Skip to main content

Burst Denoising via Temporally Shifted Wavelet Transforms

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12358))

Included in the following conference series:

Abstract

Mobile photography has made great strides in recent years. However, low light imaging remains a challenge. Long exposures can improve signal-to-noise ratio (SNR) but undesirable motion blur can occur when capturing dynamic scenes. Consequently, imaging pipelines often rely on computational photography to improve SNR by fusing multiple short exposures. Recent deep network-based methods have been shown to generate visually pleasing results by fusing these exposures in a sophisticated manner, but often at a higher computational cost.

We propose an end-to-end trainable burst denoising pipeline which jointly captures high-resolution and high-frequency deep features derived from wavelet transforms. In our model, precious local details are preserved in high-frequency sub-band features to enhance the final perceptual quality, while the low-frequency sub-band features carry structural information for faithful reconstruction and final objective quality. The model is designed to accommodate variable-length burst captures via temporal feature shifting while incurring only marginal computational overhead, and further trained with a realistic noise model for the generalization to real environments. Using these techniques, our method attains state-of-the-art performance on perceptual quality, while being an order of magnitude faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A Deep Look into the iPhone’s new Deep Fusion Feature. https://tinyurl.com/deepfusion. Accessed 04 Nov 2019

  2. Night Sight: Seeing in the Dark on Pixel Phones. https://tinyurl.com/googlenightsight. Accessed 04 Nov 2019

  3. Buades, T., Lou, Y., Morel, J.M., Tang, Z.: A note on multi-image denoising. In 2009 International Workshop on Local and Non-Local Approximation in Image Processing, pp. 1–15. IEEE (2009)

    Google Scholar 

  4. Liu, C., Freeman, W.T.: A high-quality video denoising algorithm based on reliable motion estimation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 706–719. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_51

    Chapter  Google Scholar 

  5. Maggioni, M., Boracchi, G., Foi, A., Egiazarian, K.: Video denoising, deblocking, and enhancement through separable 4-d nonlocal spatiotemporal transforms. IEEE Trans. Image Process. (TIP) 21(9), 3952–3966 (2012)

    Article  MathSciNet  Google Scholar 

  6. Liu, Z., Yuan, L., Tang, X., Uyttendaele, M., Sun, J.: Fast burst images denoising. ACM Trans. Graphics (TOG) 33(6), 232 (2014)

    Google Scholar 

  7. Godard, C., Matzen, K., Uyttendaele, M.: Deep burst denoising. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 560–577. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_33

    Chapter  Google Scholar 

  8. Mildenhall, B., Barron, J.T., Chen, J., Sharlet, D., Ng, R., Carroll, R.: Burst denoising with kernel prediction networks. In: CVPR, pp. 2502–2510 (2018)

    Google Scholar 

  9. Aittala, M., Durand, F.: Burst image deblurring using permutation invariant convolutional neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 748–764. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_45

    Chapter  Google Scholar 

  10. Hasinoff, S.W., et al.: Burst photography for high dynamic range and low-light imaging on mobile cameras. ACM Trans. Graphics (TOG) 35(6), 192 (2016)

    Article  Google Scholar 

  11. Kokkinos, F., Lefkimmiatis, S.: Iterative residual CNNS for burst photography applications. In: CVPR, pp. 5929–5938 (2019)

    Google Scholar 

  12. Dai, J., et al.: Deformable convolutional networks. In: ICCV, pp. 764–773 (2017)

    Google Scholar 

  13. Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: CVPR, pp. 1712–1722 (2019)

    Google Scholar 

  14. Ke, T.W., Maire, M., Yu, S.X.: Multigrid neural architectures. In: CVPR, pp. 6665–6673 (2017)

    Google Scholar 

  15. Wang, J., et al.: Deep High-resolution Representation Learning for Visual Recognition. arXiv preprint arXiv:1908.07919 (2019)

  16. Chen, Y., et al.: Drop an octave: reducing spatial redundancy in convolutional neural networks with octave convolution. arXiv preprint arXiv:1904.05049 (2019)

  17. Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6228–6237 (2018)

    Google Scholar 

  18. Weickert, J.: Anisotropic diffusion in image processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  19. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV, pp. 839–846 (1998)

    Google Scholar 

  20. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  21. Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet transform. IEEE Trans. Image Process. (TIP) 1(2), 205–220 (1992)

    Article  Google Scholar 

  22. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. Trans. Img. Proc. 12(11), 1338–1351 (2003)

    Article  MathSciNet  Google Scholar 

  23. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: CVPR, vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  24. Elad, M., Aharon, M.: Image denoising via learned dictionaries and sparse representation. In: CVPR, vol. 1, pp. 895–900. IEEE (2006)

    Google Scholar 

  25. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. (TIP) 16, 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  26. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. (TIP) 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  27. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration. In: CVPR Workshop, pp. 773–782 (2018)

    Google Scholar 

  28. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: CVPR, pp. 3929–3938 (2017)

    Google Scholar 

  29. Laine, S., Lehtinen, J., Aila, T.: High-quality self-supervised deep image denoising. arXiv preprint arXiv:1901.10277 (2019)

  30. Batson, J., Royer, L.: Noise2Self: blind denoising by self-supervision. In: ICML, pp. 524–533 (2019)

    Google Scholar 

  31. Anwar, S., Barnes, N.: Real image denoising with feature attention. In: ICCV (2019)

    Google Scholar 

  32. Cha, S., Moon, T.: Fully convolutional pixel adaptive image denoiser. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4160–4169 (2019)

    Google Scholar 

  33. Gu, S., et al.: Self-guided network for fast image denoising. In: ICCV (2019)

    Google Scholar 

  34. Arias, P., Morel, J.M.: Video denoising via empirical Bayesian estimation of space-time patches. J. Math. Imaging Vis. 60(1), 70–93 (2018)

    Article  MathSciNet  Google Scholar 

  35. Xu, J., Huang, Y., Liu, L., Zhu, F., Hou, X., Shao, L.: Noisy-as-clean: learning unsupervised denoising from the corrupted image. arXiv preprint arXiv:1906.06878 (2019)

  36. Wang, J.Z.: Wavelets and imaging informatics: a review of the literature. J. Biomed. Inform. 34(2), 129–141 (2001)

    Article  Google Scholar 

  37. Williams, T., Li, R.: Wavelet pooling for convolutional neural networks. In: ICLR (2018)

    Google Scholar 

  38. Yoo, J., Uh, Y., Chun, S., Kang, B., Ha, J.W.: Photorealistic style transfer via wavelet transforms. In: ICCV (2019)

    Google Scholar 

  39. Deng, X., Yang, R., Xu, M., Dragotti, P.L.: Wavelet domain style transfer for an effective perception-distortion tradeoff in single image super-resolution (2019)

    Google Scholar 

  40. Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P.: End-to-end learning of geometry and context for deep stereo regression. In: ICCV (2017)

    Google Scholar 

  41. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. In: NeurIPS, pp. 3391–3401 (2017)

    Google Scholar 

  42. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: NeurIPS, pp. 5099–5108 (2017)

    Google Scholar 

  43. Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: ICCV (2019)

    Google Scholar 

  44. Jaroensri, R., Biscarrat, C., Aittala, M., Durand, F.: Generating training data for denoising real RGB images via camera pipeline simulation. arXiv preprint arXiv:1904.08825 (2019)

  45. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: CVPR Workshop (2017)

    Google Scholar 

  46. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. Int. J. Comput. Vis. (IJCV) 127(8), 1106–1125 (2019)

    Article  Google Scholar 

  47. Xu, X., Li, M., Sun, W.: Learning deformable kernels for image and video denoising. arXiv preprint arXiv:1904.06903 (2019)

  48. Steiner, B., et al.: PyTorch: An imperative style, high-performance deep learning library. NeurIPS 32 (2019)

    Google Scholar 

  49. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  50. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  51. Zhou, Y., et al.: When AWGN-based denoiser meets real noises. arXiv preprint arXiv:1904.03485 (2019)

  52. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: CVPR, pp. 3291–3300 (2018)

    Google Scholar 

  53. Chen, C., Chen, Q., Do, M., Koltun, V.: Seeing motion in the dark. In: ICCV (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejian Rong .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 69133 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rong, X., Demandolx, D., Matzen, K., Chatterjee, P., Tian, Y. (2020). Burst Denoising via Temporally Shifted Wavelet Transforms. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12358. Springer, Cham. https://doi.org/10.1007/978-3-030-58601-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58601-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58600-3

  • Online ISBN: 978-3-030-58601-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics