
A Generic Graph-based Neural Architecture
Encoding Scheme for Predictor-based NAS

Xuefei Ning1, Yin Zheng2, Tianchen Zhao3, Yu Wang1, and Huazhong Yang1

1 Department of Electronic Engineering, Tsinghua University
2 Weixin Group, Tencent

3 Department of Electronic Engineering, Beihang University
foxdoraame@gmail.com, yu-wang@tsinghua.edu.cn

Abstract. This work proposes a novel Graph-based neural ArchiTec-
ture Encoding Scheme, a.k.a. GATES, to improve the predictor-based
neural architecture search. Specifically, different from existing graph-
based schemes, GATES models the operations as the transformation of
the propagating information, which mimics the actual data processing
of neural architecture. GATES is a more reasonable modeling of the
neural architectures, and can encode architectures from both the “oper-
ation on node” and “operation on edge” cell search spaces consistently.
Experimental results on various search spaces confirm GATES’s effec-
tiveness in improving the performance predictor. Furthermore, equipped
with the improved performance predictor, the sample efficiency of the
predictor-based neural architecture search (NAS) flow is boosted. Codes
are available at https://github.com/walkerning/aw_nas.

Keywords: Neural architecture search (NAS), Predictor-based NAS

1 Introduction

Recently, Neural Architecture Search (NAS) has received extensive attention
due to its capability to discover neural network architectures in an automated
manner. Substantial studies have shown that the automatically discovered ar-
chitectures by NAS are able to achieve highly competitive performance.

Generally speaking, there are two key components in a NAS framework, the
architecture searching module and the architecture evaluation module. Specifi-
cally, the architecture evaluation module provides the signals of the architecture
performance, e.g., accuracy, latency, etc., which are then used by the architec-
ture searching module to explore architectures in the search space. In the seminal
work of [30], the architecture evaluation is conducted by training every candi-
date architecture until convergence, and thousands of architectures need to be
evaluated during the architecture search process. As a result, the computational
burden of the whole NAS process is extremely large. There are two directions to
address this issue, which focus on improving the searching and evaluation mod-
ule, respectively. 1) Evaluation: accelerating the evaluation of each individual
architecture, and in the meanwhile, keep the evaluation meaningful in the sense

ar
X

iv
:2

00
4.

01
89

9v
3

 [
cs

.L
G

]
 1

 S
ep

 2
02

0

https://github.com/walkerning/aw_nas

2 X. Ning et al.

of ranking correlation; 2) Searching: increasing the sample efficiency so that fewer
architectures are needed to be evaluated for discovering a good architecture.

To improve the sample efficiency of the architecture searching module, a
promising idea is to learn an approximated performance predictor, and then
utilize the predictor to sample architectures that are more worth evaluating. We
refer to these NAS methods [10,15,24] as the predictor-based NAS methods, and
their general flow will be introduced in Sec. 3.1. The generalization ability of the
predictor is crucial to the sample efficiency of predictor-based NAS flows. Our
work follows the line of research of predictor-based NAS, and focus on improving
the performance predictor of neural architectures.

A performance predictor predicts the performance of architectures based
on the encoding of them. Existing neural architecture encoding schemes in-
clude the sequence-based scheme and the graph-based scheme. The sequence-
based schemes [15,10,24] rely on specific serialization of the architecture. They
model the topological information only implicitly, which deteriorates the rep-
resentational power and interpretability of the predictor. Existing graph-based
schemes [5,22] usually apply graph convolutional networks (GCN) [8] to encode
the neural architectures. For the “operation on node” (OON) search spaces, in
which the operations (e.g., Conv3x3) are on the nodes of the directed acyclic
graph (DAG), GCN can be directly applied to encode architectures. Neverthe-
less, since a neural architecture is a “data processing” graph, where the opera-
tions behave as the data processing functions (e.g., Conv3x3, MaxPool), existing
methods’ modeling of operations as the node attributes in OON search spaces
is not suitable. Instead of modeling the operations as node attributes, a more
natural solution is to treat them as the transforms of the node attributes (i.e.,
mimic the processing of the information). On the other hand, for the “opera-
tion on edge” (OOE) search spaces,4 the handling of edge information in the
existing graph-based scheme [5] is even more unsatisfying regarding its poor
generalizability and flawed handling of architecture isomorphism.

In this work, we propose a general encoding scheme: Graph-based neural Ar-
chiTecture Encoding Scheme (GATES), which is suitable for the representation
learning of data processing graphs such as neural architectures. Specifically, to
encode a neural architecture, GATES models the information flow of the actual
data processing of the architecture. First, GATES models the input informa-
tion as the attributes of the input nodes. And the input information will be
propagated along the architecture DAG. The data processing of the operations
(e.g., Conv3x3, MaxPool) are modeled by GATES as different transforms of the
information. Finally, the output information is used as the embedding of the cell
architecture. Since the encoding process of GATES mimics the actual compu-
tation flow of the architectures, GATES intrinsically maps isomorphic architec-
tures to the same representation. Moreover, GATES can encode architectures
from both the OON and OOE cell search spaces in a consistent way. Due to the
superior representational ability of GATES, the generalization ability of the ar-
chitecture performance predictor using GATES is significantly better than other

4 Figure 2 illustrates the OON and OOE search spaces.

GATES 3

encoders. Experimental results confirm that GATES is effective in improving
the architecture performance predictors. Furthermore, by utilizing the improved
performance predictor, the sample efficiency of the NAS process is improved.

2 Related Work

2.1 Architecture Evaluation Module

One commonly used technique to accelerate architecture evaluation is parameter
sharing [17], where a super-net is constructed such that all architectures in the
search space share a superset of weights and the training costs of architectures are
amortized to an “one-shot” super-net training. Parameter sharing dramatically
reduces the computational burden and is widely used by recent methods. How-
ever, recent studies [19,14] find that the ranking of architecture candidates with
parameter sharing does not reflect their true rankings well, which dramatically
affects the effectiveness of the NAS algorithm. Moreover, the parameter sharing
technique is not generally applicable, since it is difficult to construct the super-
net for some search spaces, for example, in NAS-Bench-101 [28], one operation
can have different output dimensions in different candidate architectures. Due to
these limitations, this work does not use the parameter sharing technique, and
focus on improving the sample efficiency of the architecture searching module.

2.2 Architecture Searching Module

To improve the sample efficiency of the architecture search module, a variety
of search strategies have been used, e.g., RL-based methods [30,17,4], Evolu-
tionary methods [11,18], gradient-based method [12,9], Monte Carlo Tree Search
(MCTS) method [16], etc.

A promising direction to improve the sample efficiency of NAS is to utilize a
performance predictor to sample new architectures, a.k.a. predictor-based NAS.
An early study [10] trains a surrogate model (predictor) to identify promising
architectures with increasing complexity. NASBot [6] design a distance metric
in the architecture space and exploits gaussian process to get the posterior of
the architecture performances. Then, it samples new architectures based on the
acquisition function calculated using the posterior. NAO [15] trains an LSTM-
based autoencoder together with a performance predictor based on the latent
representation. After updating the latent representation following the predictor’s
gradients, NAO decodes the latent representation to sample new architectures.

2.3 Neural Architecture Encoders

Existing neural architecture encoding schemes include the sequence-based and
the graph-based schemes. In the sequence based scheme, the neural architecture
is flattened into a string encoding the architecture decisions, then encoded using
either an LSTM [15,10,24] or a Multi-Layer Perceptron (MLP) [10,24]. In these

4 X. Ning et al.

methods, the topological information could only be modeled implicitly, which
deteriorates the encoder’s representational ability. Also, the search efficiency
would deteriorate since these encoders could not guarantee to map isomorphic
architectures [28,23] to the same representation, and data augmentation and
regularization tricks are utilized to alleviate this issue [15].

Recently, the graph-based encoding scheme that utilizes the topological infor-
mation explicitly has been used to get better performance. In these graph-based
schemes, graph convolutional networks (GCN) [8] are usually used to embed
the graphs to fixed-length vector representations. For the “operation on node”
search spaces, in which the operations (e.g., Conv3x3) are on the nodes of the
DAG, GCN can be directly applied [22] to encode architectures, i.e., using adja-
cency matrix and operation embedding of each node as the input. However, for
the “operation on edge” search spaces, in which the operations are on the edges,
GCN cannot be applied directly. A recent study [5] proposes an ad-hoc solution
for the ENAS search space. They represent each node by the concatenation of
the operation embeddings on the input edges. This solution is contrived and can-
not generalized to search spaces where nodes could have different input degrees.
Moreover, since the concatenation is not commutative, this encoding scheme
could not handle isomorphic architectures correctly. In brief, existing graph-
based encoding schemes are specific to different search spaces, and a generic
approach for encoding the neural architectures is desirable in the literature.

3 Method

3.1 Predictor-Based Neural Architecture Search

The principle of predictor-based NAS is to increase the sample efficiency of the
NAS process, by utilizing an approximated performance predictor to sample
architectures that are more worth evaluating. Generally speaking, the flow of
predictor-based NAS could be summarized as in Alg. 1 and Fig. 1.

In line 6 of Alg. 1, the architecture candidates are sampled based on the
approximated evaluation of the predictor. Utilizing a more accurate predictor,
we could choose better architectures for further evaluation. The better the gen-
eralization ability of the predictor is, the fewer architectures are needed to be
exactly evaluated to get a highly accurate predictor. Therefore, the generaliza-
tion ability of the predictor is crucial for the efficiency and effectiveness of the
NAS method.

The model design (i.e., how to encode the neural architectures) of the pre-
dictor is crucial to its generalization ability. We’ll introduce our main effort to
improve the predictor from the “model design” aspect in the following section.

3.2 GATES: A Generic Neural Architecture Encoder

A performance predictor P is a model that takes a neural architecture a as in-
put, and outputs a predicted score ŝ. Usually, the performance predictor is con-
structed by an encoder followed by an MLP, as shown in Eq. 1. The encoder Enc

GATES 5

Algorithm 1 The flow of predictor-based neural architecture search

1: A: Architecture search space
2: P : A → R: Performance predictor that outputs the predicted performance given

the architecture
3: N (k): Number of architectures to sample in the k-th iteration

4: k = 1
5: while k ≤ MAX ITER do
6: Sample a subset of architectures S(k) = {a(k)j }j=1,··· ,N(k) from A, utilizing P

7: Evaluate architectures in S(k), get S̃(k) = {(a(k)j , y
(k)
j)}j=1,··· ,N(k) (y is the per-

formance)
8: Optimizing P using the ground-truth architecture evaluation data S̃ = ∪k

i=1S̃
(i)

9: end while
10: Output aj∗ ∈ ∪k

i=1S
(i) with best corresponding yj∗ ; Or, a∗ = argmaxa∈AP(a)

maps a neural architecture into a continuous embedding space, and its design is
vital to the generalization ability of the performance predictor. Existing encoders
include the sequence-based ones (e.g., MLP, LSTM) and the graph-based ones
(e.g., GCN). We design a new graph-based neural architecture encoder GATES
that is more suitable for modeling neural architectures.

ŝ = P(a) = MLP(Enc(a)) (1)

To encode a cell architecture into an embedding vector, GATES follows the
ideology of modeling the information flow in the architecture, and uses the output
information as the embedding of the architecture. The notations are summarized
in Table 1.

Specifically, we models the input information as the embedding of the input
nodes E ∈ Rni×hi , where ni is the number of input nodes, and hi is the embed-
ding size of the information. The information (embedding of the input nodes) is
then “processed” by the operations and “propagates” along the DAG.

Table 1. Notations of GATES. E, EMB, Wo and Wx are all trainable parameters

ni
number of input nodes: 1, 1, 2 for NAS-Bench-101, NAS-
Bench-201 and ENAS, respectively

No number of operation primitives
ho embedding size of operation
hi embedding size of information

E ∈ Rni×hi the embedding of the information at the input nodes

EMB ∈ RNo×ho the operation embeddings

Wo ∈ Rho×hi the transformation matrix on the operation embedding

Wx ∈ Rhi×hi the transformation matrix on the information

6 X. Ning et al.

Searcher

Inner Searcher

Predictor

Search Space

Ground-truth
Performance

Architecture Evaluator

Retrain the Predictor

Cell Architecture

Conv
1x1

Conv
3x3

Max
Pool

GATES

OutIn

Conv
1x1

Conv
3x3

Max
Pool

Input
Information

Information Propagation

Output

Input

Architecture
Embedding

MSE Loss

Predicted
Score

True
Perf.

Predictor-based Neural Architecture Search Flow

(Computational Expensive)

⨀

⨀

⨀

Ranking Loss

Score
Pair

> ?

> ?
True Perf.

Pair

s1 𝑠2

𝑦1 𝑦2

s y

Information

Attention MasksInput

Information Flow

Inner Search Outer Search

Input

Fig. 1. The overview of the proposed algorithm. Upper: The general flow of the
predictor-based NAS. Lower: Illustration of the encoding processes of GATES of an
OON cell architecture

The encoding process of GATES goes as follows: Upon each unary operation
o (e.g., Conv3x3, MaxPool, etc.), the input information xin of this operation is
processed by a linear transform Wx and then elementwise multiplied with a soft
attention mask m = σ(EMB(o)Wo) ∈ R1×hi .

xout = m� xinWx (2)

where � denotes the elementwise multiplication. And the mask m is calculated
from the operation embedding EMB(o) = onehot(o)T EMB ∈ R1×ho .

Multiple pieces of information are aggregated at each node using summation.
Finally, after obtaining the virtual information at all the nodes, the information
at the output node is used as the embedding of the entire cell architecture. For
search spaces with multiple cells (e.g., normal and reduce cells in ENAS), GATES
encodes each cell independently, and concatenate the embeddings of cells as the
embedding of the architecture.

Fig. 2 illustrates two examples of the encoding process in the OON and OOE
search spaces. As can be seen, the encoding process of GATES mimics the ac-
tual feature map computation. For example, in the example of the OON search
space, the actual feature map computation at node 2 is F2 = Conv3x3(F0 +F1),

GATES 7

Feature	map	computation:
• 𝐹!: Input	feature	map
• 𝐹" = Conv1x1(𝐹!)
• 𝐹# = MaxPool	(𝐹!) +

AvgPool	(𝐹")
• 𝐹$ = Conv1x1(𝐹")	+	

Conv3x3(𝐹#)
• 𝐹% = Aggregate(𝐹", 𝐹#, 𝐹$)

Operation on Edge

1 2

3

4

0

𝑵𝟎 = 𝑬

σ EMB CONV1x1 𝑊! ⨀𝑁!𝑊"

Conv1x1 𝑵𝟏

Conv3x3 𝑵𝟐
σ(EMB CONV3x3 𝑊!)	⨀(𝑁#+𝑁$)𝑊"

MaxPool 𝑵𝟑
σ(EMB(MaxPool)𝑊!)	⨀(𝑁$+𝑁%)𝑊"

Operation on Node

N! N!

N"

N" N#

N"

N$

Output 𝑵𝟒
Sum(𝑁", 𝑁$)

	𝑵𝟏	
σ(EMB CONV1x1 𝑊!)	⨀𝑁#𝑊"

𝑵𝟑
σ(EMB CONV1x1 𝑊!)	⨀𝑁$𝑊"+
σ(EMB CONV3x3 𝑊!)	⨀𝑁%𝑊"

Feature	map	computation:
• 𝐹!: Input	feature	map
• 𝐹" = Conv1x1(𝐹!)
• 𝐹# = Conv3x3(𝐹! + 𝐹")
• 𝐹$ = MaxPool(𝐹" + 𝐹#)
• 𝐹% = Aggregate(𝐹", 𝐹$)

1 2

3

4

0

Conv
1x1

MaxPoolConv
1x1

AvgPool

𝑵𝟎 = 𝑬

Conv
3x3

Output 𝑵𝟒
Sum(𝑁", 𝑁#, 𝑁$)

𝑵𝟐
σ(EMB MaxPool 𝑊!)	⨀𝑁#𝑊"+
σ(EMB AvgPool 𝑊!)	⨀𝑁$𝑊"

GATES	encoding	process	(4	steps):
• 𝑁!: Input	information	E
• 𝑁" = σ(EMB CONV1x1 𝑊&)	⨀𝑁!𝑊'
• 𝑁# = σ(EMB CONV3x3 𝑊&)	⨀(𝑁!+𝑁")𝑊'
• 𝑁$ = σ(EMB(MaxPool)𝑊&)	⨀(𝑁"+𝑁#)𝑊'
• 𝑁% = Sum(𝑁", 𝑁$)

GATES	encoding	process	(4	steps):
• 𝑁!: Input	information	E
• 𝑁" = σ(EMB CONV1x1 𝑊&)	⨀𝑁!𝑊'
• 𝑁# = σ(EMB MaxPool 𝑊&)	⨀𝑁!𝑊'

+ σ EMB AvgPool 𝑊& ⨀𝑁"𝑊'
• 𝑁$ = σ(EMB CONV1x1 𝑊&)	⨀𝑁"𝑊'

+ σ EMB CONV3x3 𝑊& ⨀𝑁#𝑊'
• 𝑁% = Aggregate(𝑁", 𝑁#, 𝑁$)

Fig. 2. Feature map (Fi) computation and GATES encoding process (Ni). Left: The
“operation on node” cell search space, where operations (e.g., Conv3x3) are on the nodes
of the DAG (e.g., NAS-Bench-101 [28], randomly wired search space [26]). Right: The
“operation on edge” cell search space, where operations are on the edges of the DAG.
(e.g., NAS-Bench-201 [3], ENAS [17])

where Fi is the feature map at node i. To model the information processing of
this feature map computation, GATES calculates the information (node embed-
ding) at node 2 by N2 = σ(EMB(Conv3x3)Wo) � (N0 + N1)Wx, where σ(·) is
the sigmoid function, and Wo ∈ Rho×hi is a transformation matrix that trans-
forms the ho-dim operation embedding into a hi-dim feature. That is to say,
the summation of feature maps F0 + F1 corresponds to the summation of the
virtual information N0 + N1, and the data processing function o(·) (Conv3x3)
corresponds to a transform f(·) that processes the information x = N0 +N1 by
fo(x) = σ(EMB(o)Wo)� xWx.

Intuitively, to model a cell architecture, GATES models the operations in the
architecture as the “soft gates” that control the flow of the virtual information,
and the output information is used as the embedding of the cell architecture.
The key difference between GATES and GCN is: In GATES, the operations
(e.g., Conv3x3) are modeled as the processing of the node attributes (i.e., virtual
information), whereas GCN models them as the node attributes themselves.

The representational power of GATES for neural architectures comes from
two aspects: 1) The more reasonable modeling of the operations in data-processing
DAGs. 2) The intrinsic proper handling of DAG isomorphism. The discussion
and experiments on how GATES handles the isomorphism are in the “Discussion
on Isomorphism” section in the appendix.

In practice, to calculate the information propagation following the topological
order of different graphs in a batched manner, we use a stack of GATES layers.

8 X. Ning et al.

In the forward process of each layer, one step of information propagation is taken
place at every node. That is to say, if a graph is input to a GATES encoder with
N layers, the information is propagated and aggregated for N steps along the
graph. The batched formulas and specific implementations of a GATES layer for
OON and OOE search spaces are elaborated in the “Implementation of GATES”
section in the appendix.

The Optimization of GATES The most common practice [10,15] to train
the architecture performance predictors is to minimize the Mean Squared Error
(MSE) between the predictor outputs and the true performances.

L({aj , yj}j=1,··· ,N) =

N∑
j=1

(P(aj)− yj)2 (3)

where aj denotes one architecture, and yj denotes the true performance of aj .
In NAS applications, what is really required to guide the search of architec-

tures is the relative ranking order of architectures rather than the absolute per-
formance values. In this paper, we adopt Kendall’s Tau ranking correlation [20]
as the measure as the direct criterion for evaluating architecture predictors. And
since ranking losses are better surrogate losses [2,13,27] for the ranking corre-
lation than the regression loss, in addition to the MSE loss, we use a hinge
pair-wise ranking loss with margin m=0.1 to train the predictors.5

L({aj , yj}j=1,··· ,N) =

N∑
j=1

∑
i,yi>yj

max[0,m− (P(ai)− P(aj))] (4)

3.3 Neural Architecture Search Utilizing the Predictor

We follow the flow in Alg. 1 to conduct the architecture search. There are mul-
tiple ways of utilizing the predictor P to sample architectures (line 6 in Alg. 1),
i.e., the choice of the inner search method. In this work, we use two inner search
methods for sampling architecture for further evaluation:6

– Random sample n architectures from the search space, then choose the best
k among them according to the evaluation of the predictor.

– Search with Evolutionary Algorithm (EA) for n steps, and then choose the
best k with the highest predicted scores among the seen architectures.

Compared with the evaluation (line 7 in Alg. 1) in the outer search process,
the evaluation of each architecture in the inner search process is very efficient
with only a forward pass of the predictor. The sample ratio r = n

k indicates the

5 A more comprehensive comparison of the MSE regression loss and multiple ranking
losses is shown in the appendix.

6 Note that this inner search component could be easily substituted with other search
strategies.

GATES 9

equivalent number of the architectures need to be evaluated by the predictor
to make one sample decision. And it is not the case that bigger r leads to
better sample efficiency of the overall NAS process. If n is too large (the limiting
case is to exhaustive test the whole search space with n = |A|), the sampling
process would overfit onto exploiting the current performance predictor and fails
to explore. Therefore, there is a trade-off between exploration and exploitation
controlled by n, which we verify in Sec. 4.3.

4 Experiments

The experiments in Sec. 4.1 and Sec. 4.2 verify the effectiveness of the GATES
encoder on both the OON and OOE search spaces. Then, in Sec. 4.3, we demon-
strate that by utilizing GATES, the sample efficiency of the NAS process sur-
passes other searching strategies, including the predictor-based methods with
other baseline encoders. Finally, in Sec. 4.4, we apply the proposed algorithm to
the ENAS search space.

4.1 Predictor Evaluation on NAS-Bench-101

Setup NAS-Bench-101 [28] provides the performances of the 423k unique archi-
tectures in a search space. The NAS-Bench-101 search space is an OON search
space, in which sequence based encoding schemes [24], and graph based encoding
schemes [22] are proposed for encoding architectures. We use the Kendall’s Tau
ranking correlation [20] as the measure for evaluating the architecture perfor-
mance predictors. The first 90% (381262) architectures are used as the training
data, and the other 42362 architectures are used for testing.7

We conduct a more comprehensive comparison of the MSE loss and multiple
ranking losses on NAS-Bench-101, and the results are shown in the appendix.
We find that compared to the MSE loss, ranking losses bring consistent improve-
ments, and hinge pair wise loss is a good choice. Therefore, in our experiments,
unless otherwise stated, the hinge pairwise loss with margin 0.1 is used to train
all the predictors.

Results Table 2 shows the comparison of the GATES encoder and various
baseline encoders trained using different proportions of the training data. As can
be seen, GATES could achieve higher Kendall’s Taus on the testing architectures
than the baseline encoders consistently with different training proportions. The
advantages are especially significant when there are few training architectures.
For example, when only 190 (0.05%) architectures are seen by the performance
predictor, utilizing the same training settings, GATES achieves a test Kendall’s
Tau of 0.7634, whereas the Kendall’s Tau results achieved by MLP, LSTM,
and the best GCN variant are 0.3971, 0.5509 and 0.5343, respectively. This
demonstrates the surpassing generalization ability of the GATES encoder, which

7 See “Setup and Additional Results” section in the appendix for more details.

10 X. Ning et al.

Table 2. The Kendalls Tau of using different encoders on the NAS-Bench-101 dataset.
The first 90% (381262) architectures in the dataset are used as the training data, and
the other 42362 architectures are used as the testing data

Encoder
Proportions of 381262 training samples

0.05% 0.1% 0.5% 1% 5% 10% 50% 100%

MLP [24] 0.3971 0.5272 0.6463 0.7312 0.8592 0.8718 0.8893 0.8955
LSTM [24] 0.5509 0.5993 0.7112 0.7747 0.8440 0.8576 0.8859 0.8931

GCN (w.o. global node) 0.3992 0.4628 0.6963 0.8243 0.8626 0.8721 0.8910 0.8952
GCN (global node) [22] 0.5343 0.5790 0.7915 0.8277 0.8641 0.8747 0.8918 0.8950

GATES 0.7634 0.7789 0.8434 0.8594 0.8841 0.8922 0.9001 0.9030

Table 3. N@K on NAS-Bench-101. All predictors are trained with 0.1% of the training
data (i.e., 381 architectures)

Encoder
Ranking Loss Regression Loss

N@5 N@10 N@5 N@10

MLP [24] 57 (0.13%) 58 (0.13%) 1397 (3.30%) 552 (1.30%)
LSTM [24] 1715 (4.05%) 1715 (4.05%) 1080 (2.54%) 312 (0.73%)
GCN [22] 2025 (4.77%) 1362 (3.21%) 405 (0.95%) 405 (0.95%)

GATES 22 (0.05%) 22 (0.05%) 27 (0.05%) 27 (0.05%)

enables one to learn a good performance predictor for unseen architectures after
evaluating only a small set of architectures.

In the Kendall’s Tau measure, all discordant pairs are treated equally. How-
ever, in NAS applications, the relative rankings among the poorly performing
architectures are not of concern. Therefore, we compare different predictors in
the form of other measures that have a more direct correspondence with the
NAS flow: 1) N@K: The best true ranking among the top-K architectures se-
lected according to the predicted scores. 2) Precision@K: The proportion of true
top-K architectures among the top-K predicted architectures. Table. 3 and Fig-
ure. 3(a) show these two measures of the predictors with different encoders on
the testing set of NAS-Bench-101. As can be seen, GATES achieves consistently
better performances than other encoders across different Ks.

4.2 Predictor Evaluation on NAS-Bench-201

Setup NAS-Bench-201 [3] is another NAS benchmark that provides the perfor-
mances of 15625 architectures in an OOE search space. In our experiments, we
use the first 50% (7813) as the training data, and the remaining 7812 architec-
tures as the testing data. Since GCN encoders could not be directly applied to

GATES 11

0 8.5k 17.0k 33.9k 34.5k 42.3k
K

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

GATES
GCN
LSTM
MLP

(a) NAS-Bench-101

0 1.6k 3.1k 4.7k 6.2k 7.8k
K

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

GATES
LSTM
MLP

(b) NAS-Bench-201

Fig. 3. Precision@K

Table 4. The Kendalls Tau of using different encoders on the NAS-Bench-201 dataset.
The first 50% (7813) architectures in the dataset are used as the training data, and
the other 7812 architectures are used as the testing data

Encoder
Proportions of 7813 training samples

1% 5% 10% 50% 100%

MLP [24] 0.0974 0.3959 0.5388 0.8229 0.8703
LSTM [24] 0.5550 0.6407 0.7268 0.8791 0.9002

GATES 0.7401 0.8628 0.8802 0.9192 0.9259

the OOE search spaces, we compare GATES with the sequence-based encoders:
MLP and LSTM.8

Results Table 2 shows the evaluation results of GATES. GATES could achieve
significantly higher ranking correlations than the baseline encoders, especially
when there are only a few training samples. For example, with 78 training sam-
ples, “GATES + Pairwise loss” could achieve a Kendall’s Tau of 0.7401, while
the best baseline result is 0.5550 (“LSTM + Pairwise loss”).

The N@K and Precision@K measures on NAS-Bench-201 are shown in Ta-
ble 5 and Fig. 3(b), respectively. We can see that GATES can achieve an N@5
of 1 on the 7812 testing architectures, with either ranking loss or regression
loss. And, not surprisingly, GATES outperforms the baselines consistently on
the Precision@K measure too.

8 We also implement an ad-hoc solution of applying GCN on OOE architectures re-
ferred to as the Line Graph GCN solution, in which the graph is first converted to
a line graph. See “Setup and Additional Results” section in the appendix for more
details.

12 X. Ning et al.

Table 5. N@K on NAS-Bench-201. All the predictors are trained using 10% of the
training data (i.e., 781 architectures)

Encoder
Ranking Loss Regression Loss

N@5 N@10 N@5 N@10

MLP [24] 7 (0.09%) 7 (0.09%) 1538 (19.7%) 224 (3.87%)
LSTM [24] 8 (1.02%) 2 (0.01%) 250 (6.65%) 234 (2.99%)

GATES 1 (0.00%) 1 (0.00%) 1 (0.00%) 1 (0.00%)

200 400 600 800 1000
#Archs

0.943

0.944

0.945

0.946

0.947

0.948

0.949

Ac
cu

ra
cy

GATES
GCN
LSTM
MLP

100 200 300 400 500
#Archs

0.940

0.942

0.944

0.946

0.948

0.950

Ac
cu

ra
cy

GATES
LSTM
MLP
GCN

(a) RS inner search method (r = 500)

200 400 600 800 1000
#Archs

0.943

0.944

0.945

0.946

0.947

0.948

0.949

Ac
cu

ra
cy

GATES
GCN
LSTM
MLP

100 200 300 400 500
#Archs

0.940

0.942

0.944

0.946

0.948

0.950

Ac
cu

ra
cy

GATES
GCN
LSTM
MLP

(b) EA inner search method (r = 100)

Fig. 4. Comparison of predictor-based NAS with different encoders: The best validation
accuracy during the search process over 10/15 runs for the RS and EA inner serach
method, respectively. r is the sample ratio (see Sec. 3.3)

4.3 Neural Architecture Search on NAS-Bench-101

Equipped with a better performance predictor, the sample efficiency of the
predictor-based NAS process can be significantly improved. To verify that, we
conduct the architecture search on NAS-Bench-101 using various searching strate-
gies. As the baseline of our method, we run a random search, regularized evolu-
tion [18], and predictor-based NAS methods equipped with the baseline encoders
(i.e., LSTM, MLP, GCN).

Comparison of Sample Efficiency The results of running predictor-based
NAS methods with different encoders are shown in Fig. 4. We conduct exper-
iments with two inner search methods: random search, and evolutionary algo-
rithm. In each stage, 100 random samples are used to train the predictor (50 for
evolutionary algorithm), and the predictor is trained for 50 epochs with hinge
ranking loss. When using random search, n = 2500 architectures are randomly
sampled, and the top k = 5 architectures with high predicted scores are chosen
to be further evaluated by the ground truth evaluator. When using the evolu-
tionary algorithm for the inner search, n is set to 100, and k is set to 1. And

GATES 13

Random Search EA GATES+EA

1.0e5

2.0e5

3.0e5

4.0e5

5.0e5

#A
rc

hs

Median

50 100 200 1000 50000

100

200

300

400

500

#A
rc

hs

Median

(a) Comparison of search methods

Random Search EA GATES+EA

5.0e4

1.0e5

1.5e5

2.0e5

2.5e5

3.0e5

3.5e5

4.0e5

#A
rc

hs

Median

50 100 200 1000 50000

200

400

600

800

1000

#A
rc

hs

Median

(b) Ablation study of the sample ratio r

Fig. 5. Left: Number of architectures evaluated to acquire the best validation accuracy
on NAS-Bench-101 over 100 runs. We use the mean validation accuracy as the search
reward. GATES-powered predictor-based NAS is 511.0× and 59.25× more sample ef-
ficient than random search and regularized evolution. Right: Number of architectures
evaluated to acquire the best validation accuracy over 10 runs with different r

the population and tournament size is 20 and 5, respectively. We can see that
the sample efficiency using GATES surpasses the baselines with different inner
search methods. This verifies the analysis that utilizing a better neural architec-
ture encoder in the predictor-based NAS flow leads to better sample efficiency.

The comparison of the sample efficiency of two baseline searching strategies
and the predictor-based method with GATES is shown in Fig. 5(a). The median
counts of evaluated architectures of RS, Regularized EA and GATES-powered
NAS over 100 runs are 220400, 23700 and 400 (50 as the granularity), respec-
tively. GATES-powered NAS is 551.0× and 59.25× more sample efficient than
the random search and evolution algorithm.

Ablation Study of the Sample Ratio r The ablation study of the sample
ratio r (Sec. 3.3) is shown in Fig. 5(b). We run GATES-powered predictor-
based search with evolutionary algorithm, and shows the architectures needed
to evaluate before finding the architecture with the best validation accuracy. We
can see that the sample ratio r should be neither too big nor too small, since a
too small n leads to bad exploitation and a too large n leads to bad exploration.

4.4 Neural Architecture Search in the ENAS Search Space

In this section, we apply our method on the ENAS search space. This search
space is an OOE search space that is much larger than the benchmark search
spaces. We first randomly sample 600 architectures and train them for 80 epochs.
Then we train a GATES predictor using the performance of the 600 architectures
and use it to sample 200 architectures, by randomly sampling 10k architectures
and taking the top 200 with the highest predicted scores (sample ratio r = 50).
After training these 200 architectures for 80 epochs, we pick the architecture with

14 X. Ning et al.

Table 6. Comparison of NAS-discovered architectures on CIFAR-10

Method Test Error (%) #Params (M) #Archs Evaluated

NASNet-A + cutout [30] 2.65 3.3 20000
AmoebaNet-B + cutout [18] 2.55 2.8 27000

NAONet [15] 2.98 28.6 1000
PNAS [10] 3.41 3.2 1160

NAONet-WS† [15] 3.53 2.5 -

DARTS+cutout† [12] 2.76 3.3 -

ENAS + cutout† [17] 2.89 4.6 -

Ours + cutout 2.58 4.1 800

†: As discussed in Sec. 2, the challenge faced by one-shot NAS lies in the evaluation
correlation rather than sample efficiency, thus we do not report the sample efficiency
of the one-shot (parameter sharing) NAS methods.

the best validation accuracy. Finally, after the channel and layer augmentation,
the architecture is trained from scratch for 600 epochs.

The comparison of the test errors of different architectures is shown in Ta-
ble 6, and the discovered architecture is shown in the appendix. As can be
seen, our discovered architecture can achieve a test error rate of 2.58%, which
is better than those architectures discovered with parameter sharing evaluation.
Compared to the other methods, much fewer samples are truly evaluated to dis-
cover an architecture with better or comparable performance. When transferred
to ImageNet, the discovered architecture achieves a competitive top-1 error of
24.1% with 5.6M parameters.

5 Conclusion

In this paper, we propose GATES, a graph-based neural architecture encoder
with better representation ability for neural architectures. Due to its reasonable
modeling of the neural architectures and intrinsic ability to handle DAG isomor-
phism, GATES significantly improves the architecture performance predictor for
different cell-based search spaces. Utilizing GATES in the predictor-based NAS
flow leads to consistent improvements in sample efficiency. Extensive experiments
demonstrate the effectiveness and rationality of GATES. Employing GATES to
encode architectures in larger or hierarchical topological search spaces is an in-
teresting future direction.

Acknowledgments

This work was supported by National Natural Science Foundation of China (No.
61832007, 61622403, 61621091, U19B2019), Beijing National Research Center

GATES 15

for Information Science and Technology (BNRist). The authors thank Novauto
for the support.

16 X. Ning et al.

References

1. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hul-
lender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd
international conference on Machine learning. pp. 89–96 (2005)

2. Chen, W., yan Liu, T., Lan, Y., ming Ma, Z., Li, H.: Ranking measures and
loss functions in learning to rank. In: Bengio, Y., Schuurmans, D., Lafferty, J.D.,
Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing
Systems 22, pp. 315–323. Curran Associates, Inc. (2009)

3. Dong, X., Yang, Y.: Nas-bench-201: Extending the scope of reproducible neural ar-
chitecture search. In: International Conference on Learning Representations (2020),
https://openreview.net/forum?id=HJxyZkBKDr

4. Guo, Y., Chen, Y., Zheng, Y., Zhao, P., Chen, J., Huang, J., Tan, M.: Break-
ing the curse of space explosion: Towards effcient nas with curriculum search. In:
International Conference on Machine Learning (2010)

5. Guo, Y., Zheng, Y., Tan, M., Chen, Q., Chen, J., Zhao, P., Huang, J.: Nat: Neural
architecture transformer for accurate and compact architectures. In: Advances in
Neural Information Processing Systems. pp. 735–747 (2019)

6. Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., Xing, E.P.: Neural
architecture search with bayesian optimisation and optimal transport. In: Advances
in Neural Information Processing Systems. pp. 2016–2025 (2018)

7. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

9. Lian, D., Zheng, Y., Xu, Y., Lu, Y., Lin, L., Zhao, P., Huang, J., Gao, S.: To-
wards fast adaptation of neural architectures with meta learning. In: International
Conference on Learning Representations (2020)

10. Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille,
A., Huang, J., Murphy, K.: Progressive neural architecture search. In: Proceedings
of the European Conference on Computer Vision (ECCV). pp. 19–34 (2018)

11. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical
representations for efficient architecture search. arXiv preprint arXiv:1711.00436
(2017)

12. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055 (2018)

13. Liu, T.Y., et al.: Learning to rank for information retrieval. Foundations and
Trends R© in Information Retrieval 3(3), 225–331 (2009)

14. Luo, R., Qin, T., Chen, E.: Understanding and improving one-shot neural archi-
tecture optimization. arXiv preprint arXiv:1909.10815 (2019)

15. Luo, R., Tian, F., Qin, T., Chen, E., Liu, T.Y.: Neural architecture optimiza-
tion. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31,
pp. 7816–7827. Curran Associates, Inc. (2018), http://papers.nips.cc/paper/

8007-neural-architecture-optimization.pdf

16. Negrinho, R., Gordon, G.: Deeparchitect: Automatically designing and training
deep architectures. arXiv preprint arXiv:1704.08792 (2017)

17. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268 (2018)

https://openreview.net/forum?id=HJxyZkBKDr
http://papers.nips.cc/paper/8007-neural-architecture-optimization.pdf
http://papers.nips.cc/paper/8007-neural-architecture-optimization.pdf

GATES 17

18. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: Proceedings of the aaai conference on artificial intel-
ligence. vol. 33, pp. 4780–4789 (2019)

19. Sciuto, C., Yu, K., Jaggi, M., Musat, C., Salzmann, M.: Evaluating the search
phase of neural architecture search. arXiv preprint arXiv:1902.08142 (2019)

20. Sen, P.K.: Estimates of the regression coefficient based on kendall’s tau. Journal
of the American statistical association 63(324), 1379–1389 (1968)

21. Shashua, A., Levin, A.: Ranking with large margin principle: Two approaches. In:
Advances in neural information processing systems. pp. 961–968 (2003)

22. Shi, H., Pi, R., Xu, H., Li, Z., Kwok, J.T., Zhang, T.: Multi-objective neural ar-
chitecture search via predictive network performance optimization. arXiv preprint
arXiv:1911.09336 (2019)

23. Stagge, P., Igel, C.: Neural network structures and isomorphisms: Random walk
characteristics of the search space. In: 2000 IEEE Symposium on Combinations of
Evolutionary Computation and Neural Networks. Proceedings of the First IEEE
Symposium on Combinations of Evolutionary Computation and Neural Networks
(Cat. No. 00. pp. 82–90. IEEE (2000)

24. Wang, L., Zhao, Y., Jinnai, Y., Fonseca, R.: Alphax: exploring neural architec-
tures with deep neural networks and monte carlo tree search. arXiv preprint
arXiv:1805.07440 (2018)

25. Xia, F., Liu, T.Y., Wang, J., Zhang, W., Li, H.: Listwise approach to learning to
rank: theory and algorithm. In: Proceedings of the 25th international conference
on Machine learning. pp. 1192–1199 (2008)

26. Xie, S., Kirillov, A., Girshick, R., He, K.: Exploring randomly wired neural net-
works for image recognition. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 1284–1293 (2019)

27. Xu, Y., Wang, Y., Han, K., Jui, S., Xu, C., Tian, Q., Xu, C.: Renas:relativistic
evaluation of neural architecture search (2019)

28. Ying, C., Klein, A., Real, E., Christiansen, E., Murphy, K., Hutter, F.: Nas-
bench-101: Towards reproducible neural architecture search. arXiv preprint
arXiv:1902.09635 (2019)

29. Zhang, C., Ren, M., Urtasun, R.: Graph hypernetworks for neural architecture
search. arXiv preprint arXiv:1810.05749 (2018)

30. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
ICLR (2017), https://arxiv.org/abs/1611.01578

31. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 8697–8710 (2018)

https://arxiv.org/abs/1611.01578

Appendices: A Generic Graph-based Neural
Architecture Encoding Scheme for

Predictor-based NAS

1 Implementation of GATES

In practice, to calculate the information propagation following the topological
order of different graphs in a batched manner, we use a stack of GATES layers.
In the forward process of each GATES layer, one step of information propagation
is taken place at every node. The detailed formulas and implementations of one
GATES layer for “operation on node” and “operation on edge” search spaces
are shown as follows, and the notations are summarized in Table. 1.

Operation On Node (OON) Search Space For the OON case, we take
the NAS-Bench-101 search space as an example. In the cell architecture, there
is ni = 1 input node, and at most V = 7 nodes. For batch computation, we
pad zero columns and rows into the adjacent matrix to ensure that all adjacent
matrices are of size 7× 7, and also add none operations into the corresponding
positions in the operation list. The calculation of the k-th GATES layer could
be written as

X(0) = CONCAT(Ẽ,0
b×V−ni×h(0)

i
,dim=1)

X(k) = σ(EMB(o)W (k)
o)� (AX(k−1)W (k)

x)
(1)

where Ẽ = repeat(E, [b, 1, 1]) ∈ Rb×ni×h(0)
i , and E,EMB,W

(k)
o ,W

(k)
x are train-

able parameters.
In practice, we found that for the OON search space, adding a self-loop of

the information propagation would lead to slightly better performance.

X(k) = σ(EMB(o)W (k)
o)� (ÃX(k−1)W (k)

x)

Ã = A+ I
(2)

Operation On Edge (OOE) Search Space For the OOE search spaces, the
calculation of a GATES layer could be written as

X(0) = CONCAT(Ẽ,0
b×V−ni×h(0)

i
,dim=1)

S = EXPAND(X(k−1)W (k)
x , 1)

X(k) = SUM(

nd∑
d=1

EXPAND(A, 3)� σ(EMB(od)W (k)
o)� S, dim=2)

(3)

Appendices of GATES 19

Table 1. Notations used in the batched computation of the GATES encoder

V
maximum number of nodes: 7, 4, 6 for NAS-Bench-
101 [28], NAS-Bench-201 [3] and ENAS [17], respectively

ni
number of input nodes: 1, 1, 2 for NAS-Bench-101, NAS-
Bench-201 and ENAS, respectively

No number of operation primitives

ho embedding size of operation

h
(k)
i embedding size of information in the k-th layer

E ∈ Rni×h
(0)
i the embedding of the information at the input nodes

EMB ∈ RNo×ho the operation embeddings

W
(k)
o ∈ Rho×h

(k)
i

the transformation matrix on the operation embedding
(the k-th layer)

W
(k)
x ∈ Rh

(k−1)
i ×h

(k)
i

the transformation matrix on previous layer’s output in-
formation (the k-th layer)

b batch size

A ∈ Rb×V×V adjacency matrix

X(k) ∈ Rb×V×h
(k)
i the output virtual information of the k-th layer

EMB(o) ∈ Rb×V×ho
(NAS-Bench-101) the embeddings of the operations on
nodes

EMB(o) ∈ Rb×V×V×ho
(NAS-Bench-201) the embeddings of the operations on
edges

nd (ENAS) maximum input degree of nodes

EMB(od) ∈ Rb×V×V×ho
(ENAS) the embeddings of operations on the d-th input
edge for nodes

where Ẽ = repeat(E, [b, 1, 1]) ∈ Rb×ni×h(0)
i , and EXPAND(A,dim) denotes the

operation to insert a new dimension as dimension dim.
For the search spaces where there is at most one edge between each pair of

nodes (e.g., NAS-Bench-201), the above calculation could be simplified to

X(0) = CONCAT(Ẽ,0
b×V−ni×h(0)

i
,dim=1)

S = EXPAND(X(k−1)W (k)
x , 1)

X(k) = SUM(EXPAND(A, 3)� σ(EMB(o)W (k)
o)� S, dim=2)

(4)

2 Discussion on Isomorphism

GATES maps ismorphic architectures to the same representation The
encoding process of GATES mimics the actual computation flow: GATES uses
multiplicative transforms to mimic the forward process of operations (e.g., Conv3x3),
and uses commutative aggregation to mimic actual commutative aggregation of

20 X. Ning et al.

Table 2. The Kendall’s Tau τ on 1) NAS-Bench-101 test set 2) the 7-vertex subset
of the test set 3) all the isomorphic counterparts of the 7-vertex subset (without de-
duplication). The last column shows the sum of the variances of the predicted scores in
every isomorphic architectures group, and there are negligible numerical errors in the
variance results of GATES and GCN. All the predictors are trained using the hinge
pairwise ranking loss on 0.1% of the training data.

Encoders
test set 7-vertex test set 7-vertex test set w.o. de-dup.
(42362) (36064) (116102)

τ τ τ Total Var.

MLP [24] 0.5272 0.5143 0.4729 43.58
LSTM [24] 0.5993 0.5877 0.5656 18.80
GCN [22] 0.5790 0.5876 0.6169 1.16E-11

GATES 0.7789 0.7724 0.7758 9.24E-12

the feature maps. Naturally, GATES would encode two architectures that give
out the same feature map results into the same representation. That is to say, the
embedding space of GATES is more meaningful. However, GATES might fail to
map non-isomorphic architectures to different representations. And we leave it
to future work to ameliorate this problem to further increase the discriminative
power of GATES.

In the search spaces which we have experimented with (i.e., NAS-Bench-
101, NAS-Bench-201, and ENAS), the combination of feature maps at internal
nodes is done via addition operation, which is commutative. Therefore, for en-
coding the architecture, GATES also uses commutative addition to combine the
“virtual information”. Note that if the feature map aggregation at some internal
node is not commutative (e.g., concatenation), we should use a non-commutative
aggregation of the virtual information too.

Another thing to note is that, in the NAS-Bench-101 and ENAS search
spaces, the tensors going to the final output node in the cell are concatenated
instead of being added together. Since the concatenation operation is not com-
mutative, different concatenation orders result in different architectures. Nev-
ertheless, in these two search spaces, these models are equivalent through the
rearrangement of channels in the following operations. Therefore, we use addi-
tion to aggregate the information at the output node, too. We emphasize that
this is a search space specific discussion.

We conduct a simple experiment to verify GATES’s ability to map isomor-
phic architectures to the same representation on NAS-Bench-101. After splitting
the train and test sets, there are 36064, 6037, 256, 5 testing architectures with
7, 6, 5, 4 vertices, and 323018, 55973, 2185, 79, 6, 1 training architectures with
7 6, 5, 4, 3, 2 vertices respectively. Since all isomorphic cell architectures are
already removed in NAS-Bench-101, we generate the isomorphic architectures
for the 36064 unique testing architectures with 7 vertices, and get 116102 archi-
tectures. Among the 36064 architectures, there are 20994 architectures that have

Appendices of GATES 21

1

0

Conv3x3 Conv1x1

[EMB(Conv3x3), EMB(Conv1x1)]

1

0

Conv3x3Conv1x1

[EMB(Conv1x1), EMB(Conv3x3)]

1

0
Conv1x1

Conv1x1

2

Conv3x3

Conv3x3

3

Conv1x1 Conv3x3

[EMB(Conv1x1), EMB(Conv3x3)]

2

0
Conv1x1

Conv1x1

1

Conv3x3

Conv3x3

3

Conv1x1 Conv3x3

[EMB(Conv3x3), EMB(Conv1x1)]

4

0

2

Fig. 1. An ad-hoc graph-based solution [5] for encoding the architecture in the ENAS
search space (an OOE search space) fails to map isomorphic architectures to the same
representation. In the upper case, the two architectures are the same graph, but the
embeddings of Node 1 differ. This case could be solved by imposing an order of the
operations when the two incoming edges come from the same previous node. In the
lower case, these two architecture are isomorphic, since the feature map aggregation at
Node 3 is a commutative element-wise addition. However, this encoding scheme cannot
guarantee to map these two architectures to the same representation, since the original
node embeddings already differ at Node 3. The failure to handle the isomorphism is
due to the non-commutative characteristics of the concatenation operation.

isomorphic counterparts. We test different predictors trained with 0.1% train-
ing samples on these 116k architectures and show the results in Table. 2. Since
the sequence-based encoding schemes cannot map isomorphic architectures to
the same representation, the ranking correlation decreases if no de-duplication
procedure is carried out. The last column shows the sum of the variances of
the predicted scores in every isomorphic architecture group. We can see that
GATES and GCN can map isomorphic architectures to the same representation
(a variance of 0 with negligible numeric errors), since only isomorphism-invariant
aggregation operations are used in the encoding process.

Two counter examples of the ad-hoc solution [5] Since GCN cannot be
directly applied to encoding architectures from the OOE search spaces, a recent
study [5] proposes an ad-hoc solution for the ENAS search space. They represent
each node by the concatenation of the operation embeddings on the input edges.
This solution cannot generalize to search spaces where nodes could have different
input degrees. Whats more, since the concatenation operation is not commuta-

22 X. Ning et al.

0 10k 20k 30k 40k
GATES + Rank Loss

 (kendall's tau=0.7789)

10k

20k

30k

40k

0 10k 20k 30k 40k
GCN + Rank Loss

 (kendall's tau=0.5790)

10k

20k

30k

40k

0 10k 20k 30k 40k
MLP + Rank Loss

 (kendall's tau=0.5272)

10k

20k

30k

40k

Fig. 2. NAS-Bench-101: The true rankings (y-axis) and predicted rankings (x-axis) of
2000 architectures among the 42362 testing architectures. 0.1% training data are used
to train these encoders.

tive, this encoding scheme could not map isomorphic architectures to the same
representation correctly. Fig. 1 illustrates two minimal counterexamples.

3 Setup and Additional Results

Setup and Results on NAS-Bench-101 The setup of all the experiments on
NAS-Bench-101 goes as follows. An ADAM optimizer [7] with learning rate 1e-3
is used to optimize the performance predictors for 200 epochs. And the average
of the ranking correlations in the last 5 epochs is reported. The batch size is
set to 512. And a hinge pairwise ranking loss with margin 0.1 is used. For the
construction of the MLP and LSTM encoder, we follow the serialization method
and the model settings in [24]. The MLP is constructed by 4 fully-connected
layers with 512, 2048, 2048, and 512 nodes, and the output of dimension 512
is used as the cell’s embedding. The embedding and hidden sizes of the LSTM
are both set to 100, and the final hidden state is used as the cell’s embedding.
For the GCN and GATES encoders, we construct the encoder by stacking five
128-dim GCN or GATES layers. All the embedding sizes are set to 48, including
the operation embedding in GCN, and the operation and information embedding
in GATES. For GCN, the average of all the nodes’ features is used as the cell’s
embedding. In GCN with global node [22], the features of the global node are
used as the cell’s embedding.

Fig. 2 shows the prediction results on the 42362 testing architectures with
different encoders trained on 0.1% training data. As can be seen, compared with
the GCN and MLP encoders, the predictions of GATES are much more accurate
in the sense of ranking correlation.

Setup and Results on NAS-Bench-201 The setup of all the experiments
on NAS-Bench-201 goes as follows. An ADAM optimizer with learning rate 1e-3
and batch size 512 is used to train the predictors for 200 epochs, and the average
of testing Kendall’s Taus in the last 5 epochs is reported.

Appendices of GATES 23

1 2 3 4 5 6 7 8
Number of layer of GATES

0.0

0.2

0.4

0.6

0.8

Ke
nd

al
l's

 T
au

GCN + Regression
GATES + Regression
GCN + Pairwise (Hinge)
GATES + Pairwise (Hinge)

(a) NAS-Bench-101

1 2 3 4 5 6 7
Number of layer of GATES

0.0

0.2

0.4

0.6

0.8

Ke
nd

al
l's

 T
au

GATES + Pairwise (Hinge)
GATES + MSE

(b) NAS-Bench-201

Fig. 3. The effect of the number of GCN or GATES layers. (a) NAS-Bench-101. The
proportion of training samples is 0.1% (381 training, 42362 testing). (b) NAS-Bench-
201. The proportion of training samples is 10% (781 training, 7812 testing)

For the sequence-based baselines (MLP and LSTM), we use the 6 elements
of the lower triangular portion, excluding the diagonal ones. We use 4 fully-
connected layers with 512, 2048, 2048, 512 nodes for the MLP encoder. The
embedding size and hidden size of the 1-layer LSTM is set to 100, and the final
hidden stage is used as the embedding of the cell architecture. As for GATES,
we use a 5-layer GATES encoder without self-loop.

Since GCN encoders could not be directly applied to the OOE search spaces,
we implement a line graph solution for applying GCNto encode OOE architec-
tures following these three steps: 1) convert the graph to a line graph; 2) apply
an 5-layer GCN; 3) concatenate the node embeddings as the graph representa-
tion. The results of this “Line Graph GCN” solution are listed in Tab. 5, and
are not satisfying enough. We suppose that it is due to that the power of GNN
cannot be fully utilized as converting to line graph results in identical adjacent
matrices for all NAS-Bench-201 architectures.

Ablation Study: GATES Layer Number We show the ablation study of the
layer number in the GATES encoders in Fig. 3. We can see that the regression
loss fails to instruct the learning of deep GCN and GATES encoders. Even with
the ranking loss, the GCN’s performance degrades as the layer number increases,
while the GATES encoder is more robust.

Another interesting fact is that a GATES layer number larger than or equal 3
is a good choice on NAS-Bench-201, and as we know, the most common longest
path length is 3 too. As for NAS-Bench-101, a GATES layer number larger than
or equal 4 is a good choice. The longest possible path length on NAS-Bench-101
is 6, but only in a small portion of architectures. The ablation results match with
the “virtual information flow” intuition of the GATES design and give evidence
of the rationality of using GATES for neural architecture encoding.

24 X. Ning et al.

normal

c_{k-2}

0sep_conv_3x3

2avg_pool_3x3

3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

1

sep_conv_3x3

sep_conv_5x5

sep_conv_3x3

c_{k}

sep_conv_3x3

(a) Normal cell

reduce

c_{k-2}

0

max_pool_3x3 2

sep_conv_3x3

c_{k-1}

skip_connect

1
avg_pool_3x3

max_pool_3x3

3avg_pool_3x3

max_pool_3x3

sep_conv_5x5
c_{k}

(b) Reduction cell

Fig. 4. Discovered cell architectures on CIFAR-10.

Neural Architecture Search in the ENAS Search Space The setup of the
predictor training goes as follows. The predictor is constructed by four 64-dim
GATES layers. Both the operation and information embedding sizes are set to
32. During the training of the predictor, the total epoch is set to 80, and the
batch size is set to 128, and a pairwise hinge loss with margin 0.1 and an ADAM
optimizer with learning rate 1e-3 are used.

For the true performance evaluation of the 800 architectures (600 randomly
sampled, 200 sampled utilizing the predictor), we train them for 80 epochs using
an SGD optimizer with weight decay 3e-4. The learning rate is decayed from
0.05 to 0.001 following a cosine schedule. The base channel number is 16, and
the number of layers is 8.

The discovered architecture is shown in Fig. 4. To evaluate the final perfor-
mance of the discovered cell architecture, we first apply the channel and layer
augmentation. Specifically, 20 cells are stacked to construct the network, and
the base channel number is increased from 16 to 36. The augmented model is
trained for 600 epochs on CIFAR-10 with batch size 128, and the learning rate is

Appendices of GATES 25

Table 3. Comparison of NAS-discovered architectures on ImageNet

Method Top-1 Test Error (%) #Params (M)

NASNet-A [30] 26.0 5.3
AmoebaNet-B [18] 27.2 5.3

PNAS [10] 25.8 5.1

DARTS [12] 26.9 4.9
GHN [29] 27.0 6.1

Ours 24.1 5.6

decayed from 0.05 to 0.001 following a cosine schedule. The cutout data augmen-
tation with length 16 is used. The weight decay is set to 3e-4, and the dropout
rate before the fully-connected classifier is set to 0.1. For other regularization
techniques, we follow existing studies [31,12] to use auxiliary towers with weight
0.4 and the scheduled drop-path of probability 0.2.

For transferring the discovered architecture to ImageNet, we increase the base
channel number to 48 and stack 14 cells to construct the model. The augmented
model is trained for 300 epochs with batch size 256, and the learning rate is
decayed from 0.1 to 0 following a cosine schedule. The weight decay is set to 3e-5
and auxiliary towers with weight 0.4 is used, no dropout is used. The comparison
with a few previous methods is illustrated in Tab. 3.

4 Ranking Losses for Predictor Optimization

The ranking correlation of the performance predictor on unseen architectures is
the key to the success of predictor-based NAS. Since ranking losses are better
surrogates of the ranking measures than the regression loss [2], training the per-
formance predictor with ranking losses could lead to better ranking correlation.

We utilize different pairwise and listwise ranking losses for training the pre-
dictor [1,21,25]. The pairwise ranking loss could be written as

Lp(S̃) =

N∑
i=1

∑
j∈{j|yi<yj}

φ(P (aj), P (ai)) (5)

We experiment with two different choices of φ. 1) The binary cross entropy
function φ(sj , si) = log(1 + e(sj−si)); 2) The hinge loss function φ(sj , si) =
max(0,m− (sj − si)), where m is a positive margin.

We also experiment with a pairwise comparator: We construct an MLP that
takes the concatenation of two architecture embeddings as input and outputs a
score: s = MLP([E(aj), E(ai)], and a positive s indicates that aj is better than
ai. Note that the total-orderness of the architectures is not guaranteed using

26 X. Ning et al.

Table 4. The Kendalls Tau of using different loss functions on NAS-Bench-101. The
first 90% (381262) architectures in the dataset are used as the training data, and
the other 42362 architectures are used as the testing data. All experiments except
“Regression (MSE) + GCN” are carried out with GATES encoder.

Loss
Proportions of 381262 training samples

0.05% 0.1% 0.5% 1% 5% 10% 50% 100%

Regression (MSE) + GCN† 0.4536 0.5058 0.5587 0.5699 0.5846 0.5871 0.5901 0.5941

Regression (MSE) + GATES† 0.4935 0.5425 0.5739 0.6323 0.7439 0.7849 0.8247 0.8352

Pairwise (BCE) 0.7460 0.7696 0.8352 0.8550 0.8828 0.8913 0.9006 0.9042
Pairwise (Comparator) 0.7250 0.7622 0.8367 0.8540 0.8793 0.8891 0.8987 0.9011

Pairwise (Hinge) 0.7634 0.7789 0.8434 0.8594 0.8841 0.8922 0.9001 0.9030
Listwise (ListMLE) 0.7359 0.7604 0.8312 0.8558 0.8852 0.8897 0.9003 0.9009

†: For the baseline evaluation of regression loss, we use a GCN encoder with 1 layer,
and a GATES encoder with 3 layers rather than 5 layers, since training deep GCN or
GATES encoder with MSE regression loss is unstable, and often fails to learn anything
meaningful. With MSE loss, 1 layer of GCN and 3 layers of GATES achieve the best
results among layer number configurations using 0.1% training data.

this comparator. So, we add a simple anti-symmetry regularization term in the
training of the comparator. The loss for training the comparator is:

Lp(S̃) =

N∑
i=1

∑
j∈{j|yi<yj}

max(0,m−MLP([E(aj), E(ai)])

+ max(0,m+ MLP([E(ai), E(aj)]))

(6)

We design the listwise ranking loss following ListMLE [25]:

Ll(S̃) =
∑
U⊂S̃

|U |∑
i=1

{−P (a(i),U) + log

|U |∑
j=i

exp(P (a(j),U))} (7)

where U are subsets of S̃, |U | denotes the size of U , a(i),U denotes the architecture
whose true performance y(i),U is the i-th best in the subset U .

4.1 Evaluation of Ranking Losses

Setup In the experiments of evaluating the ranking losses, the training settings
and the construction of the GATES model are the same as in the evaluation of
GATES. One exception is that, for the listwise ranking loss (ListMLE), we train
the predictor for 80 epochs (list length is 4), since the training converges much
faster with the listwise ranking loss. Still, the average of the ranking correlations
in the last 5 epochs is reported.

Appendices of GATES 27

Table 5. The Kendalls Tau of using different encoders and loss functions on NAS-
Bench-201. The first 50% (7813) architectures in the dataset are used as the training
data, and the other 7812 architectures are used as the testing data

Encoder
Proportions of 7813 training samples

1% 5% 10% 50% 100%

MLP + Regression (MSE)† 0.0646 0.1520 0.2316 0.5156 0.6089
LSTM + Regression (MSE) 0.4405 0.5435 0.6002 0.8169 0.8614

Line Graph GCN + Regression (Hinge) -0.0481 0.3376 0.4988 0.6609 0.7006
GATES + Regression (MSE) 0.6823 0.7528 0.8042 0.8950 0.9115

MLP + Pairwise (Hinge) 0.0974 0.3959 0.5388 0.8229 0.8703
LSTM + Pairwise (Hinge) 0.5550 0.6407 0.7268 0.8791 0.9002

Line Graph GCN + Pairwise (Hinge) 0.5063 0.6822 0.7567 0.8676 0.9002
GATES + Pairwise (Hinge) 0.7401 0.8628 0.8802 0.9192 0.9259

†: For the baseline evaluation of MSE regression loss with MLP and Line Graph GCN
encoders, we use a learning rate of 1e-4, since we find out that these encoders cannot
be learned with a learning rate of 1e-3.

The evaluation of the comparator-based ranking loss is a little different than
other ranking losses. For other ranking losses, we can calculate the ranking cor-
relation between the predicted scores P(a) and the true accuracies. However, a
comparator trained using the comparator-based ranking loss must take a pair
of architectures as the input and output a comparison results. Therefore, for
evaluating the performance of the comparator, we run the randomized quick-
sort procedure with the comparator to get the predicted rankings of the testing
architectures. Since the comparator might not be a proper total order opera-
tor, different choices of the random pivots in randomized quick-sort could lead
to different sorted sequences. Therefore, we run randomized quick-sort with 3
different random seeds, and report the average Kendall’s Tau. In practice, we
find that the Kendall’s Taus calculated using different random seeds are very
close. For example, three tests with random seed 1, 12 and 123 of the predictor
trained on the whole training set give the Kendall’s Taus of 0.90106, 0.90107
and 0.90113, respectively.

Results on NAS-Bench-101 We train GATES-powered predictors with four
types of ranking losses: 1) Pairwise loss with binary cross-entropy φ. 2) Pair-
wise loss with a hinge loss function φ. 3) Pairwise comparator loss. 4) Listwise
(ListMLE). Table 4 shows the comparison of using different losses to train the
predictors on NAS-Bench-101. Compared with the regression loss, ranking losses
bring consistent improvements. The performances of different ranking losses are
close, and the pairwise hinge loss is a good choice. We also find that training
with regression loss requires a smaller learning rate and longer time to converge,
and does not work well with deep GCN or GATES models.

28 X. Ning et al.

Results on NAS-Bench-201 Table 5 shows the comparison of using regression
and ranking losses to train the predictors on NAS-Bench-201. We can see that
training using ranking losses leads to better-correlated predictors consistently.

	A Generic Graph-based Neural Architecture Encoding Scheme for Predictor-based NAS
	Appendices: A Generic Graph-based Neural Architecture Encoding Scheme for Predictor-based NAS

