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Abstract. One of the primary challenges limiting the applicability of
deep learning is its susceptibility to learning spurious correlations rather
than the underlying mechanisms of the task of interest. The resulting fail-
ure to generalise cannot be addressed by simply using more data from
the same distribution. We propose an auxiliary training objective that
improves the generalization capabilities of neural networks by leverag-
ing an overlooked supervisory signal found in existing datasets. We use
pairs of minimally-different examples with different labels, a.k.a coun-
terfactual or contrasting examples, which provide a signal indicative of
the underlying causal structure of the task. We show that such pairs
can be identified in a number of existing datasets in computer vision
(visual question answering, multi-label image classification) and natu-
ral language processing (sentiment analysis, natural language inference).
The new training objective orients the gradient of a model’s decision
function with pairs of counterfactual examples. Models trained with this
technique demonstrate improved performance on out-of-distribution test
sets.

1 Introduction

Most of today’s machine learning methods rely on the assumption that the train-
ing and testing data are drawn from a same distribution [69]. One implication is
that models are susceptible to poor real-world performance when the test data
differs from what is observed during training. This limited capability to gener-
alise partly arises because supervised training essentially amounts to identifying
correlations between given examples and their labels. However, correlations can
be spurious, in the sense that they may reflect dataset-specific biases or sam-
pling artifacts, rather than intrinsic properties of the task of interest [41,67].
When spurious correlations do not hold in the test data, the model’s predictive
performance suffers and its output becomes unreliable and unpredictable. For
example, an image recognition system may rely on common co-occurrences of
objects, such as people together with a dining table, rather visual evidence for
each recognized object. This system could then hallucinate people when a table
is observed (Fig. 4).
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Great movie, I loved it. Great editing
and use of the soundtrack.

Bad movie, I hated it. Weak editing
and use of the soundtrack.

What a pile of steaming poo this movie is !
Does anyone know the address of the director
so I can get my five dollars back ?

What a pile of amazingness this movie is !
Does anyone know the address of the director 
so I can send a thank you note ?

Positive

Negative Positive

Negative

Person, sandwich, fork Clock Person, bench, book

Person, sandwich Nil Person, bench

Counterfactuals of one another

IMDb dataset
with crowd-sourced

edited sentences

Edited sentences

Original sentences

COCO dataset
with masked and
inpainted objects

Edited images

Original images

Counterfactuals of one another

VQA v2 dataset
with relevant

regions masked

What color is the frisbee ? What is written on the tail ? What kind of flower is in the vase ?

Correct answer(s): orange Correct answer(s): ANA Correct answer(s): rose

Correct answer(s): nil Correct answer(s): nil Correct answer(s): nil

Edited images

Original images

Counterfactuals of one another

Fig. 1. The traditional supervised learning process treats each training example in-
dividually. We use counterfactual relations between examples as an additional super-
visory signal. In some datasets, the relations are provided explicitly, as in sentiment
analysis (top) with sentences edited by annotators to flip their label between positive
and negative. In other datasets (COCO, middle, and VQA v2, bottom), we show that
counterfactual examples can be generated from existing annotations, by masking rele-
vant regions. Our method then leverages the relations between the original and edited
examples, which proves superior to simple data augmentation.

A model capable of generalization and extrapolation beyond its training dis-
tribution should ideally capture the causal mechanisms at play behind the data.
Acquiring additional training examples from the same distribution cannot help
in this process [49]. Rather, we need either to inject strong prior assumptions
in the model, such as inductive biases encoded in the architecture of a neural
network, or a different type of training information. Ad hoc methods such as
data augmentation and domain randomization fall in the former category, and
they only defer the limits of the system by hand-designed rules.

In this paper, we show that many existing datasets contain an overlooked
signal that is informative about their causal data-generating process. This in-
formation is present in the form of groupings of training examples, and it is
often discarded by the shuffling of points occurring during stochastic training.
We show that this information can be used to learn a model that is more faith-
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ful to the causal model behind the data. This training signal is fundamentally
different and complementary to the labels of individual points. We use pairs of
minimally-dissimilar, differently-labeled training examples, which we interpret
as counterfactuals of one another. In some datasets, such pairs are provided
explicitly [7,12,47,48]. In others, they can be identified from existing annota-
tions [18,25,36,61,62,70].

The intuition for our approach is that relations between pairs of counterfac-
tual examples indicate what changes in the input space map to changes in the
space of labels. In a classification setting, this serves to constrain the geometry of
a model’s decision boundary between classes. Loosely speaking, we complement
the traditional “curve fitting” to individual training points of standard super-
vised learning, with “aligning the curve” with pairs of counterfactual training
points.

We describe a novel training objective (gradient supervision) and its imple-
mentation on various architectures of neural networks. The vector difference in
input space between pairs of counterfactual examples serves to supervise the
orientation of the gradient of the network. We demonstrate the benefits of the
method on four tasks in computer vision and natural language processing (NLP)
that are notoriously prone to poor generalization due to dataset biases: visual
question answering (VQA), multi-label image classification, sentiment analysis,
and natural language inference. We use annotations from existing datasets that
are usually disregarded, and we demonstrate significant improvements in gener-
alization to out-of-distribution test sets for all tasks.

In summary, the contributions of this paper are as follows.
1. We propose to use relations between training examples as additional informa-

tion in the supervised training of neural networks (Section 3.1). We show that
they provide a fundamentally different and complementary training signal to
the fitting of individual examples, and explain how they improve generaliza-
tion (Section 3.3).

2. We describe a novel training objective (gradient supervision) to use this infor-
mation and its implementation on multiple architectures of neural networks
(Section 4).

3. We demonstrate that the required annotations are present in a number of
existing datasets in computer vision and NLP, although they are usually dis-
carded. We show that our technique brings improvements in out-of-distribution
generalization on VQA, multi-label image classification, sentiment analysis,
and natural language inference.

2 Related work

This work proposes a new training objective that improves the generalization
capabilities of models trained with supervision. This touches a number of core
concepts in machine learning.

The predictive performance of machine learning models rests on the funda-
mental assumption of statistical similarity of the distributions of training and
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test data. There is a growing interest for evaluating and addressing the limits of
this assumption. Evaluation on out-of-distribution data is increasingly com-
mon in computer vision [2,8,27] and NLP [33,78]. These evaluations have shown
that some of the best models can be right for the wrong reasons [2,21,25,67,68].
This happens when they rely on dataset-specific biases and artifacts rather than
intrinsic properties of the task of interest. When these biases do not hold in the
test data, the predictive performance of the models can drop dramatically [2,8].

When poor generalization is viewed as a deficiency of the training data, it is
often referred to as dataset biases. They correspond to correlations between
inputs and labels in a dataset that can be exploited by a model to exhibit strong
performance on a test set containing these same biases, without actually solving
the task of interest. Several popular datasets used in vision-and-language [24]
and NLP [78] have been shown to exhibit strong biases, leading to an inflated
sense of progress on these tasks.

Recent works have discussed generalization from a causal perspective [6,29,50,54].
This sheds light on the possible avenues for addressing the issue. In order to
generalize perfectly, a model should ideally capture the real-world causal mecha-
nisms at play behind the data. The limits of identifiability of causal models from
observational data have been well studied [49]. In particular, additional data
from a single biased training distribution can not solve the problem. The alter-
native options are to use strong assumptions (e.g . inductive biases, engineered
architectures, hand-designed data augmentations), or additional data, collected
in controlled conditions and/or of a different type than labeled examples. This
work uses the latter option, using pairings of training examples that represent
counterfactuals of one another. Recent works that follow this line include the
principle of invariant risk minimization (IRM [6]). IRM uses multiple training
environments, i.e. non-IID training distributions, to discover generalizable in-
variances in the data. Teney et al . [17] showed that existing datasets could be
automatically partitioned to create these environments, and demonstrated im-
provements in generalization for the task of visual question answering (VQA).

Generalization is also related to the wide area of domain adaptation [22].
Our objective in this paper is not to adapt to a particular new domain, but rather
to learn a model that generalizes more broadly by using annotations indicative
of the causal mechanisms of the task of interest. In domain adaptation, the
idea of finding a data representation that is invariant across domains is limiting,
because the true causal factors that our model should rely on may differ in their
distribution across training domains. We refer the reader to [6] for a formal
discussion of these issues.

The growing popularity of high-level tasks in vision-and-language [4,5,19]
has brought the issue of dataset biases to the forefront. In VQA, language biases
cause models to be overly reliant on the presence of particular words in a ques-
tion. Improving the data collection process can help [24,80] but it only addresses
precisely identified biases and confounders. Controlled evaluations for VQA now
include out-of-distribution test sets [2,65]. Several models and training meth-
ods [11,15,16,26,27,40,52] have been proposed with significant improvements.
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They all use strong prior knowledge about the task and/or additional annota-
tions (question types) to improve generalization. Some methods also supervise
the model’s attention [37,51,57] with ground truth human attention maps [18].
All of these methods are specific to VQA or to captioning [30,37] whereas we
describe a much more general approach.

Evaluating generalization overlaps with the growing interest in adversarial
examples for evaluation [9,13,31,33,42,46,71]. The term has been used to re-
fer both to examples purposefully generated to fool existing models [43,44], but
also to hard natural examples that current models struggle with [9,13,71,79].
Our method is most related to the use of these examples for adversarial train-
ing. Existing methods focus mostly on the generation of these examples then
mix them with the original data in a form of data augmentation [34,58,75].
We argue that this shuffling of examples destroys valuable information. In many
datasets, we demonstrate that relations between training points contain valuable
information. The above methods also aim at improving robustness to targeted
adversarial attacks, which often use inputs outside the manifold of natural data.
Most of them rely on prior knowledge and unsupervised regularizers [35,32,74]
whereas we seek to exploit additional supervision to improve generalization on
natural data.

3 Proposed approach

We start with an intuitive motivation for our approach, then describe its tech-
nical realization. In Section 3.3, we analyze more formally how it can improve
generalization. In Section 4, we demonstrate its application to a range of tasks.

3.1 Motivation

Training a machine learning model amounts to fitting a function f(·) to a set
of labeled points. We consider a binary classification task, in which the model
is a neural network f of parameters θ such that fθ : Rd → {0, 1}, and a set of
training points1 T = {(xi, yi)}i, with xi ∈ Rd and yi ∈ [0, 1]. By training the
model, we typically optimize θ such that the output of the network ỹi = fθ(xi)
minimizes a loss LMain(ỹi, yi) on the training points. However, this does not
specify the behaviour of f between these points, and the decision boundary
could take an arbitrary shape (Fig. 3). The typical practice is to restrain the
space of functions F ⊃ f (e.g . a particular architecture of neural networks)
and of parameters Θ ⊃ θ (e.g . with regularizers [32,35,74]). The capability of
the model to interpolate and extrapolate beyond the training points depends on
these choices.

Our motivating intuition is that many datasets contain information that is
indicative of the shape of an ideal f (in the sense of being faithful to the data-
generating process, see Section 3.3) between training points. In particular, we are

1 By input space, we refer to a space of feature representations of the input, i.e. vector
representations (x) obtained with a pretrained CNN or text encoder.
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Training
examples

Ground truth
labels

Neural
network

Task loss

Pairs of
counterfactual

examples

Gradient
supervision

Fig. 2. The proposed gradient supervision (GS) is an auxiliary loss on the gradient of
a neural network with respect to its inputs, which is simply computed by backpropa-
gation (dashed lines). Supervision for this gradient is generated from pairs of training
examples identified as counterfactuals of one another. The loss LGS is a cosine distance
that encourages the gradient of the network to align with the vector between pairs of
counterfactual examples.

interested in pairs of training examples that are counterfactuals of one another.
Given a labeled example (x1, y1), we define its counterfactuals as examples such
as (x2, y2) that represents an alternative premise x2 (“counter to the facts”)
that lead to different outcome y2. These points represent “minimal changes”
(||x1 − x2|| �, in a semantic sense) such that their label y1 6= y2. All possible
counterfactuals to a given example x1 constitute a distribution. We assume the
availability of samples from it, forming pairs such as {(x1, y1), (x2, y2)}. The
counterfactual relation is undirected.

Obtaining pairs of counterfactual examples. Some existing datasets ex-
plicitly contain pairs of counterfactual examples [7,12,34,47,48]. For example,
[34] contains sentences (movie reviews) with positive and negative labels. Anno-
tators were instructed to edit a set of sentences to flip the label, thus creating
counterfactual pairs (see examples in Fig. 1). Existing works simply use these as
additional training point. Our contribution is to use the relation between these
pairs, which is usually discarded. In other datasets, counterfactual examples can
be created by masking parts of the input, thus creative negative examples. In
Section 4, we apply this approach to the COCO and VQA v2 datasets.

3.2 Gradient supervision

To exploit relations between counterfactual examples, we introduce an auxiliary
loss that supervises the gradient of the network fθ. We denote the gradient of
the network with respect to its input at a point xi with gi = ∇xf(xi). Our
new gradient supervision (GS) loss encourages gi to align with a “ground truth”
gradient vector ĝi:

LGS

(
gi, ĝi

)
= 1 −

(
gi.ĝi

)
/
(
||gi|| ||ĝi||

)
. (1)

This definition is a cosine distance between gi and ĝi. Assuming {(xi, yi), (xj , yj)}
is a pair of counterfactual examples, a “ground truth” gradient at xi is obtained
as ĝi = xj-xi. This represents the translation in the input space that should
change the network output from yi to yj . Minimizing Eq. 1 encourages the net-
work’s gradient to align with this vector at the training points. Assuming f is
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Standard task loss With gradient supervision

Fig. 3. The proposed gradient supervision constrains the geometry of a model’s decision
boundary between classes. (Left) We show possible decision boundaries consistent with
a conventional supervised loss for two classes (circles and triangles representing training
points of each). (Right) The gradient supervision uses pairs of counterfactual examples
(xi,xj) to constrain classifier f such that its local gradient aligns with the vector
between these points. When the gradient supervision counterfactuals are included with
the GS loss, the boundary is clearer between two classes. On the right, we show the
GS loss for a pair of counterfactuals.

continuously differentiable, it also constrains the shape of f between training
points. This makes f more faithful to the generating process behind the training
data (see Section 3.3). Also note that the GS loss uses a local linearization of
the network. Although deep networks are highly non-linear globally, first-order
approximations have found multiple uses, for example in providing explana-
tions [53,56] and generating adversarial examples [23]. In our application, this
approximation is reasonable since pairs of counterfactual examples lie close to
one another and to the classification boundary, by definition.

The network is optimized for a combination of the main and GS losses,
L = LMain + λLGS, where λ is a scalar hyperparameter. The optimization of
the GS loss requires backpropagating second-order derivatives through the net-
work. The computational cost over standard supervised training is of two extra
backpropagations through the whole model for each mini-batch.

Multiclass output. In cases where the network output y is a vector, a ground
truth gradient is only available for classes for which we have positive examples.
Denoting such a class gt, we apply the GS loss only on the gradient of this class,
using gi = ∇xfi(xi). If a softmax is used, the output for one class depends on
that of the others, so the derivative of the network is taken on its logits to make
it dependent on one class only.

3.3 How gradient supervision improves generalization

By training a machine learning model fθ, we seek to approximate an ideal F
that represents the real-world process attributing the correct label y = F(x) to
any possible input x. Let us considering the Taylor expansion of f at a training
point xj :

f(xj) = f(xi) + f ′(xi) (xi − xj) +
1

2
f ′′(xi) (xi − xj)2 + . . .︸ ︷︷ ︸

≈0

(2)
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Our definition of a pair of counterfactual examples (xi, xj) (Section 3.1) im-
plies that (xi-xj)

m approaches 0 (m > 1). For such a pair of nearby points,
the terms beyond the first order virtually vanish. It follows that the distance
between f(xj) and f(xi) is maximized when the dot product ∇xf(xi) . (xi-xj)
is maximum. This is precisely the desired behavior of f in the vicinity of xi and
xj , since their ground truth labels yi and yj are different by our definition of
counterfactuals. This leads to the definition of the GS loss in Eq. 1. Geometri-
cally, it encourages the gradient of f to align with the vector pointing from a
point to its counterfactual, as illustrated in Fig. 3.

The conventional empirical risk minimization with non-convex functions leads
to large numbers of local minimas. They correspond to multiple plausible deci-
sion boundaries with varied capability for generalization. Our approach essen-
tially modifies the optimization landscape for the parameters θ of f such that
the minimizer found after training is more likely to reflect the ideal F .

4 Applications

The proposed method is applicable to datasets with counterfactual examples
in the training data. They are sometimes provided explicitly [7,12,34,47,48].
Most interestingly, we show that they can be also be generated from existing
annotations [18,25,36,61,62,70].

We selected four classical tasks in vision and language that are notoriously
subject to poor generalization due to dataset biases. Our experiments aim (1) to
measure the impact of gradient supervision on performance for well-known tasks,
and (2) to demonstrate that the necessary annotations are available in a variety
of existing datasets. We therefore prioritized the breadth of experiments and the
use of simple models (details in supp. mat.) rather than chasing the state of the
art on any particular task. The method should readily apply to more complex
models for any of these tasks.

4.1 Visual question answering

The task of visual question answering (VQA) involves an image and a related
question, to which the model must determine the correct answer among a set
of approximately 2,000 candidate answers. Models trained on existing datasets
(e.g . VQA v2 [24]) are notoriously poor at generalization because of dataset bi-
ases. These models rely on spurious correlations between the correct answer
and certain words in the question. We use the training/test splits of VQA-
CP [2] that were manually organized such that the correlation between the
questions’ prefixes (first few words) and answers differ at training/test time.
Most methods evaluated on VQA-CP use the explicit knowledge of this
fact [2,11,15,26,52,66,17,76] or even of the ground truth set of prefixes, which
defeats the purpose of evaluating generalization. As discussed in the introduc-
tion, strong background assumptions are one of the two options to improve
generalization beyond a set of labels. Our method, however, follows the other
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Val. Test Test “focused”

Test data → All YesNo Nb Other All YesNo Nb Other All YesNo Nb Other

SAN [76] – – – – 25.0 38.4 11.1 21.7 – – – –

GVQA [2] – – – – 31.3 58.0 13.7 22.1 – – – –

UpDown [64] – – – – 39.1 62.4 15.1 34.5

Ramakrishnan et al., 2018 [52] – – – – 42.0 65.5 15.9 36.6 – – – –

Grand and Belinkov, 2019 [26] – – – – 42.3 59.7 14.8 40.8 – – – –

RUBi [11] – – – – 47.1 68.7 20.3 43.2 – – – –

Teney et al., 2019 [66] – – – – 46.0 58.2 29.5 44.3 – – – –

Unshuffling [17] – – – – 42.39 47.72 14.43 47.24 – – – –

Strong baseline [17] + CF data 63.3 79.4 45.5 53.7 46.0 61.3 15.6 46.0 44.2 57.3 9.2 42.2

+ CF data + GS 62.4 77.8 43.8 53.6 46.8 64.5 15.3 45.9 46.2 63.5 10.5 41.4

Weak baseline (BUTD [64]),

trained on ‘Other’ only – – – 54.7 – – – 43.3 – – – 40.6

+ CF data – – – 55.9 – – – 45.0 – – – 40.6

+ CF data + GS – – – 56.1 – – – 44.7 – – – 38.3

Table 1. Application to VQA-CP v2. Existing methods all rely on built-in knowledge of
the construction procedure of the dataset, defeating some of the claimed improvements
in robustness. Using counterfactual data with the proposed gradient supervision (GS)
improve performance on most question types on the out-of-distribution test sets (see
text for discussion).

option of using a different type of data, and does not rest on the knowledge
of the construction of VQA-CP.

Generating counterfactual examples. We build counterfactual examples
for VQA-CP using annotations of human attention from [18]. Given a ques-
tion/image/answer triple (q, I,a), we build its counterfactual counterpart (q, I ′,a′)
by editing the image and answer. The image I is a set of features pre-extracted
with a bottom-up attention model [3] (typically a matrix of dimensionsN×2048).
We build I ′ (N ′×2048, N ′ ≤ N) by masking the features whose bounding boxes
overlap with the human attention map past a certain threshold (details in supp.
mat.). The vector a is a binary vector of correct answers over all candidates. We
simply set all entries in a′ to zero.

Experimental setting. For training, we use the training split of VQA-CP,
minus 8,000 questions held out as an “in-domain” validation set (as in [17]).
We generate counterfactual versions of the training examples that have a human
attention map (approx. 7% of them). For evaluation, we use (1) our “in-domain”
validation set (held out from the training set), (2) the official VQA-CP test set
(which has a different correlation between prefixes and answers), and (3) a new
focused test set.

The focused test set contains the questions from VQA-CP test from which we
only keep image features of regions looked at by humans to answer the questions.
We essentially perform the opposite of the building of counterfactual examples,
and mask regions where the human attention is below a low threshold. An-
swering questions from the focused test set should intuitively be easier, since the
background and distracting image regions have been removed. However, a model
that relies on context (question or irrelevant image regions) rather than strictly
on the relevant visual evidence will do poorly on the focused test set. This serves
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to measure robustness beyond the question biases that VQA-CP was specifically
designed for.

Results We present results of our method applied on top of two existing mod-
els. The first (weak baseline) is the popular BUTD model [3,64]. The second
(strong baseline) is the “unshuffling” method of [17], which was specifically tuned
to address the language biases evaluated with VQA-CP. We compare the baseline
model with the same model trained with the additional counterfactual data, and
then with the additional GS loss. The performance improves on most question
types with each of these additions. The “focused” provides an out-of-distribution
evaluation complementary to the VQA-CP test set (which only accounts for lan-
guage biases). It shows the improvements expected from our method to a larger
extent that the VQA-CP test set. This suggests that evaluating generalization
in VQA is still not completely addressed with the current benchmarks. Impor-
tantly, the improvements over both the weak and strong baselines indicate that
the proposed method is not redundant with existing methods that
specifically address the language biases measured by VQA-CP, like the
strong baseline. Additional details are provided in the supplementary material.

4.2 Multi-label image classification

We apply our method to the COCO dataset [36]. Its images feature objects
from 80 classes. They appear in common situations such that the patterns of co-
occurrence are highly predictable: a bicycle often appears together with a person,
and a traffic light often appears with cars, for example. These images serve as
the basis of a number of benchmarks for image detection [36], captioning [14],
visual question answering [5], etc. They all inherit the biases inherent to the
COCO images [2,30,72] which is an increasing cause of concern. A method to
improve generalization in this context has a wide potential impact.

Experimental setting. We consider a simple multi-label classification task
that captures the core issue of dataset biases that affect higher-level tasks (cap-
tioning for example [30]). Each image is associated with a binary vector of size
80 that represents the presence of at least one object of the corresponding class
in the image. The task is to predict this binary vector. Performance is measured
with the mean average precision (mAP) over all classes. The model is a feed-
forward neural network that performs an 80-class binary classification with sig-
moid outputs, over pre-extracted ResNet-based visual features. We pre-extract
these features with the bottom-up attention model of Anderson et al . [3]. They
are spatially pooled into a 2048-dimensional vector. The model is trained with
a standard binary cross-entropy loss (details in the supplementary material).

Generating counterfactual examples. Counterfactual examples can be gen-
erated using existing annotation in COCO. Agarwal et al . [1] used the inpainter
GAN [59] to edit images by masking selected objects. This only requires the orig-
inal labels and bounding boxes. The edited images represent a “minimal change”
that makes the corresponding label negative, which agrees with our definition of
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COCO Multi-label classification
Original Edited images Hard edited

Test data → images images images

Random predictions (chance) 5.1 3.9 7.8
Baseline w/o edited tr. examples 71.8 58.1 54.8
Baseline w/ edited tr. examples 72.1 64.0 56.0
+ GS, counterfactual relations 72.9 65.2 57.7
+ GS, random relations 71.8 63.9 56.1

Table 2. Application to multi-label classification on COCO. We use counterfactual
examples generated by masking objects with the inpainter GAN [1,59]. Our method
allows to train a model that is less reliant less on common object co-occurrences of the
training set. The most striking improvements are measurable with images that feature
sets of objects that appear rarely (“Edited”) or never (“Hard edited”) during training.
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Fig. 4. Qualitative examples of multi-label classification on COCO. We show the in-
put image and the scores of the top predicted labels by the baseline and by our
method (blue: correct, red: incorrect). The baseline can erroneously predict common
co-occurring objects, such as a person with food items (top left) even though there is
no visual evidence for the former. Our method is better at predicting unusual combina-
tions, such as as a donut with a wineglass (first row, left) or a laptop with an airplane
(second row, left).

counterfactuals. The vector of ground truth labels for edited images are edited
accordingly. For training, we use all images produced by [1] from the COCO
train2014 split (original and edited versions). For evaluation, we use their im-
ages from the val2014 split (original and edited version, evaluated separately).
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We also create an additional evaluation split named “Hard edited images”. It
contains a subset of edited images with patterns of classes that never appear in
the training set.

Results. We first compare the baseline model trained with the original images
only, and then with the original and edited images (Table 2). The performance
improves (71.8→72.1%), which is particularly clear when evaluated on edited im-
ages (58.1→64.0%). This is because the patterns of co-occurrence in the training
data cannot blindly relied on with the edited images. The images in this set de-
pict situations that are unusual in the training set, such as a surfboard without a
person on top, or a man on a tennis court who is not holding a racquet. A model
that relies on common co-occurrences in the training set rather than strictly on
visual evidence can do well on the original images, but not on edited ones. An
improvement from additional data is not surprising. It is still worth emphasizing
that the edited images were generated “for free” using existing annotations in
COCO.

Training the model with the proposed gradient supervision (GS) further im-
proves the precision (72.1→72.9%). This is again more significant on the edited
images (64.0→65.2%). The improvement is highest on the set of “hard edited
images” (56.0→57.7%). As an ablation, we train the GS model with random pair-
wise relations instead of relations between counterfactual pairs. The performance
is clearly worse, showing that the value of GS is in leveraging an additional train-
ing signal, rather than setting arbitrary constraints on the gradient like existing
unsupervised regularizers [35,32,74]. In Fig. 4, we provide qualitative examples
from the evaluation sets where the predictions of our model improve over the
baseline.

4.3 NLP Tasks: sentiment analysis and natural language inference

The task of sentiment analysis is to assign a positive or negative label to
a text snippet, such as a movie or restaurant review. For training, we use the
extension of the IMDb dataset [39] of movie reviews by Kaushik et al . [34]. They
collected counterfactual examples by instructing crowdworkers to edit sentences
from the original dataset to flip their label. They showed that a standard model
trained on the original data performs poorly when evaluated on edited data,
indicating that it relies heavily on dataset biases (e.g . the movie genre being
predictive of the label). They then used edited data during training (simply
mixing it with the original data) and showed much better performance in all
evaluation settings, even when controlling for the amount of additional training
examples. Our contribution is to use GS to leverage the relations between the
pairs of original/edited examples.

The task of natural language inference (NLI) is to classify a pair of
sentences, named the premise and the hypothesis, into {entailment, contradic-
tion, neutral} according to their logical relationship. We use the extension of the
SNLI dataset [10] by Kaushik et al . [34]. They instructed crowdworkers to edit
original examples to change their labels. Each original example is supplemented
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IMDb with counterfactuals Zero-shot transfer
Test data → Val. Test original Test edited Amazon Twitter Yelp

Random predictions (chance) 51.4 47.7 49.2 47.3 53.3 45.4
Baseline w/o edited tr. data 71.2 82.6 55.3 78.6 61.0 82.8
Baseline w/ edited tr. data 85.7 82.0 88.7 80.8 63.1 87.4
+ GS, counterfactual rel. 89.8 83.8 91.2 81.6 65.4 88.8
+ GS, random relations 50.8 49.2 52.0 47.4 61.2 57.4

SNLI with counterfactuals Zero-shot transfer
Test data → Val. Test original Test edited MultiNLI dev.

Random predictions (chance) 30.8 34.6 32.9 31.9
Baseline w/o edited tr. data 61.8 42.0 59.0 46.0
Baseline w/ edited tr. data 61.3 39.1 57.8 42.4
+ GS, counterfactual relations 64.8 44.4 61.2 46.8
+ GS, random relations 58.5 40.4 58.6 45.7

Table 3. Application to sentiment analysis (top) and natural language inference (bot-
tom), trained resp. on the subsets of the IMDb and SNLI datasets augmented with
“edited” counterfactual examples [34]. Our technique brings clear improvements over
mere data augmentation baseline (accuracy in %), in particular when evaluated on the
edited test data (on which biases from the original training data cannot be relied on)
and on test data from other datasets (no fine-tuning is used).

with versions produced by editing the premise or the hypothesis, to either of the
other two classes. The original and edited data together are therefore four times
as large as the original data alone.

Results on sentiment analysis. We first compare a model trained with the
original data, and with the original and edited data as simple augmentation (Ta-
ble 3). The improvement is significant when tested on edited data (55.3→88.7%).
We then train the model with our GS loss. The added improvement is visible on
both the original data (82.0→83.8%) and on the edited data (88.7→91.2%). The
evaluation on edited examples is the more challenging setting, because spurious
correlations from the original training data cannot be relied on. The ablation
that uses GS with random relations completely fails, confirming the value of the
supervision with relations between pairs of related examples.

We additionally evaluate the model on out-of-sample data with three addi-
tional test sets: Amazon Reviews [45], Semeval 2017 (Twitter data) [55], and Yelp
reviews [77]. The model trained on IMDb is applied without any fine-tuning
to these, which constitutes a significant challenge in terms of generalization. We
observe a clear gain over the data augmentation baseline on all three.

Results on NLI. We perform the same set of experiments on NLI. The fairest
point of comparison is again the model trained with the original and edited data.
Using the GS loss on top of it brings again a clear improvement (Table 3), both
when evaluated on standard test data and on edited examples. As an additional
measure of generalization, we also evaluate the same models on the dev. set
of MultiNLI [73] without any fine-tuning. There is a significant domain shift



14 Teney et al.
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Trained on original data

Fig. 5. Training on different amounts of data for sentiment analysis. The proposed
gradient supervision (GS) brings a clear improvement over a model trained with edited
examples for simple data augmentation, and even more so over a model trained with
the same number of original training examples.

between the datasets. Using the edited examples for data augmentation actually
hurts the performance here, most likely because they constitute very “unnatural”
sentences, such that easy-to-pick-up language cues cannot be relied on. Using
GS (with always uses the edited data as augmentations as well) brings back the
performance higher, and above the baseline trained only on the original data.

Limitations. Our NLP experiments were conducted with simple models and
relatively little data. The current state of the art in sentiment analysis and NLI is
achieved by transformer-based models [20] trained on vastly more data. Kaushik
et al . [34] showed that counterfactual examples are much more valuable than the
same amount of standard data, including for fine-tuning a BERT model for NLI.
The application of our technique to the extremely-large data regime, including
with large-scale language models, is an exciting direction for future work.

5 Conclusions

We proposed a new training objective that improves the generalization capa-
bilities of neural networks by supervising their gradient, and using an unused
training signal found in many datasets. While most machine learning models rely
on identifying correlations between inputs and output, we showed that relations
between counterfactual examples provide a fundamentally different, complemen-
tary type of information. We showed theoretically and empirically that our tech-
nique can shape the decision boundary of the model to be more faithful to the
causal mechanisms that generated the data. Practically speaking, the model is
then more likely to be “right for the right reasons”. We showed that this effect
brings significant improvements on a number of tasks when evaluated with out-
of-distribution test data. We demonstrated that the required annotations can be
extracted from existing datasets for a number of tasks.

There is a number of additional tasks and datasets on which our method can
readily apply [7,12,47,48,61,62,70]. Scaling up the technique to state-of-the-art
models in vision and NLP [20,28,38,60,63] is another exciting direction for future
work.
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Supplementary material

A Application to VQA

Data. We generate the counterfactual examples by masking image features
on-the-fly, during training, according the the human attention maps of [18]. We
use image features from [3], which correspond to bounding boxes in the image.
We mask the features whose boxes overlap with a fraction of the the human
attention map above a fixed threshold. We use the precomputed overlap score
from [57], which is a scalar in [0, 1], and set the threshold at 0.2 (setting it
at 0 would mask the occasional boxes that encompass nearly the whole image,
which is not desirable). This value was set manually by verifying for the intended
effect on a few training examples (that is, masking most of the relevant visual
evidence). See Fig. 6 for examples of original questions and their counterfactual
versions.

Experimental setting. Our experiments use a validation set (8,000 ques-
tions chosen at random) held out from the original VQA-CP training set. Note
that most existing methods evaluated in VQA-CP use the extremely unsanitary
practice of using the VQA-CP test split for model selection. This is extremely
concerning since the whole purpose of VQA-CP is to evaluate generalization
to an out-of-distribution test set. The variance in evaluating the ‘number’ and
‘yes/no’ questions is moreover extremely high, because the number of reasonable
answers on each of these types is very limited. For example, a model that answers
yes or no at random, or produces constantly either answer, can fare extremely
well (upwards of 62% accuracy) on these questions. This can very well result
from a buggy implementation or a “lucky” random seed, identified by model
selection on the test set (!). This is the reason why we include an evaluation on
the ‘other’ type of questions in isolation. All of these issues have been pointed
out by a few authors [26,16,66].

Our focused test set is a subset of the official VQA-CP test set. It is created
in a similar manner as the counterfactual examples. We mask features that
overlap with human attention maps below (instead of above) a threshold of
0.8. This value was set manually by verifying for the intended effect on a few
examples (masking the background but not the regions necessary to answer the
question). The focused test set is much smaller than the official test set since it
only comprises questions for which a human attention map is available.

Models. Our baseline model follows the general description of Teney et al . [64].
We use the features of size 36×2048 provided by Anderson et al . [3]. Our ‘strong
baseline’ uses the additional procedure described in [17] on top of this baseline,
using the code provided by the authors.

Existing methods. The method presented in [57] could have constituted an
ideal point of comparison with ours, as it was evaluated on VQA-CP and used
human attention maps. However, after extensive discussions with the authors,
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What is floating in the sky ?
GT Answer(s): kites, kite, sail

Where is the woman sitting ?
GT Answer(s): stairs, steps

What team is the batter on ?
GT Answer(s): white, yankees, mets, giants

Where is the baby looking ?
GT Answer(s): laptop, screen, monitor

What is the sex of rider ?
GT Answer(s): female, male

What kind of boat is on the water ?
GT Answer(s): canoe, paddle

What sport is the person participating in ?
GT Answer(s): surfing

What is this person standing on ?
GT Answer(s): skateboard

What is the person in photo holding ?
GT Answer(s): surfboard

Fig. 6. Application to VQA. Examples of original examples (with their ground truth
answer) and their counterfactual version. Red boxes indicate regions that were candi-
dates for masking when generating the counterfactual versions.
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we still have not been able to replicate any of the performance claimed in the
paper. We found a number of errors in the paper, as well as inconsistencies in the
reported results, and an extreme sensitivity to a single hyperparameter (their
reported results were obtained with a single run on a single random seed). We
chose not to mention this work in our main paper until these issues have been
resolved.

Why not use the same technique for the VQA and COCO experi-
ments ? Inpainting in pixel space vs masking image features. The
two approaches are applicable in both cases. The only reason was to showcase
the use of multiple techniques to generate counterfactual examples. The human
attention map are specific to VQA and not applicable to the COCO experiments.

B Application to image classification with COCO

Data. We use the edited images released by [1] together with the corresponding
original images from COCO. The edited images were created with the inpainter
GAN [59] to mask ground truth bounding boxes of specific objects. The images
come from the COCO splits train2014 and val2014. We keep this separation for
our experiments as follows. Images from train2014 (323,116 counting original
and edited ones) are used for training, except a random subset (1,000 images)
that we hold out for validation (model selection, early stopping). Images from
val2014 (3,361 original and 3,361 edited) are used exclusively for testing.

We identified a subset (named Hard edited) of the edited images from val2014
whose ground truth vector (which indicated the classes appearing in the image)
is never seen during training (614 images).

The set of edited images provided by [1] is a non-standard subset of COCO,
so no directly-comparable results have been published for the multi-label classi-
fication task that we consider.

Model. We pre-extract image features from all images with the ResNet-based,
bottom-up attention model [3]. These features are averaged across spatial loca-
tions, giving a single vector of dimensions 2048 to represent each image. Our
model is a 3-layer ReLU MLP of size 64, followed by a linear/sigmoid output
layer of size 80 (corresponding to the 80 COCO classes). This baseline model
was first tuned for best performance on the validation set (tuning the number
of a layers and their size, the batch size, and learning rate), before adding the
proposed GS loss. The model is optimized with AdaDelta, mini-batches of size
512, and a binary cross-entropy loss.

Performance is measured with a standard mean average precision (mAP) (as
defined in the Pascal VOC challenge) over all 80 classes.

The Fig. 4 in the paper shows the input image with the scores of the top-k
predicted labels by the baseline and by our method. The k corresponds to the
number of ground truth labels of each image.
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Masked object: car
(left and right, behind the truck)

Masked object: person

Masked object: skateboard

Masked object: surfboard

Masked object: boat

Masked object: tie
(on both persons in the foreground)

Masked object: bicycle
(against the railing on the right)

Masked object: person

Masked object: horse

Masked object: tie

Fig. 7. Application to multi-label image classification with COCO. Examples of origi-
nal and edited images.
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Random baseline. In our ablations, this model is identical to the standard
baseline, but it is trained with a randomly shuffled training set. We shuffle the
inputs {xi}i and the ground truth labels {yi}i of all training examples. The
model is thus not getting any relevant training signal from any example. It can
only leverage static dataset biases (i.e. a class imbalance).

C Application to NLP tasks

Sentiment analysis data. We use the subset of the IMDb dataset [39] for
which Kaushik et al . [34] obtained counterfactual examples. We use their ‘paired’
version of the data, which only contains original examples that do have an edited
version. For training, we use the ‘train’ split of original and edited data (3414 ex-
amples). For validation (model selection, early stopping), we use the ‘dev’ set
of paired examples. For testing, we use the ‘test’ split, reporting accuracy over
the original and edited examples separately. For testing on other datasets, we
use a random subset (2000 examples) of the test sets of Amazon Reviews [45],
Semeval 2017 (Twitter data) [55], and Yelp reviews [77] similarly to [34].

Sentiment analysis model. We first optimized a simple baseline model on
the validation set (tuning the number of a layers, embedding sizes, batch size,
and learning rate). We then added the proposed gradient supervision, tuned its
hyperparameters on the validation set (regularizer weight) then reported the
performance on the test sets at the epoch of best performance on the validation
set. The sentences are tokenized and trimmed to a maximum of 32 tokens. The
model encodes a sentence as a bag of words, using word embeddings of size 50,
averaged to the exact length of each sentence (i.e. not including the padding of
the shorter sentences). The vocabulary is limited to the 20,000 most frequent
words in the dataset. The averaged vector is passed to a simple linear classifier
with a sigmoid output. All weights, including word embeddings, are initialized
from random values, and optimized with AdaDelta, in mini-batches of size 32,
with a binary cross-entropy loss. The best weight for the GS regularizer was
found to be λ=20. To reduce the noise in the evaluation due to the small size
of the training set, we use an ensemble of 6 identical models trained in parallel.
The reported results uses the output of the ensemble, that is the average of the
logits of the 6 models.

NLI data. The experiments on NLI follow a similar procedure to those on sen-
timent analysis. We use the subset of the SNLI dataset [10] for which Kaushik
et al . [34] collected counterfactual examples. We use their biggest version of the
data, named ‘all combined’, that contains counterfactual examples with edited
premises and edited hypotheses. For testing, we evaluate accuracy separately on
original and edited examples (edited premises and edited hypotheses combined).
For testing transfer, we use the ‘dev’ set of MultiNLI [73]. Whereas the SNLI
dataset contains sentence pairs derived from image captions, MultiNLI is more
diverse. It contains sentences from transcribed speech, popular fiction, and gov-
ernment reports. Compared to SNLI, it contains more linguistic diversity and
complexity.
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Test data → Yelp

Random predictions (chance) 45.4
Baseline w/o edited tr. data 82.8
Baseline w/ edited tr. data 87.4
+ GS, counterfactual rel. 88.8
+ GS, random relations 57.4

Table 4. Application to sentiment analysis. Results on the Yelp dataset. This column
was missing in Table 3 in the paper (a code-generating error replicated the values from
the Amazon column into the Yelp column).

NLI model. The premise and hypothesis sentences are tokenized and trimmed
to a maximum of 32 tokens. They are encoded separately as bags of words, using
frozen Glove embeddings (dimension 300), then a learned linear/ReLU projec-
tion to dimension 50, and an average to the length of each sentence (without
using the padding). They are then passed through a batch normalization layer,
then concatenated, giving a vector of size 100. The vector is passed through 3 lin-
ear/ReLU layers, then a final linear/sigmoid output layer. The model is trained
with AdaDelta, with mini-batches of size 512, and a binary cross-entropy loss.
The best weight for the GS regularizer was found to be λ=0.01. Similarly to our
experiments on sentiment analysis, we evaluate an ensemble of 6 copies of the
model described above.
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