeling of low-frequency reflectances. Trans. Pattern Anal. Machi. Intell. (PAMI) 36(6), 1078–1091 (2014)

    Article  Google Scholar 

  30. Silver, W.M.: Determining shape and reflectance using multiple images. Master’s Thesis, Massachusetts Institute of Technology (1980)

    Google Scholar 

  31. Taniai, T., Maehara, T.: Neural inverse rendering for general reflectance photometric stereo. In: International Conference on Machine Learning (ICML) (2018)

    Google Scholar 

  32. Torrance, K.E., Sparrow, E.M.: Theory for off-specular reflection from roughened surfaces. JOSA 57(9), 1105–1114 (1967)

    Article  Google Scholar 

  33. Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: SIGGRAPH. ACM (1994)

    Google Scholar 

  34. Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 139–144 (1980)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP19H01123. Hiroaki Santo and Michael Waechter are grateful for support through a JSPS Research Fellowship for Young Scientists (JP19J10326) and JSPS Postdoctoral Fellowship (JP17F17350), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Santo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 17708 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santo, H., Waechter, M., Matsushita, Y. (2020). Deep Near-Light Photometric Stereo for Spatially Varying Reflectances. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12353. Springer, Cham. https://doi.org/10.1007/978-3-030-58598-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58598-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58597-6

  • Online ISBN: 978-3-030-58598-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics