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Abstract. Vision-and-Language Navigation (VLN) is unique in that
it requires turning relatively general natural-language instructions into
robot agent actions, on the basis of visible environments. This requires
to extract value from two very different types of natural-language infor-
mation. The first is object description (e.g., ‘table’, ‘door’), each pre-
senting as a tip for the agent to determine the next action by finding
the item visible in the environment, and the second is action specifica-
tion (e.g., ‘go straight’, ‘turn left’) which allows the robot to directly
predict the next movements without relying on visual perceptions. How-
ever, most existing methods pay few attention to distinguish these in-
formation from each other during instruction encoding and mix together
the matching between textual object/action encoding and visual percep-
tion/orientation features of candidate viewpoints. In this paper, we pro-
pose an Object-and-Action Aware Model (OAAM) that processes these
two different forms of natural language based instruction separately. This
enables each process to match object-centered/action-centered instruc-
tion to their own counterpart visual perception/action orientation flexi-
bly. However, one side-issue caused by above solution is that an object
mentioned in instructions may be observed in the direction of two or
more candidate viewpoints, thus the OAAM may not predict the view-
point on the shortest path as the next action. To handle this problem,
we design a simple but effective path loss to penalize trajectories deviat-
ing from the ground truth path. Experimental results demonstrate the
effectiveness of the proposed model and path loss, and the superiority of
their combination with a 50% SPL score on the R2R dataset and a 40%
CLS score on the R4R dataset in unseen environments, outperforming
the previous state-of-the-art.

Keywords: Vision-and-Language Navigation, Modular Network, Re-
ward Shaping
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Fig. 1. A snapshot of navigating action predicted by the proposed model and our
baseline navigator EnvDrop [19]. Our model is able to more flexibly utilize object and
action phrases thanks to the object-/action- aware modules. The numbered circles
denote navigable viewpoints, and the blue one is our final decision.

1 Introduction

Vision-and-language navigation (VLN) has attracted increasing attention, partly
due to the prospect that the capability to interpret general spoken instructions
might represent a significant step toward enabling intelligent robots [2,4,11,18].
The goal of VLN is for a robot to interpret a navigation instruction expressed in
natural language, and carry out the associated actions. Typically this involves an
agent navigating through a 3D photo-realistic simulator [2] to a goal location,
which is not visible from the start point. The natural language instructions
involved are of the form of ‘Go left down the hallway toward the exit sign until
the end. Turn right and go down the hallway. Go into the door on the left and
stop by the table.’. The simulator in this scenario provides a set of panoramic
images of a real environment, and a limited set of navigation choices that can
be taken for each. Although it is related to other Vision-and-Language problems
that have been extensively studied, VLN remains an open problem due to the
difficulty of navigating general real environments, and the complexity of the
instructions that humans give for doing so.

A range of approaches have been proposed to address the vision-and-language
guided navigation problem [17,4,19,18,16,22,21,5]. For instance, to progressively
process long navigation instructions, Ma et al. [17] propose a progress monitor
network to identify the completed part of an instruction and the part associated
with the next action. To expand training data, the Speaker-Follower (SF) [4]
and EnvDrop [19] are proposed to generate new trajectories and ‘unseen’ scenes
from seen ones, respectively. To mimic human behaviors when navigating, the
Regretful model [18] introduces a backtracking mechanism into the navigation
process to enable the agent to retrace its steps. In FAST model [14], a strategy
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that compromises between greedy search and beam search is developed to bal-
ance search efficiency against accuracy. However, all of these approaches entangle
the encoding of object descriptions with that of action specifications, instead of
processing them separately. Most action specifications (e.g., ‘go straight ahead’
or ‘turn right’), closely relating to orientations1 rather than visual perceptions
of each navigable candidate viewpoint, are able to directly lead to the correct
next action. By contrast, the object descriptions (e.g., ‘the stairs’ or ‘the table’)
correspond to visual perceptions, instead of the orientations, in the visible scene.
Therefore, the mixed encoding scheme may limit the similarity/grounding learn-
ing in the decoding phase between instructions and visual perceptions as well as
orientations.

To address the above mentioned problem, we propose here an object-and-
action aware model (OAAM) for robust navigation that reflects to exploit the
important distinction. Specifically, we first utilize two learnable attention mod-
ules to highlight language relating to objects and actions within a given in-
struction. Then, the resulting attention maps guide an object-vision matching
module and an action-orientation matching module, respectively. Finally, the ac-
tion to be taken is identified by combining the outcomes of both modules using
weights derived by an additional attention module taking the instruction and
visual context as input. Figure 1 provides an example of the VLN process that
demonstrates that our design enables the agent to more fleixibly utilize object
descriptions and action specifications, and finally leads to the correct prediction
compared against the strong baseline navigator EnvDrop [19].

The proposed OAAM is able to improve the navigation success as demon-
strated later in the experiment. However, its trajectory might not be the shortest
because the focused object in the instruction may be observed in the direction of
multiple candidate viewpoints. To handle this problem, we design a simple but
effective path loss to encourage the agent to stay on the shortest path instead
of merely picking alternative viewpoints containing the instruction mentioned
object. In particular, the proposed path loss is based on distances calculated at
each agent step to its nearest viewpoint on the ground-truth path. Note that this
differs from the Coverage weighted by Length Score (CLS) award [13] that com-
putes a normalised score by inversely finding the nearest viewpoint in the agent
trajectory to each viewpoint on the ground-truth path. Experimental results
show that this loss aids the OAAM to generalise in unseen scenarios.

The main contributions of this work are summarized as follows:

1. We propose an object-and-action aware model, which better reflects the
nature of the associated natural language instructions and responds more
flexibly.

2. We design a path loss that encourages the agent to closely follow naviga-
tion instructions.

1‘orientation’ means the encoding of the angle that an agent should rotate in order
to find a navigable viewpoint from its front direction as in [14,17,18].
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3. Extensive experimental results demonstrate the effectiveness of the pro-
posed method and set new state-of-the-art on the R4R dataset with a CLS
score of 0.40.

2 Related Work

Vision-and-Language Navigation. Numerous methods have been proposed
to address the VLN problem. Most of them employ the CNN-LSTM architec-
ture with attention mechanism to first encode instructions and then decode the
embedding to a series of actions. Together with the proposing of the VLN task,
Anderson et al. [2] develop the teacher-forcing and student-forcing training
strategy. The former equips the network with basic ability for navigating us-
ing ground truth action at each step, while the latter mimics the test scenarios,
where the agent may predict wrong actions, by sampling actions instead of using
ground truth actions. Deep learning based methods always benefit from massive
training data. To generate more training data, Fried et al. [4] propose a speaker
model to synthesize new instructions for randomly selected robot trajectories. By
contrast, Tan et al. [19] augment the training data by additionaly removing ob-
jects from the original training data to generate new ‘unseen’ environments. To
further enhance the generalization ability, they also propose to train the model
using both imitation learning and reinforcement learning so as to take advantage
of both off-policy and on-policy optimization. Not all chunks of an instruction
are useful to predict the next action. Ma et al. [17] propose a progress monitor
to locate the completed sub-instructions and to be aware of the ones for predict-
ing the next action. Another way to improve navigation success is to equip the
agent with backtracking. In [18], Ma et al. propose to treat the navigation as
a graph search problem and predict to move forward or roll back to a previous
viewpoint. In [14], each passed viewpoint is viewed as a goal candidate, and the
final decision is the viewpoint with the highest local and global matching score.

However, the above mentioned methods neglect to distinguish the object de-
scriptions and the action specifications within the focused sub-instruction. This
may limit the learning of matching between object-/action-centered instructions
and their counterpart visual perceptions/orientations. To address this problem,
we propose to separately learn the object attention and action attention, and so
the learning of object-vision matching and action-orientation matching.
Modular Language Process Networks. Modular language decomposition
has been widely adopted in question answering [3], visual reasoning [7], referring
expression comprehension [9,23], etc. Most methods are based on hard parsers
or learned parsers. For example, Andreas et al. [3] decompose each question into
a sequence of modular sub-problems with the help of an fixed off-the-shelf syn-
tactic parsers. Such hard parsers are not able to analyse semantic relationships
between entities. By contrast, the learned parses can be flexibly designed ac-
cording to parsing purposes. For instance, Hu et al. [9] design a attention-based
network to learn to decompose expressions into (Subject, Relationship, Object)
triplets, which facilitates to ground language to visual regions. In [23], Yu et
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Fig. 2. Main steps of the proposed object-and-action aware model, which consists of
three modules: the object-aware module that predicts the next action based on object-
centered instructions and visual perceptions; the action-aware module that predicts
the next action based on action-centered instructions and orientations of candidate
viewpoints; and the adaptive combination module that predicts weights to combine
predictions obtained by the other two modules.

al. propose the (Subject, Location, Relationship) triplet to additionally taking
object position into consideration.

Inspired by the above modular decomposition mechanism, we propose to
decompose an instruction into object and action components for the VLN task
because two fundamental different type of information of candidate viewpoints
are used to match to instructions, namely visual perceptions and orientations.
Differ from the above mentioned methods, our modular decomposition model
takes navigation progress into consideration, i.e., the decomposition should take
place on a certain part of the instruction, which is closely related to the current
agent location, instead of the whole instruction.

3 Method

In this section, we first describe the symbols that will be used later and briefly
introduce the baseline navigator, EnvDrop [19], to put our method into a proper
context. EnvDrop is adopted due to its good performance. Then, we detail the
proposed object-and-action aware model (OAAM).

Figure 2 shows the pipeline of the proposed method in training phase. An
instruction is first encoded by a bi-direction LSTM. Then our OAAM model
decomposes the instruction encoding into object- and action-centered represen-
tations using two attention-based modules. These representations are further
used to predict navigation actions via matching to visual percenptions and ori-
entations, respectively. The OAAM model also predicts combination weights to
compute the final navigation action probability distribution over candidate view-
points. Lastly, imitation learning and reinforcement learning losses are calculated
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based on the probability distribution and a proposed path loss. In the inference
phase, the navigation action with maximum probability is selected.

3.1 Problem Setup

Given a natural language instruction I = {w1, w2, ..., wL} with L words, at each
step t, the agent observes a panoramic view ot, which contains 36 discrete single
views {ot}36i=1. Each view ot,i is represented by an image vt,i at an orientation
with heading angle θt,i and elevation angle φt,i. At each step t, there are Nt

navigable viewpoints {Pt,k}Nt

k=1. The agent needs to select one viewpoint Pt,k

as the next navigate action at. Following the common practice, each navigable
viewpoint has an orientation feature nt,k = (cosθt,k, sinθt,k, cosφt,k, sinφt,k) and
a visual feature mt,k = ResNet(vt,k).

3.2 Baseline–EnvDrop

Recent works show that data augmentation is able to significantly improve the
generalization ability in unseen environment [4,19]. We make use of this strategy
by adopting EnvDrop [19] as our baseline, which simultaneously benefits from
the back translation technique [4] to generate new (trajectory, instruction) pairs
in existing environments and from its global dropout technique to generate new
environments.

EnvDrop first uses a bidirectional LSTM to encode instruction I:

[u1, u2, ..., uL] = Bi-LSTM(e1, ..., eL) (1)

where ej = embedding(wj) is the embedded j-th word in the instruction, and
uj is the feature containing context information for the j-th word. Then, a soft

attention is imposed on visual feature mt to get attentive feature f̃t = Σiαt,imt,i,

where αt,i = softmaxi(m
>
t,iWF h̃t−1). The concatenation of f̃t and the previous

action embedding ãt−1 is fed into the decoder LSTM:

ht = LSTM Decoder([f̃t; ãt−1], h̃t−1). (2)

The decoder input also includes the previous instruction-aware hidden output
h̃t−1, which is updated based on the attentive instruction feature ũt and the
newly obtained ht:

h̃t = tanh(WL[ũt;ht]), (3)

ũt = Σjβt,juj , (4)

where βt,j = softmaxj(u
>
j WIht), and WL is trainable parameter. Finally, En-

vDrop predicts navigation action by selecting a navigable view with the biggest
probability

a∗t = arg max
k

P (at,k), (5)

where P (at,k) = softmaxk([mt,k;nt,k]>WBh̃t).
Different from EnvDrop, our navigator calculates the probability P (at,k) us-

ing the proposed object-and-action aware model as detailed in the next section.
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Fig. 3. Pipeline and configuration of the proposed object-/action-aware module (a)
and the adaptive combination module (b).

3.3 Object-and-Action Aware Model

To disentangle the encoding of object- and action-related instruction, as well as
the matching to their counterpart visual perceptions and orientations of can-
didate viewpoints, we propose the object-and-action aware model (OAAM).
OAAM consists of three key modules: an object-aware (OA) module that is
aware of object-related instruction and predicts action using visual perceptions;
an action-aware (AA) module that is aware of action-related instruction and
predicts action using orientations of candidate viewpoints; and an adaptive com-
bination module that learns weights to combine the action predictions from the
other two modules based on the attentive instructions with the consideration of
the current panoramic views.

Object-Aware (OA) Module Figure 3(a) shows the pipeline and configura-
tion of the proposed OA module. Different from the subject/object module in
referring expression comprehension methods, such as [10,23], which highlight all
objects in an expression, our OA module is designed to highlight object phrase
just for the next navigation step instead of all objects in an instruction. This is
essential for the VLN task because the long instruction should be carried out
step-by-step, which indicates objects not related to the current step may be noise
and mislead the action predicting. To this end, our OA module calculates the
attentive object feature ũot by taking the decoder hidden state ht as input for
navigation progress reference:

γt,j = softmaxj(u
>
j WOht), (6)

ũot = Σjγt,juj , (7)

where WO is learnable parameters. Then, the object-aware hidden output h̃ot
related to the current navigation is computed via

h̃ot = tanh(WP [ũot ;ht]), (8)
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where WP is parameter to be learned. Lastly, the action confidence GOA(at,k)
from the object-aware side is obtained by using only the visual feature mt,k:

GOA(at,k) = m>t,kWH h̃
o
t , (9)

where WH are trainable parameters.
Action-Aware (AA) Module The architecture of AA module is similar to OA
module, except the visual feature mt,k is replaced with the orientation feature
nt,k when computing the confidence of a navigable viewpoint to be the next
action:

δt,j = softmaxj(u
>
j WAht) (10)

ũat = Σjδt,juj (11)

h̃at = tanh(WK [ũat ;ht]) (12)

GAA(at,k) = n>t,kWF h̃
a
t , (13)

where δt,j is the action attention on j-th word, h̃at is action-aware hidden state,

and WA,WK ,WF are trainable parameters. Both δt,j and h̃at have taken the
navigation progress into consideration.
Adaptive Combination Module Figure 3(b) shows the pipeline and con-
figuration of the proposed adaptive combination module. The final probability
P (at,k) of navigable view k is a softmax of weighted sum of the object-aware
confidence GOA(at,k) and action-aware probability GAA(at,k):

P (at,k) = softmax([GOA(at,k);GAA(at,k)]wt), (14)

where wt is a predicted weight vector. wt should vary as the navigation goes
because the importance of an object description and an action specification
may change at different processing point of the instruction. Thus, to adaptively
combine GOA(at,k) and GAA(at,k) in terms of the processing state, we utilize a
trainable layer to predict weights wt = WT ũt, where WT is trainable parameter,
ũt is the vision-aware attentive instruction feature.

3.4 Training Loss

Following the training process of our baseline [19], the model is trained using both
imitation learning (IL) and reinforcement learning (RL) with original training
data and augmented data. In addition to the losses in the baseline, we introduce a
Nearest Point Loss (NPL) to encourage the agent to stay on ground-truth paths.
NPL is based on the distance to the nearest viewpoint on the ground-truth path
(see Figure 4(b))

LNP =
∑

t
log(pt(at)) ∗DNP

t , (15)

where DNP
t = minPi∈Q d(Pt,Pi), d(Pt,Pi) is the shortest trajectory distance

between the current viewpoint Pt and each viewpoint Pi on the ground truth
path, Q is the set of viewpoints on the ground-truth path. If an agent stays on
the ground-truth path, DNP

t would be zero; otherwise, the farther the larger.
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(a) Distance to Target (b) Distance to Nearest Point

Fig. 4. Illustration of distance to target (a) and distance to nearest point(b). The
trajectory of the agent is in red and the ground-truth path is in blue. The star indicates
the target viewpoint. The brown dot line indicates the shortest trajectory length.

4 Experiments

4.1 Dataset and Implementations

Dataset Experiments are conducted on the widely used indoor R2R [2] and the
R4R [13] VLN datasets. R2R dataset consists of train/seen validation/unseen
validation/test splits, involving 7,189 paths with 21,567 human annotated in-
structions with an average length of 29 words. In particular, these four splits
contains 14,025/1,020/4,173/2,349 instructions, respectively. R4R aims to eval-
uate whether an agent is able to follow instructions by concatenating several tra-
jectories and thus instructions of R2R (the shortest path is therefore no longer
the ground-truth path) into long ones. Note that the R4R dataset only contains
train/seen validation/unseen validation splits.
Implementation Details Following the common practice, we use the pre-
computed ResNet [6] feature to represent percepted images. We adopt the same
training strategy as our baseline [19]: First, we train the agent using real data
(i.e., the training split); Then, we train the agent using augmented data gen-
erated by the speaker and environment dropout techniques. We implement the
proposed method with PyTorch, and all the experiments are carried out on
NVIDIA GeForce RTX 2080 Ti.

4.2 Evaluation Metrics

To evaluate the proposed method on R2R, we adopt four metrics from [1,2]:
Success Rate (SR), Trajectory Length (TL), Oracle Success Rate (OSR), and
Success rate weighted by Path Length (SPL). Among the four metrics, SPL
is the main metric because it emphasizes the trade-off between SR and TL,
which is also a recommended primary measure of navigation performance by the
official VLN Challenge [1]. To measure the performance on R4R, we additionally
adopt the Coverage weighted by Length Score (CLS) metric as recommended by
the builder of this dataset [13] and the Success weighted by normalized Dynamic
Time Warping (SDTW) metric as recommended in [12]. These two metrics focus
on navigation fidelity using the ground-truth path as reference.
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Model Val Seen Val Unseen

Baseline OAAM NPL SR↑ OSR↑ SDTW↑ SPL↑ TL↓ CLS↑ SR↑ OSR↑ SDTW↑ SPL↑ TL↓ CLS↑
3 0.63 0.70 0.53 0.60 10.17 0.70 0.50 0.57 0.37 0.47 9.27 0.60
3 3 0.65 0.72 0.53 0.62 10.21 0.71 0.51 0.59 0.37 0.47 10.05 0.60
3 3 0.68 0.74 0.57 0.66 10.06 0.73 0.48 0.54 0.35 0.45 9.04 0.60
3 3 3 0.65 0.73 0.53 0.62 10.20 0.73 0.54 0.61 0.39 0.50 9.95 0.61

Table 1. Ablation study of the proposed method on the R2R dataset (SPL is the main
metric). The proposed object-and-action aware model (OAAM) and nearest point loss
(NPL) mainly improve performance on the Unseen and Seen scenarios, respectively.
Their combination leads to a better performance in unseen environments.

4.3 Ablation Study

We conduct the ablation study to find out the effectiveness of the proposed
object-and-action aware model (OAAM) and the nearest point loss (NPL). The
results are presented in Table 1. The results show that: (I) Both OAAM and NPL
improve the performance on the Val Seen split with about 2% and 4% increase
in SPL, respectively. (II) The phenomenon on Val Unseen is a bit complicated.
When OAAM or NPL works alone with the baseline, OAAM brings about 1%
improvement in SR and NPL harms the SR about 2%. When OAAM and NPL
work together, the performance is significantly improved about 4% in SR and
3% in SPL. This can be attributed to that NPL is able to help OAAM to
find viewpoints on the ground-truth path and therefore improves the SR as
well as shortens the trajectory length compared to the case that they work
separately. Overall, both OAAM and NPL facilitate our method to achieve better
performance, especially in the unseen scenario.

We further study the importance of the object-aware (OA) module and the
action-aware (AA) module within the trained OAAM. As these two sub-modules
contribute to the final navigation decision via a weighted sum (14), we test the
performance of each module by setting its weight to 1 and the other weight to 0.
The results are presented in Table 2. There is about 20% performance drop in
SR when OA or AA works alone. This indicates that both modules contribute to
the final performance and the adaptive combination module plays a crucial role
(also see visualized samples in Figure 5 and 6). Furthermore, the AA module
performs consistently better than the object-aware module on ValSeen, ValUn-
Seen, and Test splits, in terms of SPL, SR, or OSR. For example, when AA
module is removed, the SR is about 20% lower than that when OA module is
removed on the Unseen split. This indicates the AA module is more generaliz-
able than the OA, which is roughly consistent with the claim that visual feature
may hurt models in unseen environments [8]. Fortunately, when OA and AA
are adaptively combined, a much better performance is achieved (10% ∼ 28%
improvement in SPL on the Val Unseen split). Additionally, we calculate the
mean of wt of all steps on ValSeen and ValUnseen. Results show that OA and
AA are asigned 0.18 and 0.82 on average, respectively. This also reflects AA con-
tributes more to the final results. Lastly, we make a try to conduct quantitative
evaluation of these two modules based on NLTK tags, although it is not perfect.
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Model
Val Seen Val Unseen

SR↑ OSR↑ SDTW↑ SPL↑ TL↓ CLS↑ SR↑ OSR↑ SDTW↑ SPL↑ TL↓ CLS↑
Full Model 0.65 0.73 0.53 0.62 10.20 0.73 0.54 0.61 0.39 0.50 9.95 0.61
w/o AA Module 0.42 0.52 0.31 0.39 9.26 0.59 0.26 0.34 0.15 0.22 8.86 0.46
w/o OA Module 0.45 0.53 0.32 0.42 10.63 0.56 0.44 0.52 0.30 0.40 10.46 0.54

Table 2. Comparison of object-aware module (OA) and action-aware module (AA) on
the R2R dataset. ‘w/o’ denotes to remove the module from the full model. The AA
module contributes more than the OA module.

An attention is considered success if the top3 words attended by OA contain
nouns (verbs for AA). OA and AA achieve accuracy of about 80% and 75% on
average, respectively. This at some extent indicates improvement room for these
modules.

4.4 Comparison to State-of-The-Art Navigators

In this section, we compare our model against six state-of-the-art navigating
methods, including FAST [14], RCM [20], EnvDrop [19], Speaker-Follower (SF) [4],
RegretAgent (RA) [18], and Self-Monitor (SM) [17]. Results on the R2R and R4R
datasets are presented in Table 3 and 4, respectively.

As shown in Table 3, our model achieves the best performance on both the
Val UnSeen and Test splits in terms of the main evaluation metric, SPL, which
is up to 50%. As analysed in the ablation study, the performance of our model is
the result of both the OAAM and the NPL loss. We also observe that on the Val
Seen split, our model ranks third falling behind FAST and RA. This indicates
that our model may not fit the training data as well as FAST and RA, and there
are more information can be learned from the training data for our model. We
leave this for the future exploration.

Table 4 shows the result on the R4R dataset, where CLS is the recommended
metric [13]. On one side, the proposed method performs consistently better than
our baseline, namely Envdrop, with up to 6% improvement in CLS on the unseen
split. On the other side, the proposed method achieves the best performance
with a 0.40 CLS score in unseen environments, which is 3% higher than the
second best and thus set the new SoTA. Similar to the phenomenon on the R2R
dataset, we also observe that the proposed model ranks top three in the seen
environments, which indicates more information could be learned.

4.5 Qualitative Results

In this section, we visualize several navigation process at each step in Figure 5
and Figure 6, including key information, such as attention distribution and nav-
igation decision.

For the trajectories in Figure 5, most of the attention predicted by the OA
and AA modules are able to correctly reflect the object or action that should be
considered to make correct decisions. At some midway steps, such as step 1 and
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Model
Val Seen Val Unseen Test

SR↑ OSR↑ SPL↑ TL↓ SR↑ OSR↑ SPL↑ TL↓ SR↑ OSR↑ SPL↑ TL↓
SF [4] 0.67 0.74 0.61 11.73 0.35 0.45 0.28 14.56 0.35 0.44 0.28 14.82
SM [17] 0.70 0.80 0.61 12.90 0.43 0.54 0.29 17.09 0.48 0.59 0.35 18.04
RA [18] 0.69 0.77 0.63 - 0.50 0.59 0.41 - 0.48 0.56 0.40 13.69
RCM [20] 0.67 0.75 - 10.65 0.43 0.50 - 11.46 0.43 0.50 0.38 11.97
FAST [14] 0.70 0.80 0.64 12.34 0.56 0.67 0.44 20.45 0.54 0.64 0.41 22.08
EnvDrop [19] 0.63 0.70 0.60 10.17 0.50 0.57 0.47 9.27 0.50 0.57 0.47 9.70

Ours 0.65 0.73 0.62 10.20 0.54 0.61 0.50 9.95 0.53 0.61 0.50 10.40

Table 3. Comparison against several state-of-the-art VLN methods on the R2R
dataset. SPL is the main metric. The best three results are highlighted in red, green,
and blue fonts, respectively.

Model
Val Seen Val Unseen

SR↑ SDTW↑ SPL↑ TL↓ CLS↑ SR↑ SDTW↑ SPL↑ TL↓ CLS↑
SF [4] 0.52 - 0.37 15.40 0.46 0.24 - 0.12 19.90 0.30
RCM goal-oriented [13] 0.56 - 0.32 24.50 0.40 0.29 - 0.10 32.50 0.20
RCM fidelity-oriented [13] 0.53 - 0.31 18.80 0.55 0.26 - 0.08 28.50 0.35
PTA high-level [15] 0.58 0.41 0.39 16.50 0.60 0.24 0.10 0.10 17.70 0.37
EnvDrop [19] 0.52 0.27 0.41 19.85 0.53 0.29 0.09 0.18 26.97 0.34

Ours 0.56 0.32 0.49 11.75 0.54 0.31 0.11 0.23 13.80 0.40

Table 4. Results on the R4R dataset. CLS is the main metric. The best three results
are highlighted in red, green, and blue fonts, respectively.

5 on the left panel of Figure 5, only one module gives the correct prediction but
the final prediction is correct after combination. We also show examples that
some midway decisions are incorrect but finally get to the goal room in Figure 6,
such as step 3 in the left panel.

5 Conclusion

In this paper, we propose an object-and-action aware model for robust visual-
and-language navigation. Object and action information in instructions are sep-
arately highlighted, and are then matched to visual perceptions and orientation
embeddings, respectively. To encourage the robot agent to stay on the path, we
additional propose a path loss based on the distance to nearest ground-truth
viewpoint. Extensive experimental results demonstrate the superiority of our
model compared against several state-of-the-art navigating methods, especially
on the unseen test scenarios.
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Fig. 5. Navigation samples of the proposed method in two unseen environments. The
dark or light color on the instruction denotes the relative attention value (the darker the
larger). The numbered circles denote navigable viewpoints, and the blue ones denote
the final decision.
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Fig. 6. Two more navigation samples of the proposed method in unseen environments.
On the left panel, at step 3, our model predicts an incorrect action but gets to the goal
room in end. It is worth noting that at step 5, both OA and AA modules give wrong
prediction, but after combination our model predicts the correct action. On the right
panel, the final decision at each step is correct, but we could observe that the OA or
AA module not always gives correct prediction, such as at step 2 and step 3. These
indicate that all the OA and AA modules as well as the adaptive combination module
are crucial to the final success.
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