
Modeling 3D Shapes by Reinforcement Learning

Cheng Lin1,2, Tingxiang Fan1, Wenping Wang1, and Matthias Nießner2

1 The University of Hong Kong
2 Technical University of Munich

Abstract. We explore how to enable machines to model 3D shapes like
human modelers using deep reinforcement learning (RL). In 3D modeling
software like Maya, a modeler usually creates a mesh model in two steps:
(1) approximating the shape using a set of primitives; (2) editing the
meshes of the primitives to create detailed geometry. Inspired by such
artist-based modeling, we propose a two-step neural framework based
on RL to learn 3D modeling policies. By taking actions and collecting
rewards in an interactive environment, the agents first learn to parse a
target shape into primitives and then to edit the geometry. To effectively
train the modeling agents, we introduce a novel training algorithm that
combines heuristic policy, imitation learning and reinforcement learning.
Our experiments show that the agents can learn good policies to pro-
duce regular and structure-aware mesh models, which demonstrates the
feasibility and effectiveness of the proposed RL framework.

1 Introduction

Enabling machines to learn the behavior of humans in visual arts, such as teach-
ing machines to paint [5,7,15], has aroused researchers’ curiosity in recent years.
The 3D modeling, a process of preparing geometric data of 3D objects, is also an
important form of visual and plastic arts and has wide applications in computer
vision and computer graphics. Human modelers are able to form high-level inter-
pretations of 3D objects, and use them for communicating, building memories,
reasoning and taking actions. Therefore, for the purpose of enabling machines
to understand 3D artists’ behavior and developing a modeling-assistant tool, it
is a meaningful but under-explored problem to teach intelligent agents to learn
3D modeling policies like human modelers.

Generally, there are two steps for a 3D modeler to model a 3D shape in main-
stream modeling software. First, the modeler needs to perceive the part-based
structure of the shape, and starts with basic geometric primitives to approximate
the shape. Second, the modeler edits the mesh of the primitives using specific
operations to create more detailed geometry. These two steps embody humans’
hierarchical understanding and preserve high-level regularity within a 3D shape,
which is more accessible compared to predicting low-level points.

Inspired by such artist-based modeling, we propose a two-step deep reinforce-
ment learning (RL) framework to learn 3D modeling policies. RL is a decision-
making framework, where an agent interacts with the environment by executing

ar
X

iv
:2

00
3.

12
39

7v
3

 [
cs

.C
V

]
 1

7
Se

p
20

20

2 C. Lin et al.

Mesh-AgentPrim-Agent

Policy Policy Policy

Action Action Action

Policy Policy Policy

Action Action Action

Workspace

Reference

Fig. 1. The RL agents learn policies and take actions to model 3D shapes like hu-
man modelers. Given a reference, the Prim-Agent first approximates the shape using
primitives, and then the Mesh-Agent edits the mesh to create detailed geometry.

actions and collecting rewards. As visualized in Fig. 1, in the first step, we pro-
pose Prim-Agent which learns to parse a target shape into a set of primitives.
In the second step, we propose Mesh-Agent to edit the meshes of the primitives
to create more detailed geometry.

There are two major challenges to teach RL agents to model 3D shapes. The
first one is the environment setting of RL for shape analysis and geometry edit-
ing. The Prim-Agent is expected to understand the shape structure and decom-
pose the shape into components. For this task, however, the interaction between
agent and environment is not intuitive and naturally derived. To motivate the
agent to learn, rather than directly predicting the primitives, we break down the
main task into small steps; that is, we make the agent operate a set of pre-defined
primitives step-by-step to approximate the target shape, which finally results in
a primitive-based shape representation. For the Mesh-Agent, the challenge lies
in preserving mesh regularity when editing geometry. Instead of editing single
vertices, we propose to operate the mesh based on edge loops [14]. Edge loop
is a widely used technique in 3D modeling software to manage complexity, by
which we can edit a group of vertices and control an integral geometric unit.
The proposed settings capture the insights of the behavior of modeling artists
and are also tailored to the properties of the RL problem.

The second challenge is, due to the complex operations and huge action space
in this problem, off-the-shelf RL frameworks are unable to learn good policies.
Gathering demonstration data from human experts to guide the agents would
help, but this modeling data is expensive to obtain, while the demonstrations
are far from covering most scenarios the agent will experience in real-world 3D
modeling. To address this challenge, innovations are made on the following two
points. First, we design a heuristic algorithm as a “virtual expert” to generate
demonstrations, and show how to interactively incorporate the heuristics into
an imitation learning (IL) process. Second, we introduce a novel scheme to effec-
tively combine IL and RL for modeling 3D shapes. The agents are first trained
by IL to learn an initial policy, and then they learn in an RL paradigm by col-
lecting the rewards. We show that the combination of IL and RL gives better
performance than either does on its own, and it also outperforms the existing
related algorithms on the 3D modeling task.

Modeling 3D Shapes by Reinforcement Learning 3

To demonstrate our method, we condition the modeling agents mainly on
the shape references from single depth maps. Note, however, the architecture of
our agents is agnostic to the shape reference, while we also test RGB images.
The contributions of this paper are three-fold:

– We make the first attempt to study how to teach machines to model real
3D shapes like humans using deep RL. The agents can learn good modeling
policies by interacting with the environment and collecting feedback.

– We introduce a two-step RL formulation for shape analysis and geometry
editing. Our agents can produce regular and structure-aware mesh models
to capture the fundamental geometry of 3D shapes.

– We present a novel algorithm that combines heuristic policy, imitation learn-
ing and reinforcement learning. We show a considerable improvement com-
pared to the related training algorithms on the 3D modeling task.

2 Related Work

Imitation learning and reinforcement learning Imitation learning (IL)
aims to mimic human behavior by learning from demonstrations. Classical ap-
proaches [1,34] are based on training a classifier or regressor to predict behavior
using demonstrations collected from experts. However, since policies learned in
this way can easily fail in theory and practice [16], some interactive strategies
for IL are introduced such as DAagger [18] and AggreVaTe [17].

Reinforcement learning (RL) is to train an agent by making it explore in
an environment and collect rewards. With the development of the scalability
of deep learning [10], a breakthrough of deep reinforcement learning (DRL) is
made by the introduction of Deep Q-learning (DQN) [12]. Afterward, a series
of approaches have been continuously proposed to improve the DQN, such as
Dueling DQN [30], Double DQN [28] and Prioritized experience replay [20].

Typically, an RL agent can find a reasonable action only after numerous steps
of poor performance in exploration, which leads to low learning efficiency and
accuracy. Thus, there has been interest in combining IL with RL to achieve better
performance [4, 22, 23]. For example, Hester et al. proposed Deep Q-learning
from Demonstrations (DQfD) [6], in which they initially pre-train the networks
solely on the demonstration data to accelerate the RL process. However, our
experiments show that directly using these approaches for 3D modeling does
not produce good performance; thus we introduce a novel variant algorithm
that enables the modeling agents to learn considerably better policies.
Shape generation by RL Painting is an important form for people to create
shapes. There is a series of methods using RL to learn how to paint by gener-
ating strokes [5, 7, 32] or drawing sketches [15, 33]. Some works explore to use
grammar parsing for shape analysis and modeling. Teboul et al. [25] use RL to
parse the shape grammar of the building facade. Ruiz-Montiel et al. [19] propose
an approach to complement the generative power of shape grammars with RL
techniques. These methods all focus on the 2D domain, while our method targets

4 C. Lin et al.

MLP

Step
Indicator

Reward

Conv

MLP

MLP

Concat

Modeling Actions

Reference

P
ri

m
-A

ge
n

t

Reinforcement

GT
Latent Feature

Add edge loops
O

b
se

rv
at

io
n

Primitives

MLP

Step
Indicator

Conv

MLP

MLP

Concat

Modeling Actions

Reward
GT

Latent Feature

O
b

se
rv

at
io

n

Edge Loops

Reference

Reinforcement

M
es

h
-A

ge
n

t

Fig. 2. The architecture of our two-step pipeline for 3D shape modeling. First, given
a shape reference and pre-defined primitives, the Prim-Agent predicts a sequence of
actions to operate the primitives to approximate the target shape. Then the edge
loops are added to the output primitives. Second, the Mesh-Agent takes as input the
shape reference and the primitive-based representation, and predicts actions to edit
the meshes to create detailed geometry.

3D shape modeling, which is under-explored and more challenging. Sharma et
al. [21] present CSG-Net, which is a neural architecture to parse a 2D or 3D
input into a collection of modeling primitives with operations. However, it only
handles synthetic 3D shapes composed of the most basic geometries, while our
method is evaluated on ShapeNet [3] models.
High-level shape understanding There has been growing interest in high-
level shape analysis, where the ideas are central to part-based segmentation [8,9]
and structure-based shape understanding [11,29]. Primitive-based shape abstrac-
tion [13, 27, 31, 35], in particular, is well-researched for producing structurally
simple representation and reconstruction. Zou et al. [35] introduce a supervised
method that uses a generative RNN to predict a set of primitives step-by-step to
synthesize a target shape. Li et al. [11] and Sun et al. [24] propose neural archi-
tectures to infer the symmetry hierarchy of a 3D shape. Tian et al. [26] propose
a neural program generator to represent 3D shapes as 3D programs, which can
reflect shape regularity such as symmetry and repetition. These methods cap-
ture higher-level shape priors but barely consider geometric details. Instead, our
method performs joint primitive-based shape understanding and mesh detail
editing. In essence, these methods have different goals with our work. They aim
to directly minimize the reconstruction loss using end-to-end networks, while we
focus on enabling machines to understand the environment, learn policies and
take actions like human modelers.

3 Method

In this section, we first give the detailed RL formulations of the Prim-Agent
(Sec. 3.1) and the Mesh-Agent (Sec. 3.2). Then, we introduce an algorithm to

Modeling 3D Shapes by Reinforcement Learning 5

efficiently train the agents (Sec. 3.3 and 3.4). We will discuss and evaluate these
designs in the next section.

3.1 Primitive-based Shape Abstraction

The Prim-Agent is expected to understand the part-based structure of a shape by
interacting with the environment. We propose to decompose the task into small
steps, where the agent constantly tweaks the primitives based on the feedback
to achieve the goal. The detailed formulation of the Prim-Agent is given below.

Primitive Pi Edit corner V Edit corner V ′ Delete Pi

Fig. 3. Visualization of the three types of actions to operate a primitive.

State At the beginning, we arrange m3 cubes that are uniformly distributed
in the canonical frame (m cubes for each axis), denoted as P = {Pi | i =
1, ...,m3}. We use m = 3 in this paper. Each cuboid is defined by a six-tuple
(x, y, z, x′, y′, z′) which specifies its two diagonal corner points V = (x, y, z) and
V ′ = (x′, y′, z′) (see Fig. 3). We define the state by: (1) the input shape refer-
ence; (2) the updated cuboid primitives at each iteration; (3) the step number
represented by one-hot encoding. The agent will learn to predict the next action
by observing the current state.
Action As shown in Fig. 3, we define three types of actions to operate a cuboid
primitive Pi: (1) drag the corner V ; (2) drag the corner V ′; (3) delete Pi. For
each type of action, we use four parameters −2,−1, 1, 2 to control the range of
movement on the axis directions (for the delete action, these parameters all lead
to deleting the primitive). In total, there are 27 cuboids, 3 types of actions, 3
moving directions (x, y and z) for the drag actions, and 4 range parameters,
which leads to an action space of 756.
Reward function The reward function reflects the quality of an executed
action, while the agent is expected to be inspired by the reward to generate
simple but expressive shape abstractions. The primary goal is to encourage the
consistency between the generated primitive-based representation ∪

i
Pi and the

target shape O. We measure the consistency by the following two terms based
on the intersection over union (IoU):

I1 = IoU(∪
i
Pi, O) I2 =

1

K
∑
Pi∈P

IoU(Pi, O), (1)

where I1 is the global IoU term and I2 is the local IoU term to encourage the
agent to make each primitive cover more valid parts of the target shape; P

6 C. Lin et al.

(|P| = K) is the set of primitives that are not deleted yet. To favor simplicity,
i.e., small number of primitives, we introduce a parsimony reward measured by
the number of deleted primitives denoted by N . Therefore, the reward function
at the kth step is defined as

Rk = (Ik1 − Ik−11) + α1(Ik2 − Ik−12) + α2(N k −N k−1), (2)

where α1 and α2 are the weights to balance the last two terms. We set Rk = −1
once all the primitives are removed by the agent at kth step. The designed reward
function motivates the agent to achieve higher volume coverage using larger and
fewer primitives.

3.2 Mesh Editing by Edge Loops

An edge loop is a series of connected edges on the surface of an object that
runs completely around the object and ends up at the starting point. It is an
effective tool that plays a vital role in modeling software [14]. Using edge loops,
modelers can jointly edit a group of vertices and control an integral geometric
unit instead of editing each vertex separately, which preserves the mesh regularity
and improves the efficiency. Therefore, we make the Mesh-Agent learn mesh
editing based on edge loops to produce higher mesh quality.
Edge loop assignment The output primitives from the last step do not
have any edge loops. Thus we need to define edge loops on these primitives. For
a primitive Pi, we choose the axis in which the longest cuboid side (principle
direction) lies to assign the loop, while the loop planes are vertical to the chosen
axis. We assign n loops to K (not removed) cuboids; the number of loops assigned
to a cuboid is proportional to its volume, while a larger cuboid will be assigned
more loops. Each cuboid is assigned at least two loops on the boundaries. An
example of edge loop assignment is shown in Fig. 4 (a).

Loop Li Edit corner VL Edit corner V ′
L

(a) (b)
Fig. 4. (a) We assign edge loops to the output primitives of the Prim-Agent for further
mesh editing. Here, we show an example of adding n = 10 edge loops to 3 primitives.
(b) Two types of actions to operate an edge loop.

State We define the state by: (1) the input shape reference; (2) the updated
edge loops at each iteration; (3) the step number represented by one-hot en-
coding. An edge loop Li is a rectangle defined by a six-tuple (xl, yl, zl, x

′
l, y
′
l, z
′
l)

which specifies its two diagonal corner points VL = (xl, yl, zl), V
′
L = (x′l, y

′
l, z
′
l).

Action As shown in Fig. 4 (b), we define two types of actions to operate a
loop Li: (1) drag the corner VL; (2) drag the corner V ′L. For each type of action,

Modeling 3D Shapes by Reinforcement Learning 7

we use six parameters −3,−2,−1, 1, 2, 3 to control the range of movement on
three axis directions. The number of edge loops we use is n = 10 in this paper.
In total, there are 10 edge loops, 2 types of actions, 3 moving directions and 6
range parameters, which leads to an action space of 360.
Reward function The goal of this step is to encourage visual similarity of the
edited mesh with the target shape, which can be measured by IoU. Accordingly,
the reward is defined by the increments of IoU after executing an action.

3.3 Virtual Expert

Given such a huge action space, complex environment and long operation steps
in this task, it is extremely difficult to train the modeling agents from scratch.
However, collecting large scale sequence demonstration data from real experts
can be expensive and the data are far from covering most scenarios. To address
this problem, we propose an efficient heuristic algorithm as a virtual expert to
generate the demonstration data. Note that the proposed algorithm is not for
producing perfect actions used as ground-truth, but it can help the agents start
the exploration with relatively better performance. More importantly, the agents
are able to learn even better policies than imitating the virtual expert by the
self-exploration in the RL phase (see the evaluation in Sec. 4.3).

For the primitive-based shape abstraction, we design an algorithm that out-
puts the actions as the following heuristics. We iteratively visit each primitive,
test all the potential actions for the primitive and execute the one which can
obtain the best reward. During the first half of the process, we do not consider
any delete operations but only adjust the corners. This is to encourage all the
primitives to fit the target shape first. Then in the second half, we allow deleting
the primitives to eliminate redundancy.

Similarly, for the edge loop editing, we iteratively visit each edge loop, test
all the potential actions for the edge loop, and execute the one which can obtain
the best reward.

3.4 Agent Training Algorithm

Although using IL to warm up RL training has been researched in robotics
[6], directly applying off-the-shelf methods to train the agents for this problem
domain does not produce good performance (see the experiments in Sec. 4.3).
Our task has the following unique challenges: (1) compared to the robotics tasks
[2] of which action space is usually less than 20, our agents need to handle over
1000 actions in a long sequence for modeling a 3D shape. This requires that the
data from both “expert” and self-exploration should be organized and exploited
effectively by the experience replay buffer. (2) The modeling demonstrations
are generated by heuristics which are imperfect and monotonous, and thus the
training scheme should not only use the “expert” to its fullest potential, but also
enable the agents to escape from local optimum.

Therefore, in this section, we introduce a variant algorithm to train the mod-
eling agents. The architecture of our training scheme is illustrated in Fig. 5.

8 C. Lin et al.

Sh
o

r-
te

rm
R

e
p

la
y

B
u

ff
er

Imitation
Learning

Exploration

Se
lf

-e
xp

lo
ra

ti
o

n

R
ep

la
y

B
u

ff
er

Reinforcement
Learning

Lo
n

g-
te

rm
R

ep
la

y
B

u
ff

e
r

V
ir

tu
al

 E
xp

e
rt Exploration

sample

sample

sample

storepoll

store

Phase 1 Phase 2sample

Fig. 5. Illustration of the architecture and the data flow of our training scheme.

Basic network The basic network is based on the Double DQN (DDQN) [28]
to predict the Q-values of the potential actions. The network outputs a set of
action values Q(s, ·; θ) for an input state s, where θ are the parameters of the
network. DDQN uses two separate Q-value estimators, i.e., current and target
network, each of which is used to update the other. An experience is denoted as
a tuple {sk, a, R, sk+1} and the experiences will be stored in a replay buffer D;
the agent is trained by the data sampled from D. The loss function for training
DDQN is determined by temporal difference (TD) update:

LTD(θ) = ((R+ γQ(sk+1, a
max
k+1 ; θ′)−Q(sk, ak; θ))2, (3)

where R is the reward, γ the discount factor, amax
k+1 = argmaxaQ(sk+1, a; θ), θ

and θ′ the parameters of current and target network respectively.

Imitation learning by dataset aggregation Our imitation learning process
benefits from the idea of data aggregation (DAgger) [18] which is an interactive
guiding method. A notable limitation of DAgger is that an expert has to be
always available during training to provide additional feedback to the agent,
making the training expensive and troublesome. However, benefiting from the
developed virtual expert, we are able to guide the agent without additional cost
by integrating the virtual expert into the training process.

Different from the original DAgger, we use two replay buffers, named Ddemo
short

and Ddemo
long for storing short-term and long-term experiences respectively. The

Ddemo
short only stores the experiences at the current iteration and will be emptied

once an iteration is completed, while the Ddemo
long stores all the accumulated ex-

periences. At iteration k, we train a policy πk that mimics the “expert” on these
demonstrations by equally sampling from both Ddemo

short and Ddemo
long . Then we use

the policy πk to generate new demonstrations, but re-label the actions using the
heuristics of the virtual expert described in Sec. 3.3.

Incorporating the virtual expert into DAgger, we poll the “expert” policy
outside its original state space to make it iteratively produce new policies. Using
double replay buffers provides a trade-off between learning and reviewing in
the long sequence of decisions for shape modeling. The algorithm is detailed in
Algorithm 1 with pseudo-code.

Modeling 3D Shapes by Reinforcement Learning 9

Algorithm 1: DAgger with virtual expert using double replay buffers

Use the virtual expert algorithm to generate demonstrations
D0 = {(s1, a1), ..., (sM , aM)}.

Initialize Ddemo
short ← D0, Ddemo

long ← D0.
Initialize π1.
for k = 1 to N do

Train policy πk by equally sampling on both Ddemo
short and Ddemo

long .
Get dataset Dk = {(s′1), (s′2), ..., (s′M)} by πk.
Label Dk with the actions given by the virtual expert algorithm.
Empty short-term memory Ddemo

short ← ∅.
Aggregate dataset Ddemo

long ← Ddemo
long ∪ Dk, Ddemo

short ← Dk

Similar to [6], we apply a supervised loss to force the Q-value of the actions
of “expert” to be higher than the other actions by at least a margin:

LS(θ) = max
a∈A

(Q(s, a; θ) + l(s, aE , a))−Q(s, aE ; θ), (4)

where aE is the action taken by the “expert” in state s and l(s, aE , a) is a margin
function that is a positive number when a 6= aE and is 0 when a = aE . The
final loss function used to update the network in the imitation learning phase is
defined by jointly applying TD-loss and supervised loss:

L(θ) = LTD(θ) + λLS(θ). (5)

Reinforcement learning by self-exploration Once the imitation learning
is completed, the agents will have learned a reasonable initial policy. Neverthe-
less, the heuristics of the virtual expert suffer from the local minimum and the
demonstrations cannot cover all the situations the agents will encounter in the
real system. Therefore, we make the agents interact with the environment and
learn from their own experiences in a reinforcement paradigm. In this phase,
we create a separate experience replay butter Dself to store only self-generated
data during the exploration, and maintain the demonstration data in Ddemo

long .
In each mini-batch, similar to the last step, we equally sample the experiences
from Dself and Ddemo

long , and update the network only using TD-loss LTD. In this
way, the agents retain a part of the memory from the “expert” but also gain
new experiences by their own exploration. This allows the agents to potentially
compare the actions learned from the “expert” and explored by themselves, and
then make better decisions based on the accumulated reward in the practical
environment.

4 Experiments

4.1 Implementation Details

Network architecture As shown in Fig. 2, for the Prim-Agent, the encoder is
composed of three parallel streams: three 2D convolutional layers for the shape

10 C. Lin et al.

reference, two fully-connected (FC) layers followed by ReLU non-linearities for
the primitive parameters, and one FC layer with ReLU for the step indicator.
The three streams are concatenated and input to three FC layers with ReLU
non-linearities for the first two layers, and the final layer outputs the Q-values
for all actions. The Mesh-Agent adopts a similar architecture. The Prim-Agent
is unrolled for 300 steps to operate the primitives and the Mesh-Agent 100 steps,
while we have observed that more steps do not result in further improvement.
Agent training We first train the Prim-Agent and then use its output to train
the Mesh-Agent. To learn a relatively consistent mapping from the modeling
actions to the edge loops, we sort the edge loops into a canonical order. Each
network is first trained by imitation and then by a reinforcement paradigm.
The capacities of the replay buffer Ddemo

long and Dself are 200,000 and 100,000
respectively, while the agents will over-write the old data in the buffers when
they are full. Two agent networks are trained with batch size 64 and learning
rate 8e−5. In the IL process, we perform DAgger for 4 iterations for each shape
and the network is updated with 4000 mini-batches in each DAgger iteration. In
the RL, we use ε = 0.02 for ε-greedy exploration, τ = 4000 for the frequency at
which to update the target network, and γ = 0.9 for the discount factor.

We use α1 = 0.1 and α2 = 0.01 to balance the terms in the reward function
Eq. 2, and λ = 1.0 in the loss function Eq. 5. The expert margin l(s, aE , a) in
Eq. 4 is set to 0.8 when a 6= aE . We observe sometimes the agents are stuck at a
state and output repetitive actions; therefore, at each step, we force the agents
to edit a different object, i.e., editing the ith (i ∈ {1, 2, ...,m}) primitive or loop
at the kth step, where i = k mod m. Also, the output of the Prim-Agent may
have redundant or small primitives contained in the large ones, while we merge
them to make the results cleaner and simpler.

4.2 Experimental Results

Following the works for part-based representation of 3D shapes [13, 24, 27], we
train our modeling agents on three shape categories separately. We collect a set
of 3D shapes from ShapeNet [3], i.e., airplane(600), guitar(600) and car(600), to
train our network. We render a 128*128 depth map for each shape to serve as
the reference. We use 10% shapes from each category to generate the demonstra-
tions for imitation learning. To show the exploration as well as the generalization
ability, in each category, we select 100 shapes that are either without demon-
strations(50) or unseen(50) for testing.

We show a set of qualitative results in Fig. 6. Given a depth map as shape
reference, the Prim-Agent first approximates the target shape using primitives;
then the Mesh-Agent takes as input the primitives and edits the meshes of the
primitives to produce more detailed geometry. The procedure of the agents’
modeling operation is visualized in Fig. 7. The agents show the power in under-
standing the part-based structure and capturing the fundamental geometry of
the target shapes, and they are able to express such understanding by taking a
sequence of interpretable actions. Also, the part-aware regular mesh can provide
human modelers a reasonable initialization for further editing.

Modeling 3D Shapes by Reinforcement Learning 11

Fig. 6. Qualitative results of Prim-Agent and Mesh-Agent. Given a shape reference,
the Prim-Agent first approximates the target shape using primitives and then the
Mesh-Agent edits the meshes to create detailed geometry.

Fig. 7. The step-by-step procedure of 3D shape modeling. The first row of each sub-
figure shows how the Prim-Agent approximates the target shape by operating the
primitives (step 5, 10, 20, 40, 60, 80, 100, 200, 300). The second row shows the process
of mesh editing by the Mesh-Agent (step 10, 20, 30, 40, 50, 60, 70, 80, 90, 100).

4.3 Discussions

Reward function Reward function is a key component for RL framework
design. There are three terms in the reward function Eq. 2 for the Prim-Agent.
To demonstrate the necessity of each term, we conduct an ablation study by
alternatively removing each one and evaluating the performance of the agent.
Fig. 8 (a) shows the qualitative results for different configurations. We also quan-
titatively report the average IoU and the average amount of the output primitives
in Fig. 8 (b). Both qualitative and quantitative results show that using full terms
is a trade-off between accuracy and parsimony, which can produce accurate but
structurally simple representations that are more in line with human intuition.
Does the Prim-Agent benefit from our environment? We set up an
environment where the Prim-Agent tweaks a set of pre-defined primitives to ap-

12 C. Lin et al.

(a) (b)

Config IoU Prim Number

w/o IoU 0.014 1.21
w/o local IoU 0.351 5.85
w/o parsimony 0.373 6.62

full terms 0.333 2.06

Fig. 8. Ablation study for the three terms in the reward function of the Prim-Agent.
(a) Qualitative results of using different configurations of the terms in the reward
function. (b) Quantitative evaluation; we show the average IoU and the numbers of the
output primitives given different configurations.

5k 15k 25k 35k 45k
Iteration

Io
U

0.1

0.2

0.3

0.4

0.5
direct prediction

our setting

5k 15k 25k 35k 45k
Iteration

Io
U

0.2

0.3

0.4

0.5

0.6
w/o edge loop
w/ edge loop

w/o edge loopw/ edge loop

(a) (b) (c)

Fig. 9. Evaluations on the environment setting for Prim-Agent and Mesh-Agent.
(a) IoU over the course of training the Prim-Agent in different environment settings.
(b) IoU over the course of training the Mesh-Agent with and without using edge loops.
(c) Qualitative results produced by the Mesh-Agent with and without using edge loops;
we show the triangulated meshes of the generated wireframes.

proximate the target shape step-by-step. A more straightforward way, however,
is to make the agent directly predict the parameters of each primitive in a se-
quence. We evaluate the effect of these two environment settings on the agent for
understanding the primitive-based structure. As shown in Fig. 9 (a), the agent
is unable to learn reasonable policies by directly predicting the primitives. The
reason behind this is, in such an environment, the effective attempts are too
sparse during exploration and the agent cannot be rewarded very often. Instead,
in our environment setting, the task is decomposed into small action steps that
the agent can simply do. The agent obtains gradual feedback and can be aware
that the policy is getting better and closer. Therefore, the learning is progressive
and smooth, which is advantageous to incentivize the agent to achieve the goal.
Do the edge loops help? We use edge loops as the tool for geometry editing.
To evaluate the advantages of our environment setting for the Mesh-Agent, we
train a variant of the Mesh-Agent without using edge loops, where the agent edits
each vertex separately. This leads to a doubled action space and uncorrelated
operations between vertices. As shown in Fig. 9 (b) and (c), the agent using edge
loops yields a lower modeling error and better mesh quality.
Is our learning algorithm better than the others for 3D modeling? In
Sec. 3.4, we introduce an algorithm to train the agents by combining heuristics,
interactive IL and RL. Here, we provide an evaluation of the proposed learning
algorithm with a comparison to using different related learning schemes. Table 1
shows the average accumulated rewards across categories of different algorithms:

Modeling 3D Shapes by Reinforcement Learning 13

DDQN [28] DAgger [18] DQfD [6] Ours

Fig. 10. Qualitative comparison with related RL algorithms on the 3D modeling task.
Our method gives better results, i.e., more structurally meaningful primitive-based
representations and more regular and accurate meshes.

Prim-Agent Mesh-Agent

Airplane Guitar Car Airplane Guitar Car

DDQN (only RL) 0.377 0.214 0.703 -0.013 -0.025 0.002
DAgger (only interactive IL) 0.574 0.802 0.755 0.046 0.089 0.059

DQfD (non-interactive IL + RL) 0.685 0.723 0.789 0.019 0.042 0.055
DAgger* (double replay buffers) 0.725 0.954 0.897 0.048 0.105 0.065

Ours (interactive IL + RL) 0.764 0.987 0.956 0.134 0.204 0.134

Table 1. Comparison with related learning algorithms. We report the average accu-
mulated rewards gained by the agents on each category.

Prim-Agent Mesh-Agent

Airplane Guitar Car Airplane Guitar Car

IoU CD IoU CD IoU CD IoU CD IoU CD IoU CD

DDQN 0.082 0.1165 0.094 0.1010 0.382 0.0812 0.069 0.1177 0.069 0.1092 0.384 0.0864
DAgger 0.133 0.1068 0.202 0.0890 0.406 0.0761 0.179 0.0926 0.291 0.0804 0.466 0.0763
DQfD 0.132 0.1112 0.196 0.0937 0.415 0.0749 0.151 0.1047 0.238 0.0796 0.471 0.0729

DAgger* 0.131 0.1104 0.275 0.0808 0.449 0.0778 0.179 0.0986 0.381 0.0598 0.514 0.0670
Ours 0.179 0.0966 0.308 0.0595 0.481 0.0669 0.313 0.0917 0.512 0.0476 0.614 0.0532

Table 2. Quantitative evaluation on the shape reconstruction quality using additional
metrics: IoU and Chamfer distance (CD).

(1) using the basic setting of DDQN [28] without an IL phase; (2) using the
original DAgger [18] algorithm with only supervised loss without an RL phase;
(3) using DQfD algorithm [6], which also combines IL and RL but the agent
learns on fixed demonstrations rather than being interactively guided; (4) only
using our improved DAgger with double replay buffers; (5) our training strategy
described in Sec. 3.4. Tables 2 shows the evaluation on the shape reconstruction
quality measured by the Chamfer distance (CD) and IoU. Also, we show the
qualitative comparison results with these algorithms in Fig. 10.

Based on the qualitative and quantitative experiments, we can arrive at the
following conclusions: (1) introducing simple heuristics of the virtual expert by IL
significantly improves the performance, since the results show the modeling qual-
ity is unacceptable only using RL; (2) the final policy of our agents outperform
the policy learned from the “expert”, since our method obtains higher rewards
than only imitating the “expert”; (3) our learning approach can learn better
polices and produce higher-quality modeling results than other algorithms.

14 C. Lin et al.

(a) (b)

Fig. 11. (a) Modeling results using RGB images as reference. (b) Failure cases.

Can the agents work with other shape references? We train the agents
on a different type of reference, i.e., RGB images, without any modification. The
average accumulated rewards obtained on different categories are 0.721, 0.877,
0.991 (Prim-Agent) and 0.120, 0.197, 0.135 (Mesh-Agent), which are similar to
using depth maps. We also give some qualitative results in Fig. 11 (a).
Limitations A limitation of our method is, it fails to capture very detailed
parts and thin structures of shapes. Fig. 11 (b) shows the results on a chair and
a table model. Since the reward is too small when exploring the thin parts, the
agent tends to neglect these parts to favor parsimony. A potential solution could
be to develop a reward shaping scheme to increase the rewards at the thin parts.

5 Conclusion

In this work, we explore how to enable machines to model 3D shapes like hu-
man modelers using deep reinforcement learning. Mimicking the behavior of 3D
artists, we propose a two-step RL framework, named Prim-Agent and Mesh-
Agent respectively. Given a shape reference, the Prim-Agent first parses the tar-
get shape into a primitive-based representation, and then the Mesh-Agent edits
the meshes of the primitives to create fundamental geometry. To effectively train
the modeling agents, we introduce an algorithm that jointly combines heuristic
policy, IL and RL. The experiments demonstrate that the proposed RL frame-
work is able to learn good policies for modeling 3D shapes.

Overall, we believe that our method is an important first stepping stone
towards learning modeling actions in artist-based 3D modeling. Ultimately, we
hope to achieve conditional and purely generative agents that cover various mod-
eling operations, which can be integrated into modeling software as an assistant
to guide real modelers, such as giving step-wise suggestions for beginners or inter-
acting with modelers to edit the shape cooperatively, thus significantly reducing
content creation cost, for instance in games, movies, or AR/VR settings.
Acknowledgements We thank Roy Subhayan and Agrawal Dhruv for their
help on data preprocessing and Angela Dai for the voice-over of the video. We
also thank Armen Avetisyan, Changjian Li, Nenglun Chen, Zhiming Cui for their
discussions and comments. This work was supported by a TUM-IAS Rudolf
Mößbauer Fellowship, the ERC Starting Grant Scan2CAD (804724), and the
German Research Foundation (DFG) Grant Making Machine Learning on Static
and Dynamic 3D Data Practical.

Modeling 3D Shapes by Reinforcement Learning 15

References

1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning.
In: Proceedings of the twenty-first international conference on Machine learning.
p. 1. ACM (2004)

2. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym. arXiv preprint arXiv:1606.01540 (2016)

3. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015)

4. Cruz Jr, G.V., Du, Y., Taylor, M.E.: Pre-training neural networks with human
demonstrations for deep reinforcement learning. arXiv preprint arXiv:1709.04083
(2017)

5. Ganin, Y., Kulkarni, T., Babuschkin, I., Eslami, S.A., Vinyals, O.: Synthesizing
programs for images using reinforced adversarial learning. In: International Con-
ference on Machine Learning. pp. 1666–1675 (2018)

6. Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D.,
Quan, J., Sendonaris, A., Osband, I., et al.: Deep q-learning from demonstrations.
In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

7. Huang, Z., Heng, W., Zhou, S.: Learning to paint with model-based deep reinforce-
ment learning. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 8709–8718 (2019)

8. Kalogerakis, E., Averkiou, M., Maji, S., Chaudhuri, S.: 3D shape segmentation with
projective convolutional networks. In: Proc. IEEE Computer Vision and Pattern
Recognition (CVPR) (2017)

9. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3d mesh segmentation and
labeling. In: ACM Transactions on Graphics (TOG). vol. 29, p. 102. ACM (2010)

10. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436 (2015)
11. Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., Guibas, L.: Grass: Genera-

tive recursive autoencoders for shape structures. ACM Transactions on Graphics
(TOG) 36(4), 52 (2017)

12. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529 (2015)

13. Paschalidou, D., Ulusoy, A.O., Geiger, A.: Superquadrics revisited: Learning 3d
shape parsing beyond cuboids. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 10344–10353 (2019)

14. Raitt, B., Minter, G.: Digital sculpture techniques. Interactivity Magazine 4(5)
(2000)

15. Riaz Muhammad, U., Yang, Y., Song, Y.Z., Xiang, T., Hospedales, T.M.: Learning
deep sketch abstraction. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 8014–8023 (2018)

16. Ross, S., Bagnell, D.: Efficient reductions for imitation learning. In: Proceedings of
the thirteenth international conference on artificial intelligence and statistics. pp.
661–668 (2010)

17. Ross, S., Bagnell, J.A.: Reinforcement and imitation learning via interactive no-
regret learning. arXiv preprint arXiv:1406.5979 (2014)

18. Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In: Proceedings of the fourteenth
international conference on artificial intelligence and statistics. pp. 627–635 (2011)

16 C. Lin et al.

19. Ruiz-Montiel, M., Boned, J., Gavilanes, J., Jiménez, E., Mandow, L., PéRez-De-
La-Cruz, J.L.: Design with shape grammars and reinforcement learning. Advanced
Engineering Informatics 27(2), 230–245 (2013)

20. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv
preprint arXiv:1511.05952 (2015)

21. Sharma, G., Goyal, R., Liu, D., Kalogerakis, E., Maji, S.: Csgnet: Neural shape
parser for constructive solid geometry. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 5515–5523 (2018)

22. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of go with deep neural networks and tree search. nature 529(7587),
484 (2016)

23. Subramanian, K., Isbell Jr, C.L., Thomaz, A.L.: Exploration from demonstration
for interactive reinforcement learning. In: Proceedings of the 2016 International
Conference on Autonomous Agents & Multiagent Systems. pp. 447–456. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems (2016)

24. Sun, C., Zou, Q., Tong, X., Liu, Y.: Learning adaptive hierarchical cuboid abstrac-
tions of 3d shape collections. ACM Transactions on Graphics (SIGGRAPH Asia)
38(6) (2019)

25. Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., Paragios, N.: Shape grammar
parsing via reinforcement learning. In: CVPR 2011. pp. 2273–2280. IEEE (2011)

26. Tian, Y., Luo, A., Sun, X., Ellis, K., Freeman, W.T., Tenenbaum, J.B., Wu, J.:
Learning to infer and execute 3d shape programs. In: International Conference on
Learning Representations (2019)

27. Tulsiani, S., Su, H., Guibas, L.J., Efros, A.A., Malik, J.: Learning shape abstrac-
tions by assembling volumetric primitives. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 2635–2643 (2017)

28. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
q-learning. In: Thirtieth AAAI conference on artificial intelligence (2016)

29. Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z., Xiong, Y.:
Symmetry hierarchy of man-made objects. In: Computer graphics forum. vol. 30,
pp. 287–296. Wiley Online Library (2011)

30. Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., Freitas, N.: Dueling
network architectures for deep reinforcement learning. In: International Conference
on Machine Learning. pp. 1995–2003 (2016)

31. Wu Leif Kobbelt, J.: Structure recovery via hybrid variational surface approxima-
tion. In: Computer Graphics Forum. vol. 24, pp. 277–284. Wiley Online Library
(2005)

32. Xie, N., Hachiya, H., Sugiyama, M.: Artist agent: A reinforcement learning ap-
proach to automatic stroke generation in oriental ink painting. IEICE TRANSAC-
TIONS on Information and Systems 96(5), 1134–1144 (2013)

33. Zhou, T., Fang, C., Wang, Z., Yang, J., Kim, B., Chen, Z., Brandt, J., Terzopoulos,
D.: Learning to sketch with deep q networks and demonstrated strokes. arXiv
preprint arXiv:1810.05977 (2018)

34. Ziebart, B.D., Maas, A., Bagnell, J.A., Dey, A.K.: Maximum entropy inverse rein-
forcement learning (2008)

35. Zou, C., Yumer, E., Yang, J., Ceylan, D., Hoiem, D.: 3d-prnn: Generating shape
primitives with recurrent neural networks. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. pp. 900–909 (2017)

Modeling 3D Shapes by Reinforcement Learning
Supplementary Material

Cheng Lin1,2, Tingxiang Fan1, Wenping Wang1, and Matthias Nießner2

1 The University of Hong Kong
2 Technical University of Munich

1 Network Architecture

Fig. 1 and Fig. 2 show the detailed architecture of the Prim-Agent and the Mesh-
Agent respectively. We also indicate the shape of the tensor output from each
layer.

Conv(3*3, 1→16, padding=1) 16*128*128

Relu(BN(MaxPool(5*5)) 16*25*25

Conv(3*3, 16→32, padding=1) 32*25*25

Relu(BN(MaxPool(3*3)) 32*8*8

Conv(3*3, 32→64, padding=1) 64*8*8

Relu(BN(MaxPool(3*3)) 64*2*2

Flatten 256

Relu(FC(162→128) 128

Relu(FC(128→256) 256

Relu(FC(300→256) 256

Relu(FC(768→768) 768

Relu(FC(768→1024) 1024

FC(1024→756) 756

Depth map
1*128*128

Primitives
162(=27*6)

Step (300)

Output
756=(27*(2*3+1)*4)

Concat

Layers Tensor shape

Fig. 1. The detailed network architecture of the Prim-Agent. BN: Batch Normalization
Layer; FC: Fully Connected Layer.

18 C. Lin et al.

Conv(3*3, 1→16, padding=1) 16*128*128

Relu(BN(MaxPool(5*5)) 16*25*25

Conv(3*3, 16→32, padding=1) 32*25*25

Relu(BN(MaxPool(3*3)) 32*8*8

Conv(3*3, 32→64, padding=1) 64*8*8

Relu(BN(MaxPool(3*3)) 64*2*2

Flatten 256

Relu(FC(80→128) 128

Relu(FC(128→256) 256

Relu(FC(100→256) 256

Relu(FC(768→768) 768

Relu(FC(768→1024) 1024

FC(1024→360) 360

Depth map
1*128*128

Edge loops
80(=10*2*4)

Step (100)

Output
(360=10*2*3*6)

Concat

Layers Tensor shape

Fig. 2. The detailed network architecture of the Mesh-Agent. BN: Batch Normalization
Layer; FC: Fully Connected Layer. The feature dimension of a loop point is 4, i.e.,
(xl, yl, zl, a) where a ∈ {0, 1, 2} additionally indicates the axis the loop plane is vertical
to.

2 Illustration of the Choices of Method Design

2.1 Solution Space Reduction

We should note that it is not trivial for an RL agent to learn to model 3D
shapes. The biggest challenge is that the action space has enormous modeling
operations, and many of them are irrelevant. In the paper, there are in total 1116
different actions and the network will be unrolled for 400 steps, which leads to a
huge solution space of 1116400. Therefore, the exploration to find good policies
will be extremely difficult. Here we summarize the key ideas to make this task
feasible.
Divide the solution space Inspired by the hierarchical understanding of
human modelers, we divide these operations into two categories, i.e., primitive-
based operations and mesh-based operations, to reinforce more connections be-
tween different actions. Therefore, we propose two sperate agents, i.e., Prim-
Agent and Mesh-Agent. The solution space is split down into 756300 and 360100

respectively for each step and the difficulty of learning is reduced as well.
Learn an initial policy As described in the paper, the agents are first trained
to imitate the demonstrations generated by heuristics. Second, with the learned
initial policy, the agents then learn in an RL paradigm by collecting the re-
wards. Since most of the actions in the huge solution space produce very poor

Modeling 3D Shapes by Reinforcement Learning Supplementary Material 19

performance which is meaningless, the initial policy can significantly reduce the
number of exploration of poor performance.

Restrict the actions in each step The strategies mentioned above can
already help the agents learn reasonable policies, but the training efficiency is
still fairly low. Also, we observe sometimes the agents are stuck at a state and
output repetitive actions; therefore, at each step, we force the agents to edit a
different primitive or loop from the last step.

To overcome these two issues, the strategy we adopt is that, at the kth step,
we force the agents to only choose the actions that can operate the ith primitive
(or loop), where i = k mod m and m is the number of the primitives (or loops).
The action space is further narrowed down in each step, and the agents will not
be stuck at a repetitive action.

2.2 Local IoU Reward

The local IoU reward encourages the Prim-Agent to make each primitive cover
more valid parts of a target shape, which will make the primitives overlap first.
Therefore, deleting an overlapped primitive will gain high sparsity reward with-
out losing much accuracy. Without the local IoU reward, since simplicity conflicts
with accuracy, the agents cannot be motivated to balance the parsimony and the
accuracy to give structurally meaningful and simple representations.

2.3 Double Replay Buffers for IL

If we only use one buffer, the experts new demonstrations are mixed together
with the old ones. This may lead to inadequate learning of the new experiences,
given that the old and new data are sampled together but the old ones are suffi-
ciently learned in previous iterations. Therefore, we propose to use two buffers:
the short-term replay buffer Ddemo

short is for learning the newest demonstrations,
while the long-term one Ddemo

long is for reviewing the histories. This is shown to
be more effective.

3 Virtual Expert Algorithm

We give the detailed algorithm of the virtual expert for the Prim-Agent in Al-
gorithm 2 with pseudo-code. We iteratively visit each primitive, test all the
potential actions for the primitive and execute the one which can obtain the
best reward. Note the selection of actions is divided into two stages: (1) during
the first half of the process, we do not consider any delete operations but only
edit the corners; (2) in the second half, deleting a primitive is allowed.

For the Mesh-Agent, we iteratively visit each edge loop, test all the potential
actions, and execute the one which can obtain the best reward. Note there is
only one stage for the “expert” of mesh editing.

20 C. Lin et al.

Algorithm 2: Virtual Expert for Primitive-based Shape Abstraction

Input: m cuboid primitives P = {P1, P2, ..., Pm}; target shape O; maximal
step Nmax

Output: a sequence of actions A = {a1, a2, ..., aN}
repeat

for each Pi ∈ P do
Step++
if Step ≤ 0.5 ∗Nmax then

find the action a which has the highest reward to tweak a cuboid
corner

else
find the action a which has the highest reward to tweak a cuboid
corner or delete a cuboid

execute and output the action a
update the state s

until Step = Nmax;

4 Primitive Merging

Even though we have introduced a parsimony term in the reward function, the
output of the Prim-Agent may still have some small or redundant primitives.
We design a simple algorithm to merge these primitives as follows.

We define a graph G for the output primitives. In this graph, each node
represents a primitive Pi. The merging of Pi(Vi, V

′
i) and Pj(Vj , V

′
j) will lead to

a new primitive Pij(min{Vi, Vj},max{V ′i , V ′j }). Two nodes Pi and Pj will be
connected by an edge if IoU(Pi

⋃
Pj , Pij) ≥ ε.

We compute the connected components for the graph G and then merge all
the primitives in the same connected components into a single primitive. The
merging process is performed for two iterations, while ε is set to 0.85 and 0.90
respectively in each iteration.

5 Edge Loop Assignment

Given M ′ primitives and N edge loops, we assign the edge loops onto the longest
axis of each primitive while the loops are uniformly distributed in that direction.
The number of loops E(Pk) assigned to a primitive Pk is determined by

E(Pk) = max{dN V (Pk)∑
i

V (Pi)
+ 0.5e, 2}, (1)

where V (Pi) is the volume for the primitive Pi and i ∈ {1, 2, ...,M ′}. It can be
seen that the number of loops assigned to a cuboid is proportional to its volume;
thus a larger cuboid will be assigned more loops. Each cuboid is assigned at
least two loops on the boundaries. When dealing with the last primitive PM ′ ,
we directly assign all the remaining unallocated loops on to PM ′ .

	Modeling 3D Shapes by Reinforcement Learning
	Modeling 3D Shapes by Reinforcement Learning Supplementary Material

