Skip to main content

Variational Connectionist Temporal Classification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12373))

Abstract

Connectionist Temporal Classification (CTC) is a training criterion designed for sequence labelling problems where the alignment between the inputs and the target labels is unknown. One of the key steps is to add a blank symbol to the target vocabulary. However, CTC tends to output spiky distributions since it prefers to output blank symbol most of the time. These spiky distributions show inferior alignments and the non-blank symbols are not learned sufficiently. To remedy this, we propose variational CTC (Var-CTC) to enhance the learning of non-blank symbols. The proposed Var-CTC converts the output distribution of vanilla CTC with hierarchy distribution. It first learns the approximated posterior distribution of blank to determine whether to output a specific non-blank symbol or not. Then it learns the alignment between non-blank symbols and input sequence. Experiments on scene text recognition and offline handwritten text recognition show Var-CTC achieves better alignments. Besides, with the enhanced learning of non-blank symbols, the confidence scores of model outputs are more discriminative. Compared with the vanilla CTC, the proposed Var-CTC can improve the recall performance by a large margin when the models maintain the same level of precision.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Tensorflow does not support 0 \(\times \) 1 padding for MaxPooling operation.

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–283 (2016)

    Google Scholar 

  2. Cui, R., Liu, H., Zhang, C.: Recurrent convolutional neural networks for continuous sign language recognition by staged optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7361–7369 (2017)

    Google Scholar 

  3. Feng, X., Yao, H., Zhang, S.: Focal CTC loss for Chinese optical character recognition on unbalanced datasets. Complexity 2019, 1–11 (2019)

    Google Scholar 

  4. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 369–376. ACM (2006)

    Google Scholar 

  5. Graves, A., Jaitly, N.: Towards end-to-end speech recognition with recurrent neural networks. In: International Conference on Machine Learning, pp. 1764–1772 (2014)

    Google Scholar 

  6. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 855–868 (2008)

    Article  Google Scholar 

  7. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649. IEEE (2013)

    Google Scholar 

  8. Guu, K., Pasupat, P., Liu, E.Z., Liang, P.: From language to programs: bridging reinforcement learning and maximum marginal likelihood. arXiv preprint arXiv:1704.07926 (2017)

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Hu, W., Cai, X., Hou, J., Yi, S., Lin, Z.: GTC: guided training of CTC towards efficient and accurate scene text recognition. In: AAAI, pp. 11005–11012 (2020)

    Google Scholar 

  13. Huang, D.A., Fei-Fei, L., Niebles, J.C.: Connectionist temporal modeling for weakly supervised action labeling. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 137–153. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_9

    Chapter  Google Scholar 

  14. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and artificial neural networks for natural scene text recognition. arXiv preprint arXiv:1406.2227 (2014)

  15. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  16. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Mach. Learn. 37(2), 183–233 (1999)

    Article  Google Scholar 

  17. Karatzas, D., et al.: ICDAR 2013 robust reading competition. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1484–1493. IEEE (2013)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  20. Liu, H., Jin, S., Zhang, C.: Connectionist temporal classification with maximum entropy regularization. In: Advances in Neural Information Processing Systems, pp. 831–841 (2018)

    Google Scholar 

  21. Lucas, S.M., et al.: Icdar 2003 robust reading competitions: entries, results, and future directions. IJDAR 7(2–3), 105–122 (2005)

    Article  Google Scholar 

  22. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    Google Scholar 

  23. Marti, U.V., Bunke, H.: The IAM-database: an english sentence database for offline handwriting recognition. Int. J. Doc. Anal. Recogn. 5(1), 39–46 (2002)

    Article  Google Scholar 

  24. Miao, Y., Gowayyed, M., Metze, F.: EESEN: end-to-end speech recognition using deep RNN models and WFST-based decoding. In: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 167–174. IEEE (2015)

    Google Scholar 

  25. Mishra, A., Alahari, K., Jawahar, C.: Scene text recognition using higher order language priors (2012)

    Google Scholar 

  26. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  27. Rezende, D.J., Mohamed, S.: Variational inference with normalizing flows. arXiv preprint arXiv:1505.05770 (2015)

  28. Sak, H., et al.: Learning acoustic frame labeling for speech recognition with recurrent neural networks. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4280–4284. IEEE (2015)

    Google Scholar 

  29. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  30. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2016)

    Article  Google Scholar 

  31. Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: ASTER: an attentional scene text recognizer with flexible rectification. IEEE Trans. Pattern Anal. Mach. Intell. 41, 2035–2048 (2018)

    Article  Google Scholar 

  32. Variani, E., Bagby, T., Lahouel, K., McDermott, E., Bacchiani, M.: Sampled connectionist temporal classification. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4959–4963. IEEE (2018)

    Google Scholar 

  33. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

    MATH  Google Scholar 

  34. Zhang, Y., Nie, S., Liu, W., Xu, X., Zhang, D., Shen, H.T.: Sequence-to-sequence domain adaptation network for robust text image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2740–2749 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linlin Chao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chao, L., Chen, J., Chu, W. (2020). Variational Connectionist Temporal Classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12373. Springer, Cham. https://doi.org/10.1007/978-3-030-58604-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58604-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58603-4

  • Online ISBN: 978-3-030-58604-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics