Skip to main content

Layered Neighborhood Expansion for Incremental Multiple Graph Matching

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12355))

Abstract

Graph matching has been a fundamental problem in computer vision and pattern recognition, for its practical flexibility as well as NP hardness challenge. Though the matching between two graphs and among multiple graphs have been intensively studied in literature, the online setting for incremental matching of a stream of graphs has been rarely considered. In this paper, we treat the graphs as graphs on a super-graph, and propose a novel breadth first search based method for expanding the neighborhood on the super-graph for a new coming graph, such that the matching with the new graph can be efficiently performed within the constructed neighborhood. Then depth first search is performed to update the overall pairwise matchings. Moreover, we show our approach can also be readily used in the batch mode setting, by adaptively determining the order of coming graph batch for matching, still under the neighborhood expansion based incremental matching framework. Experiments on both online and offline matching of graph collections show our approach’s state-of-the-art accuracy and efficiency.

Work was partly supported by National Key Research and Development Program of China 2018AAA0100704, NSFC (61972250, U19B2035), and SJTU Global Strategic Partnership Fund (2020 SJTU-CORNELL).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We assume graphs are of equal size in this paper, which can be obtained by adding dummy nodes if needed as widely done in literature [6].

References

  1. Bunke, H.: Graph matching: theoretical foundations, algorithms, and applications. In: Vision Interface (2000)

    Google Scholar 

  2. Caetano, T., McAuley, J., Cheng, L., Le, Q., Smola, A.J.: Learning graph matching. TPAMI 31(6), 1048–1058 (2009)

    Article  Google Scholar 

  3. Chen, Y., Guibas, L., Huang, Q.: Near-optimal joint object matching via convex relaxation. In: ICML (2014)

    Google Scholar 

  4. Chertok, M., Keller, Y.: Efficient high order matching. TPAMI 32, 2205–2215 (2010)

    Article  Google Scholar 

  5. Cho, M., Alahari, K., Ponce, J.: Learning graphs to match. In: ICCV (2013)

    Google Scholar 

  6. Cho, M., Lee, J., Lee, K.M.: Reweighted random walks for graph matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 492–505. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_36

    Chapter  Google Scholar 

  7. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. IJPRAI 18, 265–298 (2004)

    Google Scholar 

  8. Duchenne, O., Bach, F., Kweon, I., Ponce, J.: A tensor-based algorithm for high-order graph matching. TPAMI 33, 2383–2395 (2011)

    Article  Google Scholar 

  9. Egozi, A., Keller, Y., Guterman, H.: A probabilistic approach to spectral graph matching. TPAMI 35, 18–27 (2013)

    Article  Google Scholar 

  10. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  11. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern recognition in the last 10 years. IJPRAI 33(1), 1450001 (2014)

    MathSciNet  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1990)

    MATH  Google Scholar 

  13. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. TPAMI 18, 377–388 (1996)

    Article  Google Scholar 

  14. Guibas, L.J., Huang, Q., Liang, Z.: A condition number for joint optimization of cycle-consistent networks. In: NeurIPS (2019)

    Google Scholar 

  15. Hu, N., Huang, Q., Thibert, B., Guibas, L.J.: Distributable consistent multi-object matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2463–2471 (2018)

    Google Scholar 

  16. Hu, N., Rustamov, R.M., Guibas, L.: Graph matching with anchor nodes: a learning approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2906–2913 (2013)

    Google Scholar 

  17. Hu, N., Rustamov, R.M., Guibas, L.: Stable and informative spectral signatures for graph matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2305–2312 (2014)

    Google Scholar 

  18. Huang, Q., Zhang, G., Gao, L., Hu, S., Butscher, A., Guibas, L.: An optimization approach for extracting and encoding consistent maps in a shape collection. ACM Trans. Graph. (TOG) 31, 1–11 (2012)

    Google Scholar 

  19. Kulesza, A., Taskar, B., Liu, L.: Determinantal point processes for machine learning. Found. Trends Mach. Learn. 5, 123–286 (2012)

    Article  Google Scholar 

  20. Leordeanu, M., Sukthankar, R., Hebert, M.: Unsupervised learning for graph matching. IJCV 96, 28–45 (2012)

    Article  MathSciNet  Google Scholar 

  21. Leordeanu, M., Zanfir, A., Sminchisescu, C.: Semi-supervised learning and optimization for hypergraph matching. In: ICCV (2011)

    Google Scholar 

  22. Loiola, E.M., de Abreu, N.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. EJOR 176, 657–690 (2007)

    Article  MathSciNet  Google Scholar 

  23. Ngoc, Q., Gautier, A., Hein, M.: A flexible tensor block coordinate ascent scheme for hypergraph matching. In: CVPR (2015)

    Google Scholar 

  24. Pachauri, D., Kondor, R., Vikas, S.: Solving the multi-way matching problem by permutation synchronization. In: NIPS (2013)

    Google Scholar 

  25. Shi, X., Ling, H., Hu, W., Xing, J., Zhang, Y.: Tensor power iteration for multi-graph matching. In: CVPR (2016)

    Google Scholar 

  26. Solé-Ribalta, A., Serratosa, F.: Models and algorithms for computing the common labelling of a set of attributed graphs. CVIU 115, 929–945 (2011)

    MATH  Google Scholar 

  27. Solé-Ribalta, A., Serratosa, F.: Graduated assignment algorithm for multiple graph matching based on a common labeling. IJPRAI 27, 1350001 (2013)

    MathSciNet  Google Scholar 

  28. Swoboda, P., Mokarian, A., Theobalt, C., Bernard, F., et al.: A convex relaxation for multi-graph matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11156–11165 (2019)

    Google Scholar 

  29. Vento, M.: A long trip in the charming world of graphs for pattern recognition. Pattern Recogn. 48(2), 291–301 (2015)

    Article  Google Scholar 

  30. Wang, R., Yan, J., Yang, X.: Learning combinatorial embedding networks for deep graph matching. In: ICCV (2019)

    Google Scholar 

  31. Yan, J., Cho, M., Zha, H., Yang, X., Chu, S.: Multi-graph matching via affinity optimization with graduated consistency regularization. TPAMI 38, 1228–1242 (2016)

    Article  Google Scholar 

  32. Yan, J., Li, Y., Liu, W., Zha, H., Yang, X., Chu, S.M.: Graduated consistency-regularized optimization for multi-graph matching. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 407–422. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_27

    Chapter  Google Scholar 

  33. Yan, J., Tian, Y., Zha, H., Yang, X., Zhang, Y., Chu, S.: Joint optimization for consistent multiple graph matching. In: ICCV (2013)

    Google Scholar 

  34. Yan, J., Wang, J., Zha, H., Yang, X., Chu, S.: Consistency-driven alternating optimization for multigraph matching: a unified approach. IEEE Trans. Image Process. 24(3), 994–1009 (2015)

    Article  MathSciNet  Google Scholar 

  35. Yan, J., Xu, H., Zha, H., Yang, X., Liu, H., Chu, S.: A matrix decomposition perspective to multiple graph matching. In: ICCV (2015)

    Google Scholar 

  36. Yan, J., Yin, X., Lin, W., Deng, C., Zha, H., Yang, X.: A short survey of recent advances in graph matching. In: ICMR (2016)

    Google Scholar 

  37. Yan, J., Zhang, C., Zha, H., Liu, W., Yang, X., Chu, S.: Discrete hyper-graph matching. In: CVPR (2015)

    Google Scholar 

  38. Yu, T., Yan, J., Liu, W., Li, B.: Incremental multi-graph matching via diversity and randomness based graph clustering. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 142–158. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_9

    Chapter  Google Scholar 

  39. Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: CVPR (2008)

    Google Scholar 

  40. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. IJCV 13, 119–152 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junchi Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Xie, Z., Yan, J., Zheng, Y., Yang, X. (2020). Layered Neighborhood Expansion for Incremental Multiple Graph Matching. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12355. Springer, Cham. https://doi.org/10.1007/978-3-030-58607-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58607-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58606-5

  • Online ISBN: 978-3-030-58607-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics