
Deep Vectorization of Technical Drawings

Vage Egiazarian1
?
, Oleg Voynov1

?
, Alexey Artemov1, Denis Volkhonskiy1,

Aleksandr Safin1, Maria Taktasheva1, Denis Zorin2,1, and Evgeny Burnaev1

1 Skolkovo Institute of Science and Technology, 3 Nobel Street, Skolkovo 143026,
Russian Federation

2 New York University, 70 Washington Square South, New York NY 10012, USA
{vage.egiazarian, oleg.voinov, a.artemov, denis.volkhonskiy,

aleksandr.safin, maria.taktasheva}@skoltech.ru, dzorin@cs.nyu.edu,

e.burnaev@skoltech.ru

adase.group/3ddl/projects/vectorization

Abstract. We present a new method for vectorization of technical line
drawings, such as floor plans, architectural drawings, and 2D CAD im-
ages. Our method includes (1) a deep learning-based cleaning stage to
eliminate the background and imperfections in the image and fill in miss-
ing parts, (2) a transformer-based network to estimate vector primitives,
and (3) optimization procedure to obtain the final primitive configura-
tions. We train the networks on synthetic data, renderings of vector line
drawings, and manually vectorized scans of line drawings. Our method
quantitatively and qualitatively outperforms a number of existing tech-
niques on a collection of representative technical drawings.

Keywords: transformer network, vectorization, floor plans, technical
drawings

1 Introduction

Vector representations are often used for technical images, such as architectural
and construction plans and engineering drawings. Compared to raster images,
vector representations have a number of advantages. They are scale-independent,
much more compact, and, most importantly, support easy primitive-level editing.
These representations also provide a basis for higher-level semantic structure
in drawings (e.g ., with sets of primitives hierarchically grouped into semantic
objects).

However, in many cases, technical drawings are available only in raster form.
Examples include older drawings done by hand, or for which only the hard copy
is available, and the sources were lost, or images in online collections. When the
vector representation of a drawing document is unavailable, it is reconstructed,

? Equal contribution

ar
X

iv
:2

00
3.

05
47

1v
3

 [
cs

.C
V

]
 3

0
Ju

l 2
02

0

http://adase.group/3ddl/projects/vectorization

2 V. Egiazarian and O. Voynov et al.

Fig. 1: An overview of our vectorization method. First, the input image is cleaned
with a deep CNN. Then, the clean result is split into patches, and primitive
placement in each patch is estimated with with a deep neural network. After
that, the primitives in each patch are refined via iterative optimization. Finally,
the patches are merged together into a single vector image.

typically by hand, from scans or photos. Conversion of a raster image to a vector
representation is usually referred to as vectorization.

While different applications have distinct requirements for vectorized draw-
ings, common goals for vectorization are:

– approximate the semantically or perceptually important parts of the input
image well;

– remove, to the extent possible, the artifacts or extraneous data in the images,
such as missing parts of line segments and noise;

– minimize the number of used primitives, producing a compact and easily
editable representation.

We note that the first and last requirements are often conflicting. E.g ., in
the extreme case, for a clean line drawing, 100% fidelity can be achieved by
“vectorizing” every pixel with a separate line.

In this paper, we aim for geometrically precise and compact reconstruction
of vector representations of technical drawings in a fully automatic way. Dis-
tinctive features of the types of drawings we target include the prevalence of
simple shapes (line segments, circular arcs, etc.) and relative lack of irregular-
ities (such as interruptions and multiple strokes approximating a single line)
other than imaging flaws. We develop a system which takes as input a technical
drawing and vectorizes it into a collection of line and curve segments (Figure 1).
Its elements address vectorization goals listed above. The central element is a
deep-learning accelerated optimization method that matches geometric primi-
tives to the raster image. This component addresses the key goal of finding a
compact representation of a part of the raster image (a patch) with few vector
primitives. It is preceded by a learning-based image preprocessing stage, that
removes background and noise and performs infill of missing parts of the image,
and is followed by a simple heuristic postprocessing stage, that further reduces
the number of primitives by merging the primitives in adjacent patches.

Deep Vectorization of Technical Drawings 3

Our paper includes the following contributions:

1. We develop a novel vectorization method. It is based on a learnable deep
vectorization model and a new primitive optimization approach. We use
the model to obtain an initial vector approximation of the image, and the
optimization produces the final result.

2. Based on the proposed vectorization method, we demonstrate a complete
vectorization system, including a preprocessing learning-based cleaning step
and a postprocessing step aiming to minimize the number of primitives.

3. We conduct an ablation study of our approach and compare it to several
state-of-the-art methods.

2 Related work

Vectorization. There is a large number of methods for image and line drawing
vectorization. However, these methods solve somewhat different, often impre-
cisely defined versions of the problem and target different types of inputs and
outputs. Some methods assume clean inputs and aim to faithfully reproduce all
geometry in the input, while others aim, e.g ., to eliminate multiple close lines
in sketches. Our method is focused on producing an accurate representation of
input images with mathematical primitives.

One of the widely used methods for image vectorization is Potrace [36]. It
requires a clean, black-and-white input and extracts boundary curves of dark
regions, solving a problem different from ours (e.g ., a single line or curve segment
is always represented by polygon typically with many sides). Recent works [29,22]
use Potrace as a stage in their algorithms.

Another widely used approach is based on curve network extraction and
topology cleanup [11,3,30,6,5,31,18]. The method of [11] creates the curve net-
work with a region-based skeleton initialization followed by morphological thin-
ning. It allows to manually tune the simplicity of the result trading off its fidelity.
The method of [3] uses a polyvector field (crossfield) to guide the orientation of
primitives. It applies a sophisticated set of tuneable heuristics which are difficult
to tune to produce clean vectorizations of technical drawings with a low num-
ber of primitives. The authors of [30] focus on speeding up sketch vectorization
without loss of accuracy by applying an auxiliary grid and a summed area table.
We compare to [3] and [11] which we found to be the best-performing methods
in this class.

Neural network-based vectorization. To get the optimal result, the methods
like [3,11] require manual tuning of hyper-parameters for each individual input
image. In contrast, the neural network-based approach that we opt for is designed
to process large datasets without tuning.

The method of [26] generates vectorized, semantically annotated floor plans
from raster images using neural networks. At vectorization level, it detects a
limited set of axis-aligned junctions and merges them, which is specific to a
subset of floor plans (e.g ., does not handle diagonal or curved walls).

4 V. Egiazarian and O. Voynov et al.

In [10] machine learning is used to extract a higher-level representation from
a raster line drawing, specifically a program generating this drawing. This ap-
proach does not aim to capture the geometry of primitives faithfully and is
restricted to a class of relatively simple diagrams.

A recent work [13] focuses on improving the accuracy of topology recon-
struction. It extracts line junctions and the centerline image with a two headed
convolutional neural network, and then reconstructs the topology at junctions
with another neural network.

The algorithm of [12] has similarities to our method: it uses a neural network-
based initialization for a more precise geometry fit for Bézier curve segments.
Only simple input data (MNIST characters) are considered for line drawing
reconstruction. The method was also applied to reconstructing 3D surfaces of
revolution from images.

An interesting recent direction is generation of sketches using neural networks
that learn a latent model representation for sketch images [14,43,19]. In principle,
this approach can be used to approximate input raster images, but the geometric
fidelity, in this case, is not adequate for most applications. In [42] an algorithm for
generating collections of color strokes approximating an input photo is described.
While this task is related to line drawing vectorization it is more forgiving in
terms of geometric accuracy and representation compactness.

We note that many works on vectorization focus on sketches. Although the
line between different types of line drawings is blurry, we found that methods
focusing exclusively on sketches often produce less desirable results for technical
line drawings (e.g ., [11] and [9]).

Vectorization datasets. Building a large-scale real-world vectorization dataset
is costly and time-consuming [25,38]. One may start from raster dataset and
create a vector ground-truth by tracing the lines manually. In this case, both
location and the style may be difficult to match to the original drawing. Another
way is to start from the vector image and render the raster image from it. This
approach does not necessarily produce realistic raster images, as degradation suf-
fered by real-world documents are known to be challenging to model [21]. As a
result, existing vectorization-related datasets either lack vector annotation (e.g .,
CVC-FP [17], Rent3D [27], SydneyHouse [7], and Raster-to-Vector [26] all pro-
vide semantic segmentation masks for raster images but not the vector ground
truth) or are synthetic (e.g ., SESYD [8], ROBIN [37], and FPLAN-POLY [34]).

Image preprocessing. Building a complete vectorization system based on our
approach requires the initial preprocessing step that removes imaging artefacts.
Preprocessing tools available in commonly used graphics editors require manual
parameter tuning for each individual image. For a similar task of conversion of
hand-drawn sketches into clean raster line drawings the authors of [38,35] use
convolutional neural networks trained on synthetic data. The authors of [25]
use a neural network to extract structural lines (e.g ., curves separating image
regions) in manga cartoon images. The general motivation behind the network-
based approach is that a convolutional neural network automatically adapts to

Deep Vectorization of Technical Drawings 5

different types of images and different parts of the image, without individual
parameter tuning. We build our preprocessing step based on the ideas of [25,38].

Other related work. Methods solving other vectorization problems include,
e.g ., [41,20], which approximate an image with adaptively refined constant color
regions with piecewise-linear boundaries; [28] which extracts a vector represen-
tation of road networks from aerial photographs; [4] which solves a similar prob-
lem and is shown to be applicable to several types of images. These methods use
strong build-in priors on the topology of the curve networks.

3 Our vectorization system

Our vectorization system, illustrated in Figure 1, takes as the input a raster
technical drawing cleared of text and produces a collection of graphical primitives
defined by the control points and width, namely line segments and quadratic
Bézier curves. The processing pipeline consists of the following steps:

1. We preprocess the input image, removing the noise, adjusting its contrast,
and filling in missing parts;

2. We split the cleaned image into patches and for each patch estimate the
initial primitive parameters;

3. We refine the estimated primitives aligning them to the cleaned raster;
4. We merge the refined predictions from all patches.

3.1 Preprocessing of the input raster image

The goal of the preprocessing step is to convert the raw input data into a raster
image with clear line structure by eliminating noise, infilling missing parts of
lines, and setting all background/non-ink areas to white. This task can be viewed
as semantic image segmentation in that the pixels are assigned the background
or foreground class. Following the ideas of [25,38], we preprocess the input image
with U-net [33] architecture, which is widely used in segmentation tasks.We train
our preprocessing network in the image-to-image mode with binary cross-entropy
loss.

3.2 Initial estimation of primitives

To vectorize a clean raster technical drawing, we split it into patches and for each
patch independently estimate the primitives with a feed-forward neural network.
The division into patches increases efficiency, as the patches are processed in
parallel, and robustness of the trained model, as it learns on simple structures.

We encode each patch Ip ∈ [0, 1]
64×64

with a ResNet-based [15] feature ex-
tractor X im = ResNet (Ip), and then decode the feature embeddings of the
primitives Xpr

i using a sequence of ndec Transformer blocks [40]

Xpr
i = Transformer

(
Xpr
i−1, X

im
)
∈ Rnprim×demb , i = 1, . . . , ndec. (1)

6 V. Egiazarian and O. Voynov et al.

Each row of a feature embedding represents one of the nprim estimated prim-
itives with a set of demb hidden parameters. The use of Transformer architecture
allows to vary the number of output primitives per patch. The maximum num-
ber of primitives is set with the size of the 0th embedding Xpr

0 ∈ Rnprim×demb ,
initialized with positional encoding, as described in [40]. While the number of
primitives in a patch is a priori unknown, more than 97% of patches in our data
contain no more than 10 primitives. Therefore, we fix the maximum number of
primitives and filter out the excess predictions with an additional stage. Specif-
ically, we pass the last feature embedding to a fully-connected block, which
extracts the coordinates of the control points, the widths of the primitives
Θ = {θk = (xk,1, yk,1, . . . , wk)}nprim

k=1 , and the confidence values p ∈ [0, 1]
nprim .

The latter indicate that the primitive should be discarded if the value is lower
than 0.5. We detail more on the network in supplementary.

Loss function. We train the primitive extraction network with the multi-task
loss function composed of binary cross-entropy of the confidence and a weighted
sum of L1 and L2 deviations of the parameters

L
(
p, p̂, Θ, Θ̂

)
=

1

nprim

nprim∑
k=1

(
Lcls (pk, p̂k) + Lloc

(
θk, θ̂k

))
, (2)

Lcls (pk, p̂k) = −p̂k log pk − (1− p̂k) log (1− pk), (3)

Lloc

(
θk, θ̂k

)
= (1− λ) ‖θk − θ̂k‖1 + λ‖θk − θ̂k‖22. (4)

The target confidence vector p̂ is all ones, with zeros in the end indicating
placeholder primitives, all target parameters θ̂k of which are set to zero. Since
this function is not invariant w.r.t. to permutations of the primitives and their
control points, we sort the endpoints in each target primitive and the target
primitives by their parameters lexicographically.

3.3 Refinement of the estimated primitives

We train our primitive extraction network to minimize the average deviation of
the primitives on a large dataset. However, even with small average deviation,
individual estimations may be inaccurate. The purpose of the refinement step is
to correct slight inaccuracies in estimated primitives.

To refine the estimated primitives and align them to the raster image, we
design a functional that depends on the primitive parameters and raster image
and iteratively optimize it w.r.t. the primitive parameters

Θref = argmin
Θ

E (Θ, Ip) . (5)

We use physical intuition of attracting charges spread over the area of the prim-
itives and placed in the filled pixels of the raster image. To prevent alignment of
different primitives to the same region, we model repulsion of the primitives.

Deep Vectorization of Technical Drawings 7

We define the optimized functional as the sum of three terms per primitive

E
(
Θpos, Θsize, Ip

)
=

nprim∑
k=1

Esize
k + Epos

k + Erdn
k , (6)

whereΘpos = {θposk }
nprim

k=1
are the primitive position parameters,Θsize =

{
θsizek

}nprim

k=1

are the size parameters, and θk =
(
θposk ,θsizek

)
.

We define the position of a line segment by the coordinates of its midpoint
and inclination angle, and the size by its length and width. For a curve arc, we
define the midpoint at the intersection of the curve and the bisector of the angle
between the segments connecting the middle control point and the endpoints.
We use the lengths of these segments, and the inclination angles of the segments
connecting the “midpoint” with the endpoints.

Charge interactions. We base different parts of our functional on the energy
of interaction of unit point charges r1, r2, defined as a sum of close- and far-range
potentials

ϕ (r1, r2) = e
− ‖r1−r2‖

2

R2
c + λfe

− ‖r1−r2‖
2

R2
f , (7)

parameters Rc, Rf , λf of which we choose experimentally. The energy of interac-
tion of the uniform positively charged area of the kth primitive Ωk and a grid of
point charges q = {qi}npix

i=1 at the pixel centers ri is then defined by the following
equation, that we integrate analytically for lines

Ek (q) =

npix∑
i=1

qi

∫∫
Ωk

ϕ (r, ri) dr
2
. (8)

We approximate it for curves as the sum of integrals over the segments of the
polyline flattening this curve.

In our functional we use three different charge grids, encoded as vectors
of length npix: q̂ represents the raster image with charge magnitudes set to
intensities of the pixels, qk represents the rendering of the kth primitive with its
current values of parameters, and q represents the rendering of all the primitives
in the patch. The charge grids qk and q are updated at each iteration.

Energy terms. Below, we denote the componentwise product of vectors with�,
and the vector of ones of an appropriate size with 1.

The first term is responsible for growing the primitive to cover filled pixels
and shrinking it if unfilled pixels are covered, with fixed position of the primitive:

Esize
k = Ek ([q − q̂]� ck + qk � [1− ck]) . (9)

The weighting ck,i ∈ {0, 1} enforces coverage of a continuous raster region fol-
lowing the form and orientation of the primitive. We set ck,i to 1 inside the
largest region aligned with the primitive with only shaded pixels of the raster,

8 V. Egiazarian and O. Voynov et al.

as we detail in supplementary. For example, for a line segment, this region is a
rectangle centered at the midpoint of the segment and aligned with it.

The second term is responsible for alignment of fixed size primitives

Epos
k = Ek ([q − qk − q̂]� [1 + 3ck]) . (10)

The weighting here adjusts this term with respect to the first one, and subtrac-
tion of the rendering of the kth primitive from the total rendering of the patch
ensures that transversal overlaps are not penalized.

The last term is responsible for collapse of overlapping collinear primitives;
for this term, we use λf = 0:

Erdn
k = Ek

(
qrdnk

)
, qrdnk,i = exp

(
− [|lk,i ·mk,i| − 1]

2
β
)
‖mk,i‖, (11)

where lk,i is the direction of the primitive at its closest point to the ith pixel,
mk,i =

∑
j 6=k lj,iqj,i is the sum of directions of all the other primitives weighted

w.r.t. their “presence”, and β = (cos 15◦ − 1)
−2

is chosen experimentally.
As our functional is based on many-body interactions, we can use an ap-

proximation well-known in physics — mean field theory. This translates into
the observation that one can obtain an approximate solution of (5) by viewing
interactions of each primitive with the rest as interactions with a static set of
charges, i.e., viewing each energy term Epos

k , Esize
k , Erdn

k as depending only on
the parameters of the kth primitive. This enables very efficient gradient compu-
tation for our functional, as one needs to differentiate each term w.r.t. a small
number of parameters only. We detail on this heuristic in supplementary.

We optimize the functional (28) by Adam. For faster convergence, every few
iterations we join lined up primitives by stretching one and collapsing the rest,
and move collapsed primitives into uncovered raster pixels.

3.4 Merging estimations from all patches

To produce the final vectorization, we merge the refined primitives from the
whole image with a straightforward heuristic algorithm. For lines, we link two
primitives if they are close and collinear enough but not almost parallel. After
that, we replace each connected group of linked primitives with a single least-
squares line fit to their endpoints. Finally, we snap the endpoints of intersecting
primitives by cutting down the “dangling” ends shorter than a few percent of the
total length of the primitive. For Bézier curves, for each pair of close primitives
we estimate a replacement curve with least squares and replace the original pair
with the fit if it is close enough. We repeat this operation for the whole image
until no more pairs allow a close fit. We detail on this process in supplementary.

4 Experimental evaluation

We evaluate two versions of our vectorization method: one operating with lines
and the other operating with quadratic Bézier curves. We compare our method

Deep Vectorization of Technical Drawings 9

Fig. 2: (a) Ground-truth vector image, and artefacts w.r.t. which we evaluate the
vectorization performance (b) skeleton structure deviation, (c) shape deviation,
(d) overparameterization.

against FvS [11], CHD [9], and PVF [3]. We evaluate the vectorization perfor-
mance with four metrics that capture artefacts illustrated in Figure 2.

Intersection-over-Union (IoU) reflects deviations in two raster shapes
or rasterized vector drawings R1 and R2 via IoU(R1, R2) = R1∩R2

R1∪R2
. It does

not capture deviations in graphical primitives that have similar shapes but are
slightly offset from each other.

Hausdorff distance

dH (X,Y) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
, (12)

and Mean Minimal Deviation

dM (X,Y) =
1

2

(
d̃M (X → Y) + d̃M (Y → X)

)
, (13a)

d̃M (X → Y) =

∫
x∈X

inf
y∈Y

d(x, y)dX

/ ∫
x∈X

dX (13b)

measure the difference in skeleton structures of two vector images X and Y ,
where d(x, y) is Euclidean distance between a pair of points x, y on skeletons.
In practice, we densely sample the skeletons and approximate these metrics on
a pair of point clouds.

Number of Primitives #P measures the complexity of the vector drawing.

4.1 Clean line drawings

To evaluate our vectorization system on clean raster images with precisely known
vector ground-truth we collected two datasets.

To demonstrate the performance of our method with lines, we compiled PFP
vector floor plan dataset of 1554 real-world architectural floor plans from a
commercial website [2].

To demonstrate the performance of our method with curves, we compiled
ABC vector mechanical parts dataset using 3D parametric CAD models
from ABC dataset [24]. They have been designed to model mechanical parts
with sharp edges and well defined surface. We prepared ≈ 10k vector images via
projection of the boundary representation of CAD models with the open-source
software Open Cascade [1].

10 V. Egiazarian and O. Voynov et al.

Fig. 3: Examples of synthetic training data for our primitive extraction network.

Fig. 4: Sample from DLD dataset: (a) raw input image, (b) the image cleaned
from background and noise, (c) final target with infilled lines.

We trained our primitive extraction network on random 64× 64 crops, with
random rotation and scaling. We additionally augmented PFP with synthetic
data, illustrated in Figure 3.

For evaluation, we used 40 hold-out images from PFP and 50 images from
ABC with resolution∼ 2000×3000 and different complexity per pixel. We specify
image size alongside each qualitative result. We show the quantitative results of
this evaluation in Table 1 and the qualitative results in Figures 5 and 6. Since
the methods we compare with produce widthless skeleton, for fair comparison
w.r.t. IoU we set the width of the primitives in their outputs equal to the average
on the image.

There is always a trade-off between the number of primitives in the vectorized
image and its accuracy, so the comparison of the results with different number of
primitives is not fair. On PFP, our system outperforms other methods w.r.t. all
metrics, and only loses in primitive count to FvS. On ABC, PVF outperforms our
full vectorization system w.r.t. IoU, but not our vectorization method without
merging, as we discuss below in ablation study. It also produces much more
primitives than our method.

4.2 Degraded line drawings

To evaluate our vectorization system on real raster technical drawings, we com-
piled Degraded line drawings dataset (DLD) out of 81 photos and scans
of floor plans with resolution ∼ 1300 × 1000. To prepare the raster targets, we
manually cleaned each image, removing text, background, and noise, and refined
the line structure, inpainting gaps and sharpening edges (Figure 4).

Deep Vectorization of Technical Drawings 11

PFP ABC DLD

IoU,% dH, px dM, px #P IoU,% dH, px dM, px #P IoU,% #P

FvS [11] 31 381 2.8 696 65 38 1.7 63
CHD [9] 22 214 2.1 1214 60 9 1 109 47 329
PVF [3] 60 204 1.5 38k 89 17 0.7 7818

Our 86/88 25 0.2 1331 77/77 19 0.6 97 79/82 452

Table 1: Quantitative results of vectorization. For our method we report two
values of IoU: with the average primitive width and with the predicted.

FvS [11]
29% / 415px
4.2px / 615

CHD [9]
21% / 215px
1.9px / 1192

PVF [3]
64% / 140px
0.9px / 35k

Our method
89% / 28px
0.2px / 1286

Ground truth,
#P 1634

1
7
7
0

p
x

2
5
6

p
x

Fig. 5: Qualitative comparison on a PFP image, and values of IoU / dH / dM /
#P with best in bold. Endpoints of the primitives are shown in orange.

FvS [11]
67%/ 32px
1.1px/ 79

CHD [9]
67%/ 7px
1.0px/ 108

PVF [3]
95%/ 4px
0.2px/ 9.5k

Our method
86%/ 5px
0.4px/ 139

Ground truth,
#P 139

2
6
8
6

p
x

3
8
6

p
x

Fig. 6: Qualitative comparison on an ABC image, and values of IoU / dH / dM

/ #P with best in bold. Endpoints of the primitives are shown in orange.

12 V. Egiazarian and O. Voynov et al.

Input image CHD [9], 52% / 349 Our method, 78% / 368

8
5
0

p
x

8
3

p
x

1
1
0

p
x

Fig. 7: Qualitative comparison on a real noisy image, and values of IoU / #P
with best in bold. Primitives are shown in blue with endpoints in orange on top
of the cleaned raster image.

IoU,% PSNR

MS [38] 49 15.7

Our 92 25.5

Table 2: Quantitative evaluation of the preprocessing step.

To train our preprocessing network, we prepared the dataset consisting of
20000 synthetic pairs of images of resolution 512× 512. We rendered the ground
truth in each pair from a random set of graphical primitives, such as lines,
curves, circles, hollow triangles, etc. We generated the input image via rendering
the ground truth on top of one of 40 realistic photographed and scanned paper
backgrounds selected from images available online, and degrading the rendering
with random blur, distortion, noise, etc. After that, we fine-tuned the prepro-
cessing network on DLD.

For evaluation, we used 15 hold-out images from DLD. We show the quanti-
tative results of this evaluation in Table 1 and the qualitative results in Figure 7.
Only CHD allows for degraded input so we compare with this method only. Since
this method produces widthless skeleton, for fair comparison w.r.t. IoU we set
the width of the primitives in its outputs equal to the average on the image,
that we estimate as the sum of all nonzero pixels divided by the length of the
predicted primitives.

Our vectorization system outperforms CHD on the real floor plans w.r.t. IoU
and produces similar number of primitives.

Evaluation of preprocessing network. We separately evaluate our prepro-
cessing network comparing with public pre-trained implementation of MS [38].
We show the quantitative results of this evaluation in Table 2 and qualitative
results in Figure 8. Our preprocessing network keeps straight and repeated lines
commonly found in technical drawing while MS produces wavy strokes and tends
to join repeated straight lines, thus harming the structure of the drawing.

Deep Vectorization of Technical Drawings 13

Fig. 8: Example of preprocessing results: (a) raw input image, (b) output of
MS [38], (c) output of our preprocessing network. Note the tendency of MS to
combine close parallel lines.

IoU,% dH, px dM, px #P

NN 65 52 1.4 309
NN + Refinement 91 19 0.3 240
NN + Refinement + Postprocessing 77 19 0.6 97

Table 3: Ablation study on ABC dataset. We compare the results of our method
with and without refinement and postprocessing

4.3 Ablation study

To assess the impact of individual components of our vectorization system on
the results, we obtained the results on the ABC dataset with the full system, the
system without the postprocessing step, and the system without the postpro-
cessing and refinement steps. We show the quantitative results in Table 3 and
the qualitative results in Figure 20.

While the primitive extraction network produces correct estimations on av-
erage, some estimations are severely inaccurate, as captured by dH. The refine-
ment step improves all metrics, and the postprocessing step reduces the number
of primitives but deteriorates other metrics due to the trade-off between number
of primitives and accuracy.

We note that our vectorization method without the final merging step out-
performs other methods on ABC dataset in terms of accuracy metrics.

5 Conclusion

We presented a four-part system for vectorization of technical line drawings,
which produces a collection of graphical primitives defined by the control points
and width. The first part is the preprocessing neural network that cleans the
input image from artefacts. The second part is the primitive extraction network,
trained on a combination of synthetic and real data, which operates on patches

14 V. Egiazarian and O. Voynov et al.

NN
54%/ 11px
0.9px/ 109

NN + Refinement
93%/ 5px
0.2px/ 69

Full
67%/ 5px
0.5px/ 25

Ground truth,
#P 57

8
9
8

p
x

Fig. 9: Results of our method on an ABC image with and without refinement
and postprocessing, and values of IoU / dH / dM / #P with best in bold. The
endpoints of primitives are shown in orange.

of the image. It estimates the primitives approximately in the right location
most of the time, however, it is generally geometrically inaccurate. The third
part is iterative optimization, which adjusts the primitive parameters to improve
the fit. The final part is heuristic merging, which combines the primitives from
different patches into single vectorized image. The evaluation shows that our
system, in general, performs significantly better compared to a number of recent
vectorization algorithms.

Modifications of individual parts of our system would allow it to be applied to
different, related tasks. For example, adjustment of the preprocessing network
and the respective training data would allow for application of our system to
extraction of wireframe from a photo. Modification of the optimized functional
and use of the proper training data for primitive extraction network would al-
low for sketch vectorization. Integration with an OCR system would allow for
separation and enhancement of text annotations.

Acknowledgements: We thank Milena Gazdieva and Natalia Soboleva for
their valuable contributions in preparing real-world raster and vector datasets,
as well as Maria Kolos and Alexey Bokhovkin for contributing parts of shared
codebase used throughout this project. We acknowledge the usage of Skoltech
CDISE HPC cluster Zhores for obtaining the presented results. The work was
partially supported by Russian Science Foundation under Grant 19-41-04109.

Deep Vectorization of Technical Drawings 15

References

1. Open CASCADE Technology OCCT. https://www.opencascade.com/, accessed:
2020-03-05 9

2. PrecisionFloorplan. http://precisionfloorplan.com, accessed: 2020-03-05 9

3. Bessmeltsev, M., Solomon, J.: Vectorization of line drawings via polyvector fields.
ACM Transactions on Graphics (TOG) 38(1), 9 (2019) 3, 9, 11, 18, 21, 22, 23,
24, 26, 27

4. Chai, D., Forstner, W., Lafarge, F.: Recovering line-networks in images by junction-
point processes. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 1894–1901 (2013) 5

5. Chen, J., Du, M., Qin, X., Miao, Y.: An improved topology extraction approach
for vectorization of sketchy line drawings. The Visual Computer 34(12), 1633–1644
(2018) 3

6. Chen, J., Lei, Q., Miao, Y., Peng, Q.: Vectorization of line drawing image based
on junction analysis. Science China Information Sciences 58(7), 1–14 (2015) 3

7. Chu, H., Wang, S., Urtasun, R., Fidler, S.: Housecraft: Building houses from rental
ads and street views. In: European Conference on Computer Vision. pp. 500–516.
Springer (2016) 4

8. Delalandre, M., Valveny, E., Pridmore, T., Karatzas, D.: Generation of synthetic
documents for performance evaluation of symbol recognition & spotting systems.
International Journal on Document Analysis and Recognition (IJDAR) 13(3), 187–
207 (2010) 4

9. Donati, L., Cesano, S., Prati, A.: A complete hand-drawn sketch vectorization
framework. Multimedia Tools and Applications 78(14), 19083–19113 (2019) 4, 9,
11, 12, 18, 21, 22, 23, 24, 26, 27, 28

10. Ellis, K., Ritchie, D., Solar-Lezama, A., Tenenbaum, J.: Learning to infer graphics
programs from hand-drawn images. In: Advances in neural information processing
systems. pp. 6059–6068 (2018) 4

11. Favreau, J.D., Lafarge, F., Bousseau, A.: Fidelity vs. simplicity: a global approach
to line drawing vectorization. ACM Transactions on Graphics (TOG) 35(4), 120
(2016) 3, 4, 9, 11, 18, 21, 22, 23, 24, 26, 27

12. Gao, J., Tang, C., Ganapathi-Subramanian, V., Huang, J., Su, H., Guibas, L.J.:
Deepspline: Data-driven reconstruction of parametric curves and surfaces. arXiv
preprint arXiv:1901.03781 (2019) 4

13. Guo, Y., Zhang, Z., Han, C., Hu, W.B., Li, C., Wong, T.T.: Deep line drawing
vectorization via line subdivision and topology reconstruction. Comput. Graph.
Forum 38, 81–90 (2019) 4

14. Ha, D., Eck, D.: A neural representation of sketch drawings (2018) 4

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016) 5

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2016) 18

17. de las Heras, L.P., Terrades, O.R., Robles, S., Sánchez, G.: Cvc-fp and sgt: a
new database for structural floor plan analysis and its groundtruthing tool. Inter-
national Journal on Document Analysis and Recognition (IJDAR) 18(1), 15–30
(2015) 4

https://www.opencascade.com/
http://precisionfloorplan.com

16 V. Egiazarian and O. Voynov et al.

18. Hilaire, X., Tombre, K.: Robust and accurate vectorization of line drawings. IEEE
Transactions on Pattern Analysis & Machine Intelligence (6), 890–904 (2006) 3

19. Kaiyrbekov, K., Sezgin, M.: Stroke-based sketched symbol reconstruction and seg-
mentation. arXiv preprint arXiv:1901.03427 (2019) 4

20. Kansal, R., Kumar, S.: A vectorization framework for constant and linear gradient
filled regions. The Visual Computer 31(5), 717–732 (2015) 5

21. Kanungo, T., Haralick, R.M., Baird, H.S., Stuezle, W., Madigan, D.: A statistical,
nonparametric methodology for document degradation model validation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 22(11), 1209–1223
(2000) 4

22. Kim, B., Wang, O., Öztireli, A.C., Gross, M.: Semantic segmentation for line draw-
ing vectorization using neural networks. In: Computer Graphics Forum. vol. 37,
pp. 329–338. Wiley Online Library (2018) 3

23. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014) 18

24. Koch, S., Matveev, A., Jiang, Z., Williams, F., Artemov, A., Burnaev, E., Alexa,
M., Zorin, D., Panozzo, D.: Abc: A big cad model dataset for geometric deep
learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 9601–9611 (2019) 9

25. Li, C., Liu, X., Wong, T.T.: Deep extraction of manga structural lines. ACM
Transactions on Graphics (TOG) 36(4), 117 (2017) 4, 5

26. Liu, C., Wu, J., Kohli, P., Furukawa, Y.: Raster-to-vector: revisiting floorplan
transformation. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 2195–2203 (2017) 3, 4

27. Liu, C., Schwing, A.G., Kundu, K., Urtasun, R., Fidler, S.: Rent3d: Floor-plan
priors for monocular layout estimation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 3413–3421 (2015) 4

28. Máttyus, G., Luo, W., Urtasun, R.: Deeproadmapper: Extracting road topology
from aerial images. In: Proceedings of the IEEE International Conference on Com-
puter Vision. pp. 3438–3446 (2017) 5

29. Munusamy Kabilan, V., Morris, B., Nguyen, A.: Vectordefense: Vectorization as a
defense to adversarial examples. arXiv preprint arXiv:1804.08529 (2018) 3

30. Najgebauer, P., Scherer, R.: Inertia-based fast vectorization of line drawings. Com-
put. Graph. Forum 38, 203–213 (2019) 3

31. Noris, G., Hornung, A., Sumner, R.W., Simmons, M., Gross, M.: Topology-driven
vectorization of clean line drawings. ACM Transactions on Graphics (TOG) 32(1),
4 (2013) 3

32. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,
J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc. (2019), http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf 18

33. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015) 5, 18

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Deep Vectorization of Technical Drawings 17

34. Rusiñol, M., Borràs, A., Lladós, J.: Relational indexing of vectorial primitives for
symbol spotting in line-drawing images. Pattern Recognition Letters 31(3), 188–
201 (2010) 4

35. Sasaki, K., Iizuka, S., Simo-Serra, E., Ishikawa, H.: Learning to restore deteriorated
line drawing. The Visual Computer 34(6-8), 1077–1085 (2018) 4

36. Selinger, P.: Potrace: a polygon-based tracing algorithm. Potrace (online),
http://potrace.sourceforge.net/potrace.pdf (2009-07-01) (2003) 3

37. Sharma, D., Gupta, N., Chattopadhyay, C., Mehta, S.: Daniel: A deep architecture
for automatic analysis and retrieval of building floor plans. In: 2017 14th IAPR
International Conference on Document Analysis and Recognition (ICDAR). vol. 1,
pp. 420–425. IEEE (2017) 4

38. Simo-Serra, E., Iizuka, S., Ishikawa, H.: Mastering sketching: adversarial augmen-
tation for structured prediction. ACM Transactions on Graphics (TOG) 37(1), 11
(2018) 4, 5, 12, 13

39. Tange, O.: Gnu parallel - the command-line power tool. ;login: The USENIX Mag-
azine 36(1), 42–47 (Feb 2011), http://www.gnu.org/s/parallel 18

40. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017) 5, 6, 18

41. Zhao, J., Feng, J., Zhou, B.: Image vectorization using blue-noise sampling. In:
Imaging and Printing in a Web 2.0 World IV. vol. 8664, p. 86640H. International
Society for Optics and Photonics (2013) 5

42. Zheng, N., Jiang, Y., Huang, D.: Strokenet: Aneural painting environment 4
43. Zhou, T., Fang, C., Wang, Z., Yang, J., Kim, B., Chen, Z., Brandt, J., Terzopou-

los, D.: Learning to doodle with stroke demonstrations and deep q-networks. In:
BMVC. p. 13 (2018) 4

http://www.gnu.org/s/parallel

18 V. Egiazarian and O. Voynov et al.

Appendix

We provide additional details on the neural network architecture and training
process in Sections A and B. Details of our postprocessing can be found in
Section C. We compare runtimes of the methods in Section D. In Section E
we show the performance of [3,9,11] on small patches in comparison to whole
images. We show example results of our system for cartoon drawings in Section F.
We provide additional comparisons from the ablation study in Section H and
additional comparisons with other methods in Section G. In Section I we describe
our refinement algorithm in detail.

A Neural Networks architectures

For image cleaning we use U-net [33] encoder-decoder architecture. It consists
of blocks of layers, each containing convolutional and batch normalization lay-
ers and ReLU activations. We use seven such blocks interleaved with MaxPool
downsampling in the encoder, and seven blocks interleaved with nearest neighbor
upsampling in the decoder. We connect the blocks of the encoder and decoder
with the same resolution of feature maps with skip connections, as in the original
U-net.

We build our primitive extraction network from two parts: the encoder con-
sisting of ResNet18 blocks [16], which extracts features from the raster, and the
decoder Transformer model [40], which estimates the primitive parameters. The
architecture of our primitive extraction network is shown in Figure 10.

We use nres = 1 ResNet18 block with c = 64 channels in each convolution.
We use ndec = 8 Transformer blocks with 4 heads of multi-head attention and
512 neurons in the last fully-connected layer.

We set the hidden dimensionality of the primitive representations in the
Transformer part of the network demb equal to the number of primitive parame-
ters, 6 for lines and 8 for curves: one for the width, one for the confidence value
and the rest for coordinates of the control points. We keep the other hyper-
parameter values the same for lines and curves.

B Training details

We used Pytorch 1.2 for GPU computations and model training [32] and GNU
Parallel to speed up the metric calculations [39] for our methods. We trained
our models for 15 epochs on ABC dataset and 17 epochs on PFP dataset. The
batch size was 128. We used Adam [23] for optimization with a scheduler with
the same hyperparameters as in the original Transformer paper [40]. It took us
approximately four days to train each model on a single Nvidia v100. To speed
up the training, we pre-calculated all data augmentations, including cropping,
and trained our model on this augmented data. First, we split original images
into train, validation, and test sets. Then we cropped and augmented images to
prevent overfitting.

Deep Vectorization of Technical Drawings 19

Positionwise
FeedForward

Multi-Head
Attention

Multi-Head
Attention

ResNet18 block

Features

Linear

Sin table

b

demb

b

x nres

v

c

ndec x

Outputnprim

b

Add & Norm

Add & Norm

Add & Norm

nprim

demb

b

Input

h wx

Fig. 10: Architecture of our vectorization network. A batch of b grayscale raster
patches is first encoded with the sequence of nres ResNet blocks. Then, c channel
feature maps of size h × w are decoded with a sequence of ndec Transformer
blocks. Finally, the output of the last Transformer block is converted with a
linear layer into nprim sets of primitive parameters per sample in batch.

In Figure 11 and Figure 12 we provide metrics on train and validation sets
for patches with size 64× 64 from ABC and PFP datasets correspondingly.

C Merging algorithm

For lines we start by building a graph with the primitives as nodes and edges
between nodes that correspond to a pair of lines that are close and collinear
enough but not almost parallel (Figure 13 (a, b)). Then, we replace the lines
in each connected component of the graph with a single least-squares line fit to

20 V. Egiazarian and O. Voynov et al.

0 200000 400000 600000 800000 1000000

Step

0.000

0.005

0.010

0.015

0.020

0.025

L
os

s

Multi-task loss
Validation

Train

0 200000 400000 600000 800000 1000000

Step

0.3

0.4

0.5

0.6

0.7

0.8

IO
U

IOU score
Validation

Train

0 200000 400000 600000 800000 1000000

Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
D

CD score
Validation

Train

0 200000 400000 600000 800000 1000000

Step

2

4

6

8

10

12

14

M
S

E

Mse score
Validation

Train

ABC Dataset

Fig. 11: Metrics and loss function for train and validation on ABC dataset. One
step of X-axis represents calculations on a single batch.

their endpoints (Figure 13 (c, d)). Finally, we snap the endpoints of intersecting
primitives by cutting down the “dangling” ends shorter than a few percent of
the total length of the primitive. (Figure 13 (e)).

For quadratic Bézier curves, we iteratively try to replace pairs of curves with
a single one. For each pair of curves P (t), t ∈ [0, 1], Q (s), s ∈ [0, 1], we first
check if their widths are close (Figure 14 (b)). Then, we check if the “midpoint”
(Figure 14 (a)) and the endpoints of the second curve are close to the first one,
as illustrated in Figure 14 (c). If all checks are passed, we find a new quadratic
Bézier curve R (u), u ∈ [0, 1] as a least-squares fit to the endpoints and midpoints
of the curves in the pair (Figure 14 (d)). Specifically, we minimize the distances
between the points

P1 = P (0) , Pb = P (tb) , P3 = P (1) ,

Q1 = Q (0) , Qb = Q (sb) , Q3 = Q (1)
(14)

and the points on the new curve

R (0) , R (tbuq1/tq1) , R (uq1/tq1) ,

R (uq1) , R (1− (1− sb) (1− uq1)) , R (1)
(15)

respectively w.r.t. control points of the new curve. Here, tb and tq1 are the
parameter values of Pb and the projection of Q1 on the first curve, sb is the

Deep Vectorization of Technical Drawings 21

0 200000 400000 600000 800000 1000000 1200000 1400000

Step

0.02

0.04

0.06

0.08

0.10

L
os

s

Multi-task loss
Validation

Train

0 200000 400000 600000 800000 1000000 1200000 1400000

Step

0.2

0.3

0.4

0.5

0.6

0.7

IO
U

IOU score
Validation

Train

0 200000 400000 600000 800000 1000000 1200000 1400000

Step

0

1

2

3

4

C
D

CD score
Validation

Train

0 200000 400000 600000 800000 1000000 1200000 1400000

Step

2

4

6

8

10

12

14

M
S

E

Mse score
Validation

Train

PFP Dataset

Fig. 12: Metrics and loss function for train and validation on PFP dataset. One
step of the X-axis represents computations on a single batch.

parameter value of Qb on the second curve, uq1 is the parameter value of Q1

on the new curve. We find the value of uq1 with brute-force search and take the
best fit. Finally, if the best fit is close enough, we replace the pair of the curves
with the fit. We repeat this process until no more pairs allow for a close fit.

D Computation time

Our refinement step is iterative and allows trading longer computation times for
more accurate results. In Table 4 we show example computation times for the
prior work along with IoU values, and the computation times required by our
system to reach similar IoU values.

Our system without the final merging step reaches the same IoU value as
CHD [9] in a similar time, and the same IoU values as FvS [11] and PVF [3] in
much less time. We note however that none of the methods were optimized for
performance and that we run the methods in different environment because of
technical requirements.

22 V. Egiazarian and O. Voynov et al.

a) b) c) d) e)

Fig. 13: Our algorithm of line merging: (a) we find close lines, (b, c) we join
them in the connected components of the graph, (d) we fit the endpoints of the
lines in each connected component with least squares, (e) and finally snap the
endpoints of the lines.

P1

P2

P3

Pb midpoint
P1

P3

Pb

Q3

Qb

Q1

R(u)
R(uq1)

P1

P3

P(tq1)

Q3

Q(sb)

Q1

P(t)

P(tb)

Q(s)

(a)

(c)

(d)

(b)

Fig. 14: (a) Our definition of the “midpoint” for quadratic Bézier curve, and (b-
d) single step of our algorithm of curve merging: (b) we check that the widths
are close, (c) we check that the curves are close, (d) we fit the endpoints and
midpoints of the curves with least squares.

IoU, % Time #P

CHD [9] 64 10 s 994
FvS [11] 74 17.5 m 433
PVF [3] 91 25 h 43k

Our, w/o final merging 68 35 s 2108
Our, w/o final merging 75 50 s 2106
Our, w/o final merging 91 5.5 m 1502

Our, w/o final merging, converged 92 12 m 1435
Our, with final merging 76 26 m 579

Table 4: IoU, computation time, and number of primitives for the results on the
Globe (Figure 18) produced by the prior work, for intermediate results of our
method with similar values of IoU, and for our final result.

Deep Vectorization of Technical Drawings 23

E Prior work on patches

The main steps of our vectorization system, the primitive extraction network
and refinement, operate on small patches of the image, while the methods that
we compare with operate on whole images. To demonstrate that our method
outperforms these ones not only because of this divide-and-merge strategy, in
Figure 15 we show example outputs of these methods applied to small patches
in comparison to the respective patches cut from the results on whole images.

The methods of [3,9] produce similar results on small patches and whole
images, as expected since they use local operations. The method of [11] produces
worse results on patches.

F Generalization to cartoon drawings

Figure 16 shows the results produced by our system on clean cartoon drawings.
Here we used the version operating on curves, with the neural networks trained
on technical drawings.

Our system produces reasonable results, although the predictions of the prim-
itive extraction network are qualitatively less accurate than in case of technical
drawings that we focused on. A proper extension of our system to a different
kind of drawings would require (1) the corresponding training dataset for the
primitive extraction network, and (2) in case of rough sketches, either a proper
training dataset with clean targets for the preprocessing cleaning step, or signif-
icant changes of the refinement step.

G Additional results

In this section, we show more qualitative comparisons on test set for both PFP
in Figure 17 and ABC in Figure 18 datasets and on real data in Figure 19.

H Qualitative ablation study

In this section, we show qualitative results obtained using our system with the (a)
full model without refinement and post-processing steps, (b) full model without
post-processing, (c) full model. You can see this comparison on ABC dataset in
Figure 20 and Figure 21.

24 V. Egiazarian and O. Voynov et al.

FvS [11] CHD [9] PVF [3] GT / Our method

O
n

p
a
tc

h
O

n
fu

ll
im

a
g
e

FvS [11] CHD [9] PVF [3] GT / Our method

O
n

p
a
tc

h
O

n
fu

ll
im

a
g
e

Fig. 15: Results of the prior work on small patches and the respective patches
cut from the results on whole images. Endpoints of the primitives are shown in
orange. The whole images are shown at the top of Figure 17 and in Figure 6
from the main text.

Deep Vectorization of Technical Drawings 25

Input

NN NN + Refinement Full

6
6
0

p
x

Input

NN NN + Refinement Full

7
6
0

p
x

Fig. 16: Qualitative results of our system on clean cartoon drawings. Endpoints
of primitives are shown in orange. The input image on the top is copyrighted by
David Revoy www.davidrevoy.com under CC-by 4.0 license and on the bottom
from www.easy-drawings-and-sketches.com, c© Ivan Huska.

26 V. Egiazarian and O. Voynov et al.

FvS [11]
31%/ 99px

0.9px/ 1098

CHD [9]
25%/ 178px
1.4px/ 1679

PVF [3]
64%/ 46px
0.7px/ 50k

Our method
89%/ 46px
0.3px/ 1513

Ground truth,
#P 2238

1
9
8
7

p
x

4
3
2

p
x

FvS [11]
33%/ 398px
1.6px/ 907

CHD [9]
21%/ 141px
1.3px/ 1808

PVF [3]
71%/ 97px
0.4px/ 53k

Our method
80%/ 25px
0.4px/ 2336

Ground truth,
#P 3069

2
0
2
5

p
x

3
4
3

p
x

Fig. 17: Qualitative comparison on PFP images, and values of metrics IoU / dH

/ dM / #P with best in bold. Endpoints of the primitives are shown in orange.

Deep Vectorization of Technical Drawings 27

FvS [11]
86%/ 23px
1.3px/ 88

CHD [9]
68%/ 5px
1.0px/ 211

PVF [3]
96%/ 2px
0.2px/ 20k

Our method
82%/ 14px
0.2px/ 147

Ground truth,
#P 122

2
6
0
4

p
x

5
3
6

p
x

FvS [11]
74%/ 27px
0.7px/ 433

CHD [9]
64%/ 17px
0.9px/ 994

PVF [3]
91%/ 6px
0.3px/ 43k

Our method
76%/ 34px
0.6px/ 579

Ground truth,
#P 973

3
3
0
3

p
x

5
4
9

p
x

Fig. 18: Qualitative comparison on ABC images, and values of IoU / dH / dM

/ #P metrics, with the best result in boldface. The endpoints of primitives are
shown in orange.

28 V. Egiazarian and O. Voynov et al.

Input image CHD [9], 38% / 230 Our method, 81% / 187

5
4
8

p
x

1
1
6

p
x

Input image CHD [9], 44% / 226 Our method, 84% / 174

6
5
8

p
x

1
4
0

p
x

Fig. 19: Qualitative comparison on real noisy images, and values of metric IoU /
#P with best in bold. Primitives are shown in blue with the endpoints in orange
on top of the cleaned raster image.

Deep Vectorization of Technical Drawings 29

NN
51%/ 24px
1.0px/ 265

NN + Refinement
91%/ 19px
0.2px/ 232

Full
85%/ 19px
0.3px/ 84

Ground truth,
#P 89

1
2
2
0

p
x

Fig. 20: Qualitative comparison on ABC images, and values of IoU / dH / dM /
#P metrics, with the best results shown in boldface. The endpoints of primitives
are shown in orange.

30 V. Egiazarian and O. Voynov et al.

NN
72%/ 25px
0.9px/ 292

NN + Refinement
90%/ 11px
0.3px/ 196

Full
71%/ 11px
0.9px/ 89

Ground truth,
#P 157

2
2
0
0

p
x

NN
58%/ 38px
1.4px/ 2103

NN + Refinement
92%/ 34px
0.2px/ 1435

Full
76%/ 34px
0.6px/ 579

Ground truth,
#P 973

2
5
9
6

p
x

Fig. 21: Qualitative comparison on ABC images, and values of metrics IoU / dH

/ dM / #P with best in bold. Endpoints of the primitives are shown in orange.

Deep Vectorization of Technical Drawings 31

I Details on refinement algorithm

I.1 Overall idea

The underlying idea in our approach is to use interaction potentials, qualita-
tively similar, e.g ., to electrostatic interaction, to construct our optimization
functionals. Fixed charges are associated with filled pixels, and moving charges
to the points on primitives. Primitives and filled pixels of the raster image are
assigned charges of different signs: negative for pixels and positive for primitives.
As a consequence, primitives and filled pixels and are attracted, and primitives
repulse other primitives. Internal charges push primitives to expand, because
their internal charges are repulsing each other. A number of modifications need
to be made to this general approach to avoid undesirable minima.

The interaction energy of two charges at points r1, r2 is given by

q1q2ϕ (‖r1 − r2‖) , (16)

where q1, q2 are signed charges, and ϕ (r) is the interaction potential of two
charges at the distance r from each other. The standard 3D electrostatic potential
is 1

r ; we replace it by an exponentially decaying potential as explained at the
end of this section. The total energy is obtained by summation/integration over
all charge pairs.

Energy. We split our energy into three parts: primitive-pixel interactions,
interactions between distinct primitives and interaction between charges inside
the same primitive. As the charges at pixels do not move, their interactions with
each other can be ignored.

E =
∑

kprim,ipix

Eprim,pix
kprim,ipix

+
∑

kprim<jprim

Eprim,prim
kprim,jprim

+
∑
kprim

Eprim
kprim

. (17)

Three parts of the energy have the following form:

Eprim,pix
kprim,ipix

= −q̂ipix
∫∫

Ωkprim

ϕ
(
‖r − ripix‖

)
dr2, (18)

where q̂ipix
is the pixel intensity, ripix andΩkprim domain covered by the primitive;

Eprim,prim
kprim,jprim

=

∫∫
Ωkprim

∫∫
Ωjprim

ϕ (‖r1 − r2‖) dr21dr22; (19)

and

Eprim
kprim

=
1

2
Eprim,prim
kprim,kprim

=
1

2

∫∫
Ωkprim

∫∫
Ωkprim

ϕ (‖r1 − r2‖) dr21dr22. (20)

32 V. Egiazarian and O. Voynov et al.

Energy properties. Observe that pixel-primitive interaction is negative and
decays (increases in magnitude) as primitive get close to a pixel, and also de-
creases as a primitive increase in size (more coverage is good). Primitive-primitive
interaction energy is positive, decreases as the primitives move apart and also
as the size of the primitives decreases. Finally, the self-interaction energy of a
primitive is positive, does not depend on the primitive position and decreases if
the primitive shrinks.

I.2 Mean-field-based optimization

For optimizing the energy efficiently, we use an approach based on a standard
approach in the mean-field theory: the interactions between particles are viewed
as individual interactions with a mean field, which is then updated using updated
particle positions.

The basic gradient descent update of αth parameter of kth primitive is:

θk,α ← θk,α − λ
∂E

∂θk,α
. (21)

We split the primitive parameters into size and position parameters and spell
out the derivatives explicitly in each case, highlighting in blue the parts of the
expressions that depend on the primitive.

∂

∂θ
{pos,size}
k,α

∑
kprim,ipix

Eprim,pix
kprim,ipix

= ∂
∑
ipix

Eprim,pix
k,ipix

=

−
∑
ipix

q̂ipix∂

∫∫
Ωk

ϕ
(
‖r − ripix‖

)
dr2,

(22)

∂

∂θ
{pos,size}
k,α

∑
kprim<jprim

Eprim,prim
kprim,jprim

= ∂
∑

jprim 6=k

Eprim,prim
k,jprim

=

∂

∫∫
Ωk

∑
jprim 6=k

∫∫
Ωjprim

ϕ (‖r1 − r2‖) dr21dr22,
(23)

∂

∂θposk,α

∑
kprim

Eprim
kprim

= 0, (24)

∂

∂θsizek,α

∑
kprim

Eprim
kprim

= ∂Eprim
k =

1

2
∂

∫∫
Ωk

∫∫
Ωk

ϕ (‖r1 − r2‖) dr21dr22 +
1

2
∂

∫∫
Ωk

∫∫
Ωk

ϕ (‖r1 − r2‖) dr21dr22 =

∂

∫∫
Ωk

∫∫
Ωk

ϕ (‖r1 − r2‖) dr21dr22,

(25)

Deep Vectorization of Technical Drawings 33

The complete expressions for the energy derivatives with respect to positional
parameters are:

∂E

∂θposk,α

= ∂
∑
ipix

Eprim,pix
k,ipix

+ ∂
∑

jprim 6=k

Eprim,prim
k,jprim

=

∂

∫∫
Ωk

 ∑
jprim 6=k

∫∫
Ωjprim

ϕ (‖r − r1‖) dr21 −
∑
ipix

q̂ipixϕ
(
‖r − ripix‖

) dr2. (26)

For size parameters, we obtain the following expression

∂E

∂θsizek,α

= ∂
∑
ipix

Eprim,pix
k,ipix

+ ∂
∑
jprim

Eprim,prim
k,jprim

=

∂

∫∫
Ωk

∑
jprim

∫∫
Ωjprim

ϕ (‖r − r1‖) dr21 −
∑
ipix

q̂ipixϕ
(
‖r − ripix‖

) dr2, (27)

where jprim ranges over all primitives including k
We can interpret these derivatives as derivatives of a different function

E∗ =
∑
k

Epos
k + Esize

k . (28)

with terms defined below. Each term corresponds to particular parameters of
one of the primitives, and can be viewed as the interaction energy of the prim-
itive with a background charge distribution defined by all primitives at a given
instance in time.

Ek (q) =

∫∫
S

q (r1)

∫∫
Ωk

ϕ (‖r1 − r2‖) dr22dr21, (29)

Epos
k = Ek (qposk)|

θsize
k =const

, Esize
k = Ek

(
qsizek

)∣∣
θpos
k =const

, (30)

qposk (r) =
∑

jprim 6=k

1
[
r ∈ Ωjprim

]
−
∑
ipix

q̂ipixδ
(
r − ripix

)
, (31)

qsizek (r) =
∑
jprim

1
[
r ∈ Ωjprim

]
−
∑
ipix

q̂ipixδ
(
r − ripix

)
, (32)

where 1 [·] is the Iverson bracket, and δ is the delta-function.
Expressions (28)-(32) provide the physics-based foundation for our optimiza-

tion: at every step, we use the new form of the energy terms to obtain the gradi-
ents using automatic differentiation; the “frozen” parts of each term are updated
after parameter update at every step. In this initial form, the functional has a
number of undesirable properties for our application; we make several modifica-
tions described in the next section.

34 V. Egiazarian and O. Voynov et al.

I.3 Discretization and functional modifications

Discretization. While for simple primitives the integrals in (28)-(32) can be
computed explicitly, we simplify the problem by using discrete charges instead
of continuous distributions.

The expression (28) becomes equation (8) from the submission.∫∫
S

q (r1)

∫∫
Ωk

ϕ (‖r1 − r2‖) dr22dr21 −→
∑
ipix

qipix

∫∫
Ωk

ϕ
(
‖r − ripix‖

)
dr2. (33)

Expressions (31) and (32) become∫∫
S

1 [r ∈ Ωk] f (r) dr2 −→
∑
ipix

qk,ipixf
(
ripix

)
, (34)

∫∫
S

∑
ipix

q̂ipix
δ
(
r − ripix

)
f (r) dr2 −→

∑
ipix

q̂ipixf
(
ripix

)
, (35)

qposk (r) −→ qposk,ipix
=

∑
jprim 6=k

qjprim,ipix − q̂ipix , (36)

qsizek (r) −→ qsizek,ipix =
∑
jprim

qjprim,ipix − q̂ipix , (37)

where q̂ipix
is the coverage of the ipix

th raster image pixel, and qkprim,ipix is the

coverage of the kprim
th primitive in ipix

th pixel.

Raster Primitives qpos
1 qsize

1

Fig. 22: Raster, primitives and charge grids of the first primitive. First primitive
in blue, second in orange. In charge grids red represents excess charge.

Charge saturation. The charge distributions qposk =
{
qposk,ipix

}
ipix

, qsizek ={
qsizek,ipix

}
ipix

are excess or insufficient charges that need to be compensated by

Deep Vectorization of Technical Drawings 35

Raster Primitives qpos
1 qsize

1

Fig. 23: Overlap affection on other primitives. First primitive in blue, second in
orange. In charge grids red represents excess charge.

changing the kth primitive. The energy terms corresponding to a primitive should
not be affected by how many primitives cover a particular filled area. For ex-
ample, in Figure 22, the second primitive covers the filled part of the raster
perfectly, and this area does not affect the placement and size of the first prim-
itive. Figure 23, the second and third primitives are covering the area equally
well, but because of the overlap, the sum of their charges is higher than the
negative charge of the raster image, and this creates a force acting on the first
primitive.

To avoid the excess charge, we replace the sum of the charges with the max-
imum, leading to the following modification:

qposk,ipix
= q−k,ipix − q̂ipix , (38)

qsizek,ipix = qipix − q̂ipix , (39)

where qipix
is the sum of coverages of ipix

th pixel for all primitives, and q−k,ipix
is the same sum with kth primitive excluded.

Compared to (36), (37), modified charge distributions (38), (39) do not pe-
nalize overlaps.

Illustrative examples. Next, we consider several examples illustrating the
behavior of the functional, which also help us to explain the modifications we
make.
An isolated primitive.

For a single primitive (Figure 24) the position energy term is constant and
does not depend on the parameters, so it would not move. The size energy term
becomes lower with size: the primitive collapses to a point.
Primitive separated from the filled areas of the raster image. For a single prim-
itive sufficiently far from the filled part of the image (Figure 25) the energy
is decreasing if the primitive moves to the raster due to the second term in
(38). If the primitive shrinks, the first term in (39) decreases and the second
term increases. However, as we use fast-decaying potentials, we can neglect the
interactions with distant charges, and overall the energy favors size reduction.

36 V. Egiazarian and O. Voynov et al.

Raster Primitives qpos
1 qsize

1

Fig. 24: Single primitive collapse. In charge grids red represents excess charge.

Raster

so
m

e
it

er
at

io
n

Primitives qpos
1 qsize

1

la
te

r
it

er
at

io
n

ev
en

la
te

r
it

er
at

io
n

Fig. 25: Primitive interaction with far raster filled part. In charge grids red rep-
resents excess charge and blue represents uncovered raster.

A primitive close to a raster image. If a primitive is close to a filled part of
the raster it will get aligned to the filled pixels, if these form a line and will
increase in size until it covers the filled area (Figure 26) If we add additional
filled pixels or other primitives at a distance, due to potential decay, they will
have a minimal effect on the behavior.

Primitive aligned with a filled part of the primitive. In this case, the potentials
from the raster image and the first primitive compensate each other, and the
second primitive will not be affected by either, as in scenario of I.3.

Deep Vectorization of Technical Drawings 37

Raster

so
m

e
it

er
at

io
n

Primitives qpos
1 qsize

1

la
te

r
it

er
at

io
n

ev
en

la
te

r
it

er
at

io
n

Fig. 26: Primitive interaction with close raster filled part. In charge grids red
represents excess charge and blue represents uncovered raster.

Enabling primitive intersections. Consider the case in Figure 27. In this
case,it would be desirable for the second primitive to cover the entire horizontal
line, but this will not happen, as the second primitive, with the original energy
formulation will remain close to its initial state. Primitive 1 instead of expanding
will not change much either, as primitive 2 prevents its expansion.

To achieve the desired effect, i.e., expansion of the second primitive, we mod-
ify qposk as follows:

qposk,ipix
= qipix − qk,ipix − q̂ipix . (40)

With this definition, the primitive interacts with pixels covered by other primi-
tives, which allows it to expand across already filled areas, as in Figure 28

Penalty for overlapping collinear primitives Erdn
k . By itself, (40) allows

not just transversal intersections, but also aligned primitives covering the same
area (Figure 29). We add an additional penalty Erdn

k to avoid this. This term
is also based on the interaction of the primitive with a background charge ex-
cess/deficiency, in this case, created by nearby primitives with tangents close
to its tangent at close points. We define this term for segments first, and then
generalize to curves.

38 V. Egiazarian and O. Voynov et al.

Raster

i
−

1

Primitives qpos
1 qsize

1

i
i

+
1

i
+

2

Fig. 27: Primitives interaction with disable primitive intersections. In charge
grids red represents excess charge and blue represents uncovered raster.

Collinear penalty for line segments. For a system of two segments k and j
we define it as

Erdn
k = Ek

(
qrdnk

)∣∣
close ϕ(r),θpos

k =const
, (41)

qrdnk,ipix
= qj,ipix exp

(
− (|lk · lj | − 1)

2

(|cosαcol| − 1)
2

)
, (42)

where close ϕ (r) means that we truncate the interaction at a fixed radius ϕ (r|r > r∗) =
0, as explained below, and charges qrdnk,ipix

are defined by jth primitive weighted by
the cosine of the angle between segment directions, lk, lj , and αcol is a threshold
angle for collinearity detection.

Deep Vectorization of Technical Drawings 39

Raster

i
−

1

Primitives qpos
1 qsize

1

i
i

+
1

Fig. 28: Primitives interaction with enabled primitive intersections. In charge
grids red represents excess charge and blue represents uncovered raster.

Raster Primitives qpos
1 qsize

1

Fig. 29: Primitives covering the same area.

For many segments, we define the charges as

qrdnk,ipix
= ‖mk,ipix‖ exp

(
−
(
|lk ·mk,ipix | − 1

)2
(|cosαcol| − 1)

2

)
, (43)

where mk,ipix
=
∑
j 6=k ljqj,ipix

is the sum of directions of all the other primitives
weighted w.r.t. the mean direction of other primitives.

40 V. Egiazarian and O. Voynov et al.

Collinearity penalization for curved segments. For curves, we use a similar
idea, but need to use a different direction for every pixel, lk,i

qrdnk,ipix
= ‖mk,ipix‖ exp

(
−
(
|lk,ipix ·mk,ipix | − 1

)2
(|cosαcol| − 1)

2

)
,

mk,ipix =
∑
j 6=k

lk,ipixqj,ipix .

(44)

This definition reduces to the definition for segments if the curve is straight.

Raster

a

Primitives qpos
1 qsize

1

b
c

Fig. 30: Undesirable local minimum in which a primitive covers two disconnected
raster parts.

Connected area mask. Consider the example in Figure 30 (a). Clearly the po-
sition and width of the primitive cannot be changed so that the energy decreases.
Same is true for length: If the length increases or decreases (Figure 30 (b,c)), a
counteracting force immediately appears because of the charge excess or deficit.
We conclude that this is a local minimum, but clearly not a desirable solution.
To reduce the chances of a primitive getting stuck in such a minimum, we limit
the interaction of the primitive with the raster to the part that it can cover for

Deep Vectorization of Technical Drawings 41

its current position and orientation, but arbitrary size. To be more precise, for
line segments (Figure 31), for a fixed position and orientation, we find unfilled
pixels along the line of the segment closest to its center, determining the length
of the area. Once this is determined, then we find unfilled pixels closest to the
line of the segment on two sides. This determines the rectangle for which the
mask coefficient ck,ipix

is set to one, and for the rest of the image to zero.

Fig. 31: Stages of ck,ipix calculation.

For second order Bézier curves, we use a similar definition. Instead of a line
we use a parabola containing the Bézier segment, and the distance along the
parabola instead of the Euclidean distance.

The charge distribution for the size terms of the energy is redefined as follows

qsizek,ipix
=

{
qipix − q̂ipix if ck,ipix = 1,

qk,ipix if ck,ipix = 0.
(45)

Connected area mask for positional terms. If we use the same masks
for the charges used for the positional terms qposk,ipix

eliminating the influence of
everything outside the area where ck,ipix is positive, then the primitive will stay
within the filled area they initially overlap, which may be undesirable if the
initial position is inaccurate, or multiple primitives initially cluster in the same
place. For this reason, we only amplify the charge in the masked area leaving it
the same outside:

qposk,ipix
=

{
λpos

(
qipix − qk,ipix − q̂ipix

)
if ck,ipix = 1,

qipix
− qk,ipix − q̂ipix if ck,ipix = 0,

(46)

The amplification coefficient λpos is chosen empirically.

The choice of the potential function. The main property of the potential
function ϕ (r) used in our algorithm is rapid monotonic decrease with distance.
We use the function

ϕ (r) = e
− r2

R2
c + λfe

− r2

R2
f , (47)

which allows us to control interactions at close range ∼ Rc independently from
interactions at far range∼ Rf . We choose these ranges and the weight experimen-
tally Rc = 1 px, Rf = 32 px, λf = 0.02, and in Erdn

k disable the far interactions
by setting λf = 0.

