Skip to main content

Measuring the Importance of Temporal Features in Video Saliency

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12373))

Abstract

Where people look when watching videos is believed to be heavily influenced by temporal patterns. In this work, we test this assumption by quantifying to which extent gaze on recent video saliency benchmarks can be predicted by a static baseline model. On the recent LEDOV dataset, we find that at least 75% of the explainable information as defined by a gold standard model can be explained using static features. Our baseline model “DeepGaze MR” even outperforms state-of-the-art video saliency models, despite deliberately ignoring all temporal patterns. Visual inspection of our static baseline’s failure cases shows that clear temporal effects on human gaze placement exist, but are both rare in the dataset and not captured by any of the recent video saliency models. To focus the development of video saliency models on better capturing temporal effects we construct a meta-dataset consisting of those examples requiring temporal information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer Normalization. arXiv:1607.06450 [cs, stat], July 2016

  2. Bak, C., Kocak, A., Erdem, E., Erdem, A.: Spatio-temporal saliency networks for dynamic saliency prediction. IEEE Trans. Multimed 20(7), 1688–1698 (2018). https://doi.org/10.1109/TMM.2017.2777665

    Article  Google Scholar 

  3. Bazzani, L., Larochelle, H., Torresani, L.: Recurrent mixture density network for spatiotemporal visual attention. In: ICLR 2017 (2017)

    Google Scholar 

  4. Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 185–207 (2013). https://doi.org/10.1109/TPAMI.2012.89

    Article  Google Scholar 

  5. Bylinskii, Z., et al.: MIT saliency benchmark. http://saliency.mit.edu/

  6. Bylinskii, Z., et al.: Learning visual importance for graphic designs and data visualizations. In: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST 2017, pp. 57–69. ACM, New York (2017). https://doi.org/10.1145/3126594.3126653

  7. Cichy, R.M., Kaiser, D.: Deep neural networks as scientific models. Trends Cogn. Sci. 23(4), 305–317 (2019). https://doi.org/10.1016/j.tics.2019.01.009

    Article  Google Scholar 

  8. Dorr, M., Martinetz, T., Gegenfurtner, K.R., Barth, E.: Variability of eye movements when viewing dynamic natural scenes. J. Vis. 10(10), 28–28 (2010). https://doi.org/10.1167/10.10.28

    Article  Google Scholar 

  9. Eysenck, M.W., Keane, M.T.: Cognitive Psychology: A Student’s Handbook, vol. 6. Psychology Press, London (2010)

    Google Scholar 

  10. Fang, Y., Lin, W., Chen, Z., Tsai, C.M., Lin, C.W.: A video saliency detection model in compressed domain. IEEE Trans. Circuits Syst. Video Technol. 24(1), 27–38 (2014). https://doi.org/10.1109/TCSVT.2013.2273613

    Article  Google Scholar 

  11. Guo, C., Zhang, L.: A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans. Image Process. 19(1), 185–198 (2010). https://doi.org/10.1109/TIP.2009.2030969

    Article  MathSciNet  MATH  Google Scholar 

  12. He, S., Tavakoli, H.R., Borji, A., Mi, Y., Pugeault, N.: Understanding and visualizing deep visual saliency models. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10206–10215, June 2019

    Google Scholar 

  13. Hossein Khatoonabadi, S., Vasconcelos, N., Bajic, I.V., Shan, Y.: How many bits does it take for a stimulus to be salient? In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5501–5510, June 2015

    Google Scholar 

  14. Hou, X., Zhang, L.: Dynamic visual attention: searching for coding length increments. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 21, pp. 681–688. Curran Associates, Inc. (2009)

    Google Scholar 

  15. Huang, X., Shen, C., Boix, X., Zhao, Q.: SALICON: reducing the semantic gap in saliency prediction by adapting deep neural networks. In: The IEEE International Conference on Computer Vision (ICCV), pp. 262–270, December 2015

    Google Scholar 

  16. Itti, L.: Quantifying the contribution of low-level saliency to human eye movements in dynamic scenes. Visual Cogn. 12(6), 1093–1123 (2005). https://doi.org/10.1080/13506280444000661

    Article  Google Scholar 

  17. Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2(3), 194–203 (2001). https://doi.org/10.1038/35058500

    Article  Google Scholar 

  18. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998). https://doi.org/10.1109/34.730558

    Article  Google Scholar 

  19. Jiang, L., Xu, M., Liu, T., Qiao, M., Wang, Z.: DeepVS: a deep learning based video saliency prediction approach. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 625–642. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_37

    Chapter  Google Scholar 

  20. Jiang, L., Xu, M., Wang, Z.: Predicting Video Saliency with Object-to-Motion CNN and Two-layer Convolutional LSTM. arXiv:1709.06316 [cs], September 2017

  21. Jost, T., Ouerhani, N., von Wartburg, R., Müri, R., Hügli, H.: Assessing the contribution of color in visual attention. Comput. Vis. Image Underst. 100(1–2), 107–123 (2005). https://doi.org/10.1016/j.cviu.2004.10.009

    Article  Google Scholar 

  22. Judd, T., Durand, F., Torralba, A.: A benchmark of computational models of saliency to predict human fixations. MIT Technical report, January 2012

    Google Scholar 

  23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR 2015, May 2015

    Google Scholar 

  24. Kümmerer, M., Theis, L., Bethge, M.: Deep gaze I: boosting saliency prediction with feature maps trained on ImageNet. In: ICLR Workshops 2015, May 2015

    Google Scholar 

  25. Kümmerer, M., Wallis, T.S.A., Bethge, M.: Information-theoretic model comparison unifies saliency metrics. Proc. Natl. Acad. Sci. 112(52), 16054–16059 (2015). https://doi.org/10.1073/pnas.1510393112

    Article  Google Scholar 

  26. Kümmerer, M., Wallis, T.S.A., Bethge, M.: Saliency benchmarking made easy: separating models, maps and metrics. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 798–814. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_47

    Chapter  Google Scholar 

  27. Kümmerer, M., Wallis, T.S., Gatys, L.A., Bethge, M.: Understanding low- and high-level contributions to fixation prediction. In: The IEEE International Conference on Computer Vision (ICCV), pp. 4799–4808, October 2017

    Google Scholar 

  28. Lai, Q., Wang, W., Sun, H., Shen, J.: Video saliency prediction using spatiotemporal residual attentive networks. IEEE Trans. Image Process. 29, 1113–1126 (2020). https://doi.org/10.1109/TIP.2019.2936112

    Article  MathSciNet  Google Scholar 

  29. Le Meur, O., Baccino, T.: Methods for comparing scanpaths and saliency maps: strengths and weaknesses. Behav. Res. Methods 45(1), 251–266 (2013). https://doi.org/10.3758/s13428-012-0226-9

    Article  Google Scholar 

  30. Leborán, V., García-Díaz, A., Fdez-Vidal, X.R., Pardo, X.M.: Dynamic whitening saliency. IEEE Trans. Pattern Anal. Mach. Intell. 39(5), 893–907 (2017). https://doi.org/10.1109/TPAMI.2016.2567391

    Article  Google Scholar 

  31. Linardos, P., Mohedano, E., Nieto, J.J., O’Connor, N.E., Giro-i-Nieto, X., McGuinness, K.: Simple vs complex temporal recurrences for video saliency prediction. In: British Machine Vision Conference (BMVC), September 2019

    Google Scholar 

  32. Mathe, S., Sminchisescu, C.: Actions in the eye: dynamic gaze datasets and learnt saliency models for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(7), 1408–1424 (2015). https://doi.org/10.1109/TPAMI.2014.2366154

    Article  Google Scholar 

  33. Min, K., Corso, J.J.: TASED-Net: temporally-aggregating spatial encoder-decoder network for video saliency detection. In: The IEEE International Conference on Computer Vision (ICCV), pp. 2394–2403, October 2019

    Google Scholar 

  34. Mital, P.K., Smith, T.J., Hill, R.L., Henderson, J.M.: Clustering of gaze during dynamic scene viewing is predicted by motion. Cogn. Comput. 3(1), 5–24 (2011). https://doi.org/10.1007/s12559-010-9074-z

    Article  Google Scholar 

  35. Pan, J., et al.: SalGAN: visual saliency prediction with generative adversarial networks. arXiv:1701.01081 [cs], January 2017

  36. Peters, R.J., Iyer, A., Itti, L., Koch, C.: Components of bottom-up gaze allocation in natural images. Vision. Res. 45(18), 2397–2416 (2005). https://doi.org/10.1016/j.visres.2005.03.019

    Article  Google Scholar 

  37. Rajashekar, U., Cormack, L.K., Bovik, A.C.: Point-of-gaze analysis reveals visual search strategies. In: Human Vision and Electronic Imaging IX, vol. 5292, pp. 296–306. International Society for Optics and Photonics, June 2004. https://doi.org/10.1117/12.537118

  38. Ren, Z., Gao, S., Chia, L.T., Rajan, D.: Regularized feature reconstruction for spatio-temporal saliency detection. IEEE Trans. Image Process. 22(8), 3120–3132 (2013). https://doi.org/10.1109/TIP.2013.2259837

    Article  Google Scholar 

  39. Rosenholtz, R.: A simple saliency model predicts a number of motion popout phenomena. Vision. Res. 39(19), 3157–3163 (1999). https://doi.org/10.1016/S0042-6989(99)00077-2

    Article  Google Scholar 

  40. Rudoy, D., Goldman, D.B., Shechtman, E., Zelnik-Manor, L.: Learning video saliency from human gaze using candidate selection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1147–1154, June 2013

    Google Scholar 

  41. Seo, H.J., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance. J. Vis. 9(12), 15–15 (2009). https://doi.org/10.1167/9.12.15

    Article  Google Scholar 

  42. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR 2015, May 2015

    Google Scholar 

  43. Sun, Z., Wang, X., Zhang, Q., Jiang, J.: Real-time video saliency prediction via 3d residual convolutional neural network. IEEE Access 7, 147743–147754 (2019). https://doi.org/10.1109/ACCESS.2019.2946479

    Article  Google Scholar 

  44. Tatler, B.W.: The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. J. Vis. 7(14), 4–4 (2007). https://doi.org/10.1167/7.14.4

    Article  Google Scholar 

  45. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol. 12(1), 97–136 (1980). https://doi.org/10.1016/0010-0285(80)90005-5

    Article  Google Scholar 

  46. Vig, E., Dorr, M., Cox, D.: Large-scale optimization of hierarchical features for saliency prediction in natural images. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2798–2805 (2014)

    Google Scholar 

  47. Wang, W., Shen, J., Guo, F., Cheng, M.M., Borji, A.: Revisiting video saliency: a large-scale benchmark and a new model. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4894–4903, June 2018

    Google Scholar 

  48. Wang, W., et al.: Learning unsupervised video object segmentation through visual attention. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3064–3074, June 2019

    Google Scholar 

  49. Wilming, N., Betz, T., Kietzmann, T.C., König, P.: Measures and limits of models of fixation selection. PLoS ONE 6(9), e24038 (2011). https://doi.org/10.1371/journal.pone.0024038

    Article  Google Scholar 

  50. Wu, X., Wu, Z., Zhang, J., Ju, L., Wang, S.: SalSAC: a video saliency prediction model with shuffled attentions and correlation-based ConvLSTM. In: Thirty-Fourth AAAI Conference on Artificial Intelligence. AAAI Press, February 2020

    Google Scholar 

  51. Zhang, L., Tong, M.H., Cottrell, G.W.: SUNDAy: saliency using natural statistics for dynamic analysis of scenes. In: Proceedings of the 31st Annual Meeting of the Cognitive Science Society, pp. 2944–2949. AAAI Press, Cambridge (2009)

    Google Scholar 

  52. Zhong, S.h., Liu, Y., Ren, F., Zhang, J., Ren, T.: Video saliency detection via dynamic consistent spatio-temporal attention modelling. In: Twenty-Seventh AAAI Conference on Artificial Intelligence. AAAI Press, July 2013

    Google Scholar 

  53. Zhou, F., Bing Kang, S., Cohen, M.F.: Time-mapping using space-time saliency. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3358–3365, June 2014

    Google Scholar 

Download references

Acknowledgements

This work was supported by the German Federal Ministry of Education and Research (BMBF): Tübingen AI Center, FKZ: 01IS18039A and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation): Germany’s Excellence Strategy – EXC 2064/1 – 390727645 and SFB 1233, Robust Vision: Inference Principles and Neural Mechanisms, TP 3, project number: 276693517. The authors thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Matthias Tangemann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Tangemann .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mp4 6525 KB)

Supplementary material 3 (mp4 2240 KB)

Supplementary material 4 (mp4 4535 KB)

Supplementary material 5 (mp4 1502 KB)

Supplementary material 6 (mp4 2682 KB)

Supplementary material 7 (mp4 5601 KB)

Supplementary material 1 (pdf 210 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tangemann, M., Kümmerer, M., Wallis, T.S.A., Bethge, M. (2020). Measuring the Importance of Temporal Features in Video Saliency. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12373. Springer, Cham. https://doi.org/10.1007/978-3-030-58604-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58604-1_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58603-4

  • Online ISBN: 978-3-030-58604-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics