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Abstract. The last decade has witnessed remarkable progress in the
image captioning task; however, most existing methods cannot control
their captions, e.g., choosing to describe the image either roughly or in
detail. In this paper, we propose to use a simple length level embedding
to endow them with this ability. Moreover, due to their autoregressive
nature, the computational complexity of existing models increases lin-
early as the length of the generated captions grows. Thus, we further
devise a non-autoregressive image captioning approach that can gener-
ate captions in a length-irrelevant complexity. We verify the merit of
the proposed length level embedding on three models: two state-of-the-
art (SOTA) autoregressive models with different types of decoder, as
well as our proposed non-autoregressive model, to show its generaliza-
tion ability. In the experiments, our length-controllable image caption-
ing models not only achieve SOTA performance on the challenging MS
COCO dataset but also generate length-controllable and diverse image
captions. Specifically, our non-autoregressive model outperforms the au-
toregressive baselines in terms of controllability and diversity, and also
significantly improves the decoding efficiency for long captions. Our code
and models are released at https://github.com/bearcatt/LaBERT.
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1 Introduction

Image captioning is one of the fundamental problems of computer vision which
aims to generate natural language captions for images automatically. It re-
quires not only to recognize salient objects in an image and understand their
interactions, but also to describe them using natural language, which is very
challenging. Most image captioning methods adopt an Encoder-Decoder frame-
work [39,43,47], where the encoder, e.g., a Convolutional Neural Network (CNN),
first extracts features from the input image. An image caption is then decoded
from the image features, one token at each time, typically using a Recurrent
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Reference image captions
A pizza on a pan sitting on a table.
A close up of a pizza in a pan on a table.
A pizza sits on a plate on a dark surface.
A person sitting at a table where a pizza is sitting.
A pizza topped with different toppings is brought to a table.

Predicted image captions
Rough VLP A pizza sitting on top of a pan on a table.

Ours Lv1 A pizza that is sitting on a table.
Ours Lv2 A pizza with tomatoes and spinach on a table.
Ours Lv3 A pizza with tomatoes cheese and toppings on it sitting on a table.

Detailed Ours Lv4 A pizza sitting on top of a pan with a lot of cheese spinach and tomatoes on it.

Fig. 1. Illustration of image captions with different lengths. The top left image is from
the MS COCO dataset. To the right of the image are five human-annotated captions.
At the bottom, we show the image captions generated by an original VLP [53] model
and our length-aware version of VLP. The longest caption (Ours-Lv4) involves more
instances in the image and uses more adjective phrases; while in the shortest caption
(Ours-Lv1), only the salient instances are mentioned in a terse style.

Neural Network (RNN). Following this, many works [20,26,53] achieve the state-
of-the-art (SOTA) performance on the challenging MS COCO dataset [8], and
even outperform human performance on some evaluation metrics.

Despite their remarkable performance, many advanced image captioning ap-
proaches lack the ability to control its predictions, i.e., they cannot change the
way they describe an image. See the example in Fig. 1, given an input image, al-
though the caption generated by VLP [53] (a current SOTA) correctly describes
the image, it also omits some informative visual concepts, such as “cheese” and
“tomatoes”. If we want a more detailed description, this result would be unsat-
isfactory. Therefore, it is desired for the image captioning task if a model can
be controlled to describe the image either roughly or in detail. In this paper, we
show that such an ability can be effectively acquired by directly controlling the
length of the image captions.

Length is an important property of natural language since it reflects the
amount of information carried by a sentence. As shown in Fig. 1, a longer im-
age caption can describe an image more accurately, as it generally has higher
fidelity for the image information. On the other hand, a shorter image cap-
tion can be generated and delivered more efficiently in practice, but with some
extent of information loss. Nevertheless, the length property has not been ex-
plicitly exploited by previous image captioning approaches. Our work fills this
gap by proposing a length-controllable image captioning model. Specifically, we
introduce a concept of “length level” which refers to a specific length range
of the image captions. During training, a length level embedding is learned for
each level with the training data inside the length range. During inference, the
image caption generation is separated into different levels, where each level is
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responsible for generating image captions within the corresponding length range,
conditioned on the learned length level embedding.

Technically, this length control signal is able to be used in many existing
image captioning approaches. However, they may encounter a problem when
generating long image captions because of their autoregressive nature (i.e., gen-
erate one token at a time conditioned on all preceding tokens): the computational
complexity of autoregressive methods increase linearly as the length L of the pre-
dicted caption grows, i.e, a Θ(L) complexity. To tackle this, we further develop
a non-autoregressive model for length-controllable image captions based on
the idea of iterative refinement [15]. Our non-autoregressive model is inherited
from BERT [12], with the input embedding layer modified to incorporate the
image feature representations and the length level information. We name it as
length-aware BERT (LaBERT). Moreover, we devise a non-autoregressive decod-
ing algorithm for LaBERT to make it be able to decode image captions within a
fixed number of refine steps regardless of L, i.e., a length-irrelevant complexity.

In our experiments, we first evaluate the effectiveness of the proposed length-
controllable image captioning scheme by applying it to two most recently SOTA
autoregressive image captioning methods, i.e., AoANet [20], which employs an
LSTM [17] as the decoder, and VLP [53], which adopts a Transformer-based
decoder. After incorporating the length information, these two methods success-
fully generate high-quality and length-controllable image captions. Specifically,
on the challenging MS COCO dataset, our length-aware models not only out-
perform their original version in terms of CIDEr-D [42] score on a normal length
level (10 to 14 tokens), but also achieve remarkable SPICE [1] scores (23.0)
on longer length levels (at least 14 tokens). Afterwards, we evaluate the length
level control signal on our proposed non-autoregressive image captioning model,
LaBERT, which achieves competitive or even better performance compared with
the two autoregressive baselines on all length levels, while also significantly im-
proves the decoding efficiency for long captions. More importantly, we find that
the proposed LaBERT has a better control precision than the two autoregressive
models, and is also able to generate much more diverse image captions.

In summary, the main contributions of this paper are threefold:

1. We firstly introduce the design of “length level” as a control signal to learn
length-aware image captioning models, which can be easily integrated into
existing image captioning approaches to make them capable of generating
high-quality and length-controllable image captions.

2. We devise a non-autoregressive decoder for length-controllable image cap-
tioning, which makes the decoding of long captions more efficiency. Moreover,
it achieves higher control precision and produces more diverse results than
the autoregressive baselines.

3. We perform extensive experiments on different kinds of image captioning
models, whether they are autoregressive or non-autoregressive, and whether
they use LSTM-based decoder or Transformer-based decoder, to show the
effectiveness of our proposed method.
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2 Background and Related Works

2.1 Autoregressive Image Captioning (AIC)

Given an image I, an image captioning model aims to describe I by a textual
sentence S = {si}Li=1, where si is a token in S and L is the length of S. Most
existing image captioning approaches operate in an autoregressive style, which
factors the distribution of S into a chain of conditional probabilities with a left-
to-right causal structure: p(S|I) =

∏L
i=1 p(si|sj<i, I). As a result, S must be

generated sequentially, i.e., si cannot be generated until all preceding tokens
sj<i are available. Assume the target image caption to be S∗ = {s∗i }L

∗

i=1. The
training of AIC models typically follows the “Teacher Forcing” [5] scheme, which
aims to maximize the likelihood of the ground-truth token s∗i given all preceding
ground-truth tokens s∗j<i through back-propagation:

min

L∗∑
i=1

− log p(s∗i |s∗j<i, I). (1)

During inference, AIC models take a special [BOS] token as input to predict
the first token s1, then s1 is fed into the model to obtain the next token s2.
Continuing like this until the special [EOS] token is predicted.

There have been many successful extensions to AIC approaches over the
years. In [48], the authors proposed to integrate soft and hard attention mech-
anisms into the decoder, which facilitates the model to learn to focus on some
specific image regions when generating the token at each decoding step. Later
on, [35] developed a self-critical sequence training (SCST) strategy which di-
rectly optimizes the CIDEr [42] score of the predicted image captions through
policy gradient [40] to amend the “exposure bias” problem in sequence model-
ing. Furthermore, instead of measuring attention over a pre-defined uniform grid
of image regions as in [48], Anderson et al. [2] devised a bottom-up mechanism
to enable the measurement of attention at object-level, which achieved the best
results at that time and outperformed the second-best result by a large margin.
Apart from this, some other works tried to improve the image caption quality
by leveraging additional information, such as semantic attributes [52] and visual
relations [49,50,51]. More recently, after witnessing the effectiveness of Deep
Transformers [41] in capturing long-range dependencies in sequence modeling,
many Transformer-based AIC models [20,26,53] have been developed to further
advance the image captioning performance.

2.2 Diverse and Controllable Image captioning

Despite the remarkable performance achieved by current SOTA AIC models,
fewer efforts have been made towards improving the diversity of image captions.
In [11], the authors trained a Part-of-Speech predictor and performed sampling
base on its predictions to obtain diverse image captions. Chen et al. [6] proposed
to control the image captions though the Abstract Scene Graph of the image.
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Cornia et al. [9] used different image regions to generated region-specific image
captions. However, they rely on additional tools or annotations to provide su-
pervision. Besides, some GAN [16]-based methods have also appeared [10,36,45],
most of which improve on diversity, but suffer on accuracy and do not provide
controllability over the decoding process. Some other works attempted to gen-
erate image captions with controllable styles. These methods require additional
training data, such as an image caption dataset with additional style annota-
tions [7,32,37], which is scarce and expensive; or a large corpus of styled text
without aligned images [13,31], which often leads to unsatisfied caption quality.

As discussed in Section 1, length is an important property for image cap-
tions. It is easy to acquire and is strongly associated with the structure of the
image caption. Several approaches in the Natural Language Processing field have
visited the length-controllable text generation setting. Kikuchi et al. [22] pro-
posed to control the length of output in Neural Sentence Summarization task
by: 1) performing beam search without [EOS] token until the desired length
is reached; 2) setting a length range and manually discarding out-of-range se-
quences; 3) feeding an embedding into the decoder in each step to indicate the
remained length; 4) incorporating the desired length information by multiplying
the length with the initial hidden state. However, the first strategy may not
produce completed sentences, and the results will have similar style since the
model is not aware of the desired length during decoding. The second strategy
may require a large beam size to obtain a valid result, and the diversity of the
results is also limited. The last two strategies seeks to control the exact length
of the output sentence, which is hard in practice and restricts the flexibility
of the results. Moreover, the third strategy is only applicable in autoregressive
text generation models. Similarly, Liu et al. [29] proposed to control the exact
length of the output in ConvSeq2Seq models [14]. They adopted a similar way
as the last strategy of [22] that incorporate the desired length information when
initializing the decoder state. As a result, they face the same problems as in [22].

2.3 Non-autoregressive Text Generation

A common problem for autoregressive sequence generation models is that the
decoding steps must be run sequentially, which prevents architectures like the
Transformer from fully realizing their train-time performance advantage dur-
ing inference. To tackle this, recent works in Neural Machine Translation have
appealed to Non-Autoregressive Machine Translation (NAT), which attempts
to make non-autoregressive predictions for the entire sequence with one forward
pass of the decoder. However, as discussed in [18], NAT models can fail to capture
the dependencies between output tokens due to the multi-modality problem, i.e.,
multiple translations are possible for a single input sentence. To deal with this,
some NAT methods relaxed the one-pass restriction and adopt multiple decoding
passes to iteratively refine the generated sentences [15,25,19,38,44]. To determine
the length of the output, non-autoregressive approaches either predict the length
of the output sentence through a length predictor, or adopt insertion/deletion
modules to automatically change the length of the output.
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3 Method

In this section, we introduce our length level embedding for length-controllable
image captioning. Firstly, in Section 3.1, we elaborate on how the length level
embedding is integrated into existing autoregressive image captioning models
to endow them with the ability of length controlling. Then, in Section 3.2, we
introduce a non-autoregressive image captioning model that can decode image
captions within a specific length range in a length-irrelevant complexity.

3.1 Acquisition of Length Information

Given an input image caption S = {si}Li=1, to model its length information, we
assign S into a specific “length level” with the length range [Llow,Lhigh] accord-
ing to its length L. Then, we use a length level embedding matrix Wl ∈ Rk×d

(k is the number of levels and d is the embedding dimension) to differentiate
image captions on different length levels. Let l be the length level for S, and
let tl be the one-hot representation of l. Then, the length level embedding for
tokens in S is calculated by el = W T

l tl ∈ Rd. The final representation of a token
si is constructed by adding the length level embedding el with its word embed-
ding ew,si ∈ Rd and, optionally (for Transformer-based decoder), its positional
embedding ep,i ∈ Rd:

xsi = el + ew,si + ep,i. (2)

With the length level embedding el, the length information of S is explicitly
incorporated into xsi . Now, given an image caption modelM, we can obtain its
length-aware counterpartM′ by simply replace their original token embeddings
(e.g., word embeddings) with our length-aware tokens embeddings.

When training M′, we can directly follow the training scheme of M, like
using the Teacher Forcing scheme in Eqn. (1) if M is autoregressive. During
training, the length level embedding for level l will only be trained with captions
within a particular length range, thus the “trait” of image captions with different
lengths is separately captured, enabling M′ to perform length-aware modeling.
During inference, apart from the image features, the length level embedding of
the desired length level is also fed intoM′ as a control signal to generate image
captions within the corresponding length range.

When setting the boundary [Llow,Lhigh] of a length level, we follow two
simple principles: 1) there should be enough training data for each length level
so that the length level embedding can be trained sufficiently; 2) the range of a
length level should not be too narrow to ensure the flexibility of the generated
captions. In our experiments, after checking the length distribution of captions in
the MS COCO dataset, we explore two length level division plans which contain
4 and 5 length levels, respectively. As an example, the 4-level plan divides the
image captions into 4 chunks with length inside the ranges [1,9], [10,14],
[15,19], and [20,25], respectively, from rough to detailed. While the 5-level
plan provides more fine-grained levels.
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Location embedding
Visual embedding

Length level embedding
Position embedding
Word embedding

Fig. 2. The overview of LaBERT. Image regions and caption words are projected into
the same dimensional space by the sum of three embeddings, respectively. All inputs
are then combined together through N× Transformer blocks. The final hidden states
h of [MASK] inputs are fed into a token classifier to predict their original tokens.

Length-aware autoregressive caption decoders The decoder of most ex-
isting image captioning models can be broadly classified into two categories,
i.e., LSTM-based and Transformer-based. Due to its simplicity, the proposed
length level embedding can be easily integrated into these models. Specifically,
we implement it on AoANet [20] and VLP [53], which are the most recent SOTA
image captioning models of the two decoder categories, respectively. Like many
previous image captioning models, AoANet adopts an LSTM-based caption de-
coder. During each decoding step, the LSTM takes as input the concatenation
of the word embedding of the input token and a context vector obtained from
the image feature and the decoder context. On the other hand, VLP uses a
BERT [12]-style decoder that consists of a stack of Transformers. Specifically,
VLP follows BERT and employs three types of embeddings to embed an input
token, namely the word embedding, the positional embedding, as well as the
segment type embedding. To achieve length-controllable image captioning for
these two methods, we directly add our length level embedding onto the word
embedding of the input tokens for both AoANet and VLP, without any other
modifications. Through this way, their caption decoders can explicitly model the
length information of the input tokens.

3.2 Non-autoregressive Length-controllable Decoding

To improve the decoding efficiency for long image captions, we propose a non-
autoregressive length-controllable image captioning model named as LaBERT,
where we modify the embedding layer of BERT [12] to incorporate the image
information and the length level information, as shown in Fig. 2. Specifically,
we follow [2,53] and first adopt a pre-trained object detector to detect M ob-
ject proposals from I, denoted as R = {ri}Mi=1. The object detector is further
employed to obtain the corresponding region features Fe = {fe,i}Mi=1, classifica-
tion probabilities Fc = {fc,i}Mi=1, and localization features Fl = {fl,i}Mi=1 for R.
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Similar to [53], the input representation of ri is constructed by:

xri = W T
e fe,i + W T

p [LN(fc,i),LN(fl,i)] + eimg, (3)

where the first two term are the visual embedding and location embedding of ri,
respectively. eimg ∈ Rd is a learnable embedding that differentiates the image
regions from the text tokens. [·, ·] indicates the concatenate operation, and LN
represents Layer Normalization [3]. We and Wp are two learnable projection
matrices that project the corresponding features into d-D space.

Training Given the target image caption S∗, we first identify its length level
l and obtain the length range [Llow,Lhigh] of l. Then, we pad S∗ with the
[EOS] token to the longest length Lhigh. Following [15], we construct the in-
put sequence S by randomly replacing m tokens in S∗ with the [MASK] token,
where m is also randomly selected from the range [1,Lhigh]. Next, LaBERT
attempts to predict the original tokens at all masked positions in S conditioned
only on the embeddings of input image regions (obtained by Eqn. (3)) and the
length-aware embeddings of the unmasked tokens in S (obtained by Eqn. (2)).
Hence, the predicted conditional probabilities are independent with each other,
allowing them to be calculated in parallel at inference time. We train LaBERT
by minimizing the cross-entropy loss over all masked positions:

min

Lhigh∑
i=1

−1(si) log p(si = s∗i ). (4)

1(·) is an indicator function whose value is 1 if si = [MASK] and 0 otherwise.

Inference We perform parallel image caption decoding based on the idea of
iterative refinement [15,25]. Specifically, at step t = 1, we initialize the image
caption S as Lhigh consecutive [MASK] tokens. We first construct the input
representations for text and image through Eqn. (2) and Eqn. (3), respectively.
We then feed them into LaBERT to predict a probability distribution over a

pre-defined vocabulary for every position in S, denoted as P = {pi}
Lhigh

i=1 . To
encourage the model to predict longer captions, we propose to exponentially
decay the probability of the [EOS] token by a factor γ for predictions after Llow:

pi(si = [EOS])← γLhigh−ipi(si = [EOS]), ∀i ∈ [Llow, Lhigh]. (5)

Then, we obtain the refined S by updating all masked position:

si ← arg max
s
pi(si = s). (6)

Moreover, we obtain a confidence score ci = maxs pi(si = s) for each predicted

token si, denoted as C = {ci}
Lhigh

i=1 .
At step t = 2, we adopt the mask-predict-update procedure [15], i.e., we

find the lowest n confidence scores in C and mask the corresponding positions
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Mask-predict-update process 
Step 1 [MASK] [MASK] [MASK] [MASK] [MASK] [MASK]…..[MASK] [MASK] [MASK]

A dog is on the the on a a a a a a a a walking in the sidewalk.
A dog laying on the side of a street with a a walking a a walking in the sidewalk.
A dog laying on the side of a street with a woman walking on the sidewalk of the street.

Step T A dog sitting on the side of a street with a woman walking on the sidewalk in the background.

Fig. 3. An example from our experiments that illustrates the “mask-predict-update”
process of LaBERT. At each step, all red tokens are masked and re-predicted in parallel,
conditioned on other tokens in the sequence and visual information from the image.

in S with [MASK]. Next, the masked S will be fed into LaBERT to predict all
masked positions in parallel, with the probability for [EOS] decayed by Eqn. (5).
We update all masked positions in S through Eqn. (6) to obtain the refined S.
And we propose to update C by:

ci ←

 max
s
pi(si = s), i is a masked position,

(ci + max
s
pi(si = s))/2, otherwise.

(7)

The mask-predict-update procedure will be repeated until t = T (T can be
smaller than Lhigh). The number of masks n in each step is calculated by
n = T−t

T Lhigh, which will decay linearly as the step t increases. An illustra-
tion of the mask-predict-update procedure is shown in Fig. 3.

Through iterative refinement, the computational complexity is decreased
from Θ(Lhigh) in autoregressive methods to Θ(T ) in LaBERT. Moreover, the
mistakes made at early steps in LaBERT are possible to be revised in the future
steps, which is infeasible for autoregressive methods. Note that the update rule
in Eqn. (7) is different from the update rule in [15], which only updates the
confidence scores of the masked positions. In practice, we found ours (denoted
as the global update rule) performs much better in terms of caption quality. Be-
sides, unlike many non-autoregressive text generation methods that rely on a
length predictor to determine the length of the output at the start of decod-
ing, our model is trained to automatically find a suitable end position within
[Llow,Lhigh] for level l, thus this length predictor is not required. Moreover,
LaBERT also allows dynamic length changes during the refinement process,
while not using any additional insertion/deletion modules like in [19].

4 Experiments

In this section, we first introduce the dataset and metrics we used in evaluation
and the implementation details in Section 4.1 and Section 4.2, respectively. In
the following sections, we verify the merit of the proposed length level embedding
from two perspectives, i.e., the quality of generated image captions (Section 4.3
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and 4.4) and the controllability & diversity (Section 4.6). The verification is per-
formed on two SOTA autoregressive models, and our non-autoregressive model
LaBERT, to show the generalization ability of the length level embedding. Mean-
while, we analyze the performance of LaBERT and discuss how it improves the
efficiency of long captions generation in Section 4.5.

4.1 Dataset and Metrics

We evaluate our proposed method on the popular MS COCO dataset [28] which
contains 123,287 images with at least 5 ground-truth captions for each image. We
adopt the Karpathy’s split setting [21], which uses 113,287 images for training,
5,000 for validation and 5,000 for offline evaluation.

To evaluate the quality of the generated captions, we use standard metrics,
including BLEU [33], ROUGE [27], METEOR [4], CIDEr-D [42], and SPICE [1].
All these metrics except SPICE calculate the similarity between the reference
and candidate image captions by considering their n-grams similarity. On the
other hand, SPICE is based on scene-graph synonym matching which considers
a scene-graph representation of an image by encoding objects, attributes, and
relations. According to [1,23], SPICE and METEOR correlate best with human
judgments in terms of caption quality among all these metrics. Moreover, since
most ground-truth image captions in the test splits are short (more than 90%
contain 8-14 tokens), the performance of n-gram based metrics can be negatively
affected when evaluating long candidate captions (e.g., longer than 14 tokens).
Fortunately, SPICE is robust to the length of candidate captions, thus it should
be the prior metric for the evaluation of long captions.

4.2 Implementation Details

For length-aware AoANet and VLP, we adopt their official codes as well as their
experiment settings. For LaBERT, we initialize it from the official pre-trained
BERT-base [12] model, which have 12 layers of Transformer, 12 attention heads,
and a hidden size of 768. We represent each input image as 100 object proposals
extracted by a Faster RCNN [34] pre-trained on the Visual Genome [24] dataset.
We take the intermediate results at the fc6 layer (2048-D) of the Faster RCNN
as the region features Fe. The classification labels Fc containing 1600 object
categories are obtained from the final softmax layer. The localization feature of
each proposal is a 5-tuple contains the normalized coordinates of the top-left and
bottom-right corner of the proposal and its relative area to the whole image. We
train LaBERT for 100,000 iterations with a batch size of 256. The AdamW [30]
optimizer is used with β1 = 0.9, β2 = 0.999, and a weight decay of 1e-2. We
linearly warm-up the learning rate from 0 to 5e-5 over the first 1,000 iterations,
and cosine decay it in the rest training steps. We use a label smoothing of 0.1,
and a gradient clipping threshold of 1.0. The [EOS] decay factor γ is determined
by cross validation on the val splits for each level of LaBERT. Specifically, γ is
set to 0.88 and 0.95 for level 2 and level 3, respectively. For other length levels,
we found LaBERT performs well without [EOS] decay.
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Table 1. Performance of the length-aware version of AoANet and VLP on MS COCO
Karpathy’s test split. S, C, M and B@N, are short for SPICE, CIDEr-D, METEOR,
and BLEU@N scores, respectively. The original results of AoANet and VLP are ob-
tained from models trained by ourselves with the official codes and settings provided
by the authors. All values are reported as a percentage (%).

Metrics S C M B@4 S C M B@4

Models AoANet VLP

Original Results 21.3 118.4 28.3 36.9 21.2 116.9 28.5 36.5

4
-L

ev
el

Lv 1 (1-9) 19.6 107.4 25.9 33.1 18.9 103.0 25.2 31.8
Lv 2 (10-14) 21.7 117.6 28.6 35.8 21.4 118.7 28.8 36.0
Lv 3 (15-19) 22.7 79.9 28.7 26.6 22.4 92.5 29.3 28.4
Lv 4 (20-25) 22.7 29.5 27.7 20.2 22.4 40.0 28.5 21.9

5
-L

ev
el

Lv 1 (1-9) 19.7 108.7 26.0 33.5 18.7 101.0 25.0 30.9
Lv 2 (10-13) 21.6 118.8 28.5 36.1 21.2 117.3 28.4 35.9
Lv 3 (14-17) 22.6 92.9 29.0 28.7 22.3 100.5 29.3 29.9
Lv 4 (18-21) 23.0 48.4 28.2 22.7 22.4 60.4 28.7 24.0
Lv 5 (22-25) 22.9 18.9 27.2 18.8 22.5 28.1 28.1 20.3

4.3 Performance on AoANet and VLP

We first apply our length level embedding to two current SOTA models, i.e.,
AoANet [20] and VLP [53]. We train length-aware AoANet and VLP following
their original training settings. During evaluation, we run our length-aware mod-
els on the test split multiple times, where each time we feed in a different length
level embedding to generate the captions within different length ranges. The re-
sults are recorded in Table 1. From the table, on the normal length range (10-14
tokens), our 4-Level and 5-Level version of VLP and AoANet both achieve com-
petitive or better performance than the original version. Our 4-level VLP even
improve the CIDEr-D score by 1.8% over the original VLP. Note that, most of
the image captions generated by original AoANet and VLP are inside the length
range [10,14], which indicates that our length-aware versions can maintain or
even boost the performance of the original models on a normal length range.

The n-gram based metrics like CIDEr-D drops severely on longer length lev-
els. However, as we discussed in Section 4.1, this does not mean the captions
generated on these levels are bad. See Fig. 1, the 4-level VLP generates high-
quality image captions on all levels. Specifically, on the shortest level, the image
is concisely described, while on the longest level, 4-level VLP narrates the image
in great detail, including visual concepts such as “cheese”, “spinach” and “toma-
toes”, some are even missed in the ground-truth. Moreover, our models generally
achieve remarkable SPICE scores for captions longer than 14 tokens. Our 5-level
AoANet even achieves 23.0 SPICE score, which is 1.7% higher than the origi-
nal result. These results indicate that the length level embedding is well-suited
for existing autoregressive image captioning models and makes them capable of
producing high-quality results within different length ranges.
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Table 2. Performance of LaBERT on MS COCO Karpathy’s test split. R represents
ROUGE. The results of AoANet and VLP are obtained from their papers.

Metrics S C M R B@1 B@2 B@3 B@4

State-Of-The-Art Models

VLP [53] 21.2 116.9 28.4 - - - - 36.5
AoANet [20] 21.3 119.8 28.4 57.5 77.4 - - 37.2

Single-Level LaBERT

Single Level (1-25) 21.7 116.8 27.9 57.0 77.4 61.0 46.5 35.0

4-Level LaBERT

lvl 1 (1-9) 19.5 101.6 25.4 54.7 72.5 56.3 41.8 30.0
lvl 2 (10-14) 21.8 118.2 28.4 57.4 77.6 61.3 46.9 35.3
lvl 3 (15-19) 22.3 90.5 28.6 53.1 66.8 50.6 37.0 26.8
lvl 4 (20-25) 22.2 39.9 27.7 46.9 56.1 40.9 28.6 19.9

4.4 Performance on LaBERT

We further apply the length level embedding to our proposed non-autoregressive
image captioning model, LaBERT. To make comparisons, we implement a single-
level version of LaBERT whose length range is [1,25]. Moreover, the number of
refine steps for 4-level LaBERT is set to 10, 15, 20 and 25, for level 1-4, respec-
tively, so that we can compare LaBERT with the autoregressive image captioning
models under roughly the same decoding complexity. Analogously, The total de-
coding steps of the single-level LaBERT is set to 25. The results are shown in
Table 2. Compared with single-level LaBERT, 4-level LaBERT achieves clearly
better performance on all metrics on the second level, which coincides with our
experiments in Section 4.3. Moreover, 4-level LaBERT yields significantly higher
SPICE scores on level 3 and level 4. These results demonstrate the advantage
of the length level embedding in our non-autoregressive image caption model.
Moreover, under the same computational complexity, 4-level LaBERT performs
comparably with 4-level AoANet and VLP as well as the SOTA results, which
demonstrates the effectiveness of length-level embedding in non-autoregressive
image caption decoding.

4.5 Performance Analysis of LaBERT

In this section, we analyze the effect of some hyper-parameters in 4-level LaBERT,
i.e., the number of refine steps T , the [EOS] decay factor γ in Eqn. (5), and the
global update rule in Eqn. (7). To analyze the effect of refine steps T , we vary T
from 10 to 25 for caption generation on the fourth level; to show the importance
of the [EOS] decay factor γ and the global update rule, we perform ablation
experiments for them on the second level. The results are shown in Table 3.
From the table, the autoregressive baseline, i.e., 4-level VLP performs slightly
better on SPICE; however, it requires 25 steps to decode the entire sequence.
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Table 3. Performance analysis on 4-level LaBERT. “Speedup” indicates the relative
speedup over an autoregressive baseline.

Method S C M R B@1 B@4 Speedup

L
v
l

4

10 refine steps 21.6 39.5 27.3 46.9 55.9 19.0 ×2.5
12 refine steps 21.9 39.8 27.5 46.7 56.1 19.4 ×2.1
15 refine steps 22.0 39.5 27.5 46.6 55.9 19.3 ×1.67
20 refine steps 22.4 39.9 27.8 47.0 56.1 19.8 ×1.25
25 refine steps 22.2 39.9 27.7 46.9 56.1 19.9 ×1.0
4-Level VLP 22.4 40.0 28.5 47.0 56.0 21.9 ×1.0

L
v
l

2 w/o global update 21.7 116.6 28.2 57.2 77.3 34.8 -
w/o [EOS] decay 21.3 116.0 27.8 57.1 78.3 34.9 -
Original Results 21.8 118.2 28.4 57.4 77.6 35.3 -

On the contrary, our non-autoregressive LaBERT can use a much smaller T to
achieve acceleration: by reducing T from 25 to 15, we speedup the decoding by
1.67× with only a minor performance degradation on SPICE (0.2%). We can ac-
quire further speedup (2.1×) by setting T = 12, with a small sacrifice on SPICE
(0.3%). Nevertheless, the performance obtain by LaBERT with 10-20 refine steps
are still competitive to the 25-step performance as well as the performance of
the 4-level VLP, which verifies the capability of LaBERT in efficient image cap-
tioning decoding. Moreover, the global update rule and the [EOS] decay are
shown to be important for LaBERT. After removing them, the CIDEr-D score
of LaBERT on the second level drops by 1.6% and 2.2%, respectively.

4.6 Controllability and Diversity Analysis

In this section, we further analyze the “control precision” of the length level
embedding, i.e., given a length level embedding, the probability of generating
image captions within the desired length range. We calculate the control preci-
sion for the 4-level version of AoANet, VLP and LaBERT, and present the results
in Fig. 4(a). As shown in the figure, all methods accurately control the length
of the generated image captions, and our non-autoregressive model, LaBERT,
yields the best control precision (more than 95%) among all levels. This result
verifies the effectiveness of the proposed length level embedding in generating
length-controllable image captions. Besides, the control precision drops on longer
levels, which may due to the lack of long captions in the MS COCO dataset.

We also perform diversity analysis for the image captions generated by differ-
ent models, as shown in Fig. 4(b) and Table 4. From Fig. 4(b), the length of the
image captions generated by our length-aware models are uniformly distributed
among all length levels. On the contrary, the results of the original AoANet,
VLP and the single-level LaBERT distribute mainly in the shortest two lev-
els. We further evaluate the diversity of the image captions on n-gram diversity
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Fig. 4. Analysis of controllability and diversity on test split. (a) The control precision
of our 4-level version of AoANet, VLP and LaBERT; (b) The length distributions of
image captions generated by our 4-level length-aware models and their counterparts.

Table 4. Diversity analysis. BS denotes beam search with a beam size of 4.

Models
AoANet VLP LaBERT

BS 4-Level BS 4-Level 4-Level

SelfCIDEr [46] 0.590 0.689 0.623 0.762 0.841
Div-1 0.291 0.378 0.313 0.406 0.411
Div-2 0.462 0.523 0.470 0.559 0.575

metrics like Div-1 and Div-2, as well as the recently proposed SelfCIDEr [46]
score that focuses on semantic diversity. From Table 4, our 4-level models per-
form clearly better on all metrics, which means we can obtain diverse captions
for an image with our length-aware image captioning models. Interestingly, our
non-autoregressive model LaBERT significantly outperforms all compared au-
toregressive methods on all three diversity metrics.

5 Conclusion

In this paper, we propose to use a length level embedding for length-controllable
image captioning. By simply adding our length level embedding on the word em-
beddings of input tokens, we endow existing image captioning methods with the
ability to control the length of their predictions. To improve the decoding effi-
ciency of long captions, we further propose a non-autoregressive image captioning
model, LaBERT, that generates image captions in a length-irrelevant complexity.
The experiments demonstrate the effectiveness of the proposed method.
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