
Deep Space-Time Video Upsampling Networks

Jaeyeon Kang1, Younghyun Jo1, Seoung Wug Oh1,
Peter Vajda2, and Seon Joo Kim1,2

1Yonsei University, 2Facebook

Abstract. Video super-resolution (VSR) and frame interpolation (FI)
are traditional computer vision problems, and the performance have
been improving by incorporating deep learning recently. In this paper,
we investigate the problem of jointly upsampling videos both in space
and time, which is becoming more important with advances in display
systems. One solution for this is to run VSR and FI, one by one, in-
dependently. This is highly inefficient as heavy deep neural networks
(DNN) are involved in each solution. To this end, we propose an end-
to-end DNN framework for the space-time video upsampling by effi-
ciently merging VSR and FI into a joint framework. In our framework,
a novel weighting scheme is proposed to fuse all input frames effectively
without explicit motion compensation for efficient processing of videos.
The results show better results both quantitatively and qualitatively,
while reducing the computation time (×7 faster) and the number of pa-
rameters (30%) compared to baselines. Our source code is available at
https://github.com/JaeYeonKang/STVUN-Pytorch.

Keywords: Video Super-Resolution, Video Frame Interpolation, Joint
space-time upsampling

1 Introduction

In this paper, we introduce a method of upsampling both the spatial resolution
and the frame rate of a video simultaneously. This is an important problem as
more high-performance TV displays are being introduced with higher resolution
and frame rate, but the video contents have not yet caught up with the capa-
bilities of displays. For example, new UHD displays now come with 4K or even
8K resolution, and the frame rate of 120 fps. On the other hand, most available
contents are still HD (1080p) or less in resolution, with the frame rate of 30 fps.
Another potential application of this problem is the video replay for sports and
security videos. In order to inspect a video in much detail, videos are spatially
magnified in slow motion. As shown by these examples, there is definitely a ma-
jor need for a framework that can convert a given video into a video with higher
resolution and frame rate.

Deep neural networks (DNN) have become common solutions for video super-
resolution (VSR) and frame interpolation (FI) recently. With DNN, an obvious
solution for the joint upsampling problem would be to sequentially run a VSR

ar
X

iv
:2

00
4.

02
43

2v
2

 [
cs

.C
V

]
 1

0
A

ug
 2

02
0

https://github.com/JaeYeonKang/STVUN-Pytorch

2 Kang et al.

E A F R2
1

0

2
0

1

1

E RI

(a) VSR and FI network.

E R
F

I
2

0
0
1
2

(b) Our proposed network.

Fig. 1: Common pipelines for VSR/FI and the design scheme for our proposed
network. By efficiently merging the pipelines for the two tasks with new mech-
anisms for feature fusion and interactions between modules, we can accurately
upsample videos both in space and time in a very efficient fashion. E: extraction,
A: alignment, F: fusion, R: reconstruction, I: interpolation.

network followed by a FI network or vice versa. However, running the two algo-
rithms independently is computationally expensive and inefficient, as the state-
of-the-art methods for each task employ heavy DNNs. The goal of this paper is
to design an efficient DNN for the joint space-time upsampling problem by inves-
tigating shareable components between the spatial and the temporal upsamping
tasks.

While there are many different DNN architecture for VSR [29,34,23,32] and
FI [34,9,2,20], the common design schemes can be summarized as in Fig. 1(a). In
VSR, most methods employ four stages – feature extraction, alignment, fusion
and reconstruction. For FI, the process can be divided into feature extraction,
feature interpolation and reconstruction.

To jointly upsample videos both in space and time, we propose to combine
the two tasks in an efficient manner as shown in Fig. 1(b) by sharing the common
modules in feature extraction and reconstruction. The modules are designed to
interact and learn simultaneously for accurate and efficient reconstruction of
jointly upsampled videos.

Furthermore, we propose a novel way to efficiently fuse the features of individ-
ual frames for VSR without explicit motion compensation. Most VSR methods
rely on aligning many input frames through optical flows [34,23,8,29] or de-
formable convolutions [32] before fusing the extracted features. As many meth-
ods use up to 7 input frames, aligning that many frames takes up a large portion
of the computation. To remove the computational burden of motion compensa-
tion, we fuse the feature maps without explicit alignment step (Fig. 1(b)). In our
feature fusion process, we propose Early Fusion with Spatio-Temporal weights
(EFST) module that learns to fuse information by considering spatio-temporal
relationship between input frames in an implicit manner. In this module, learn-
able spatio-temporal weights are computed in order to combine rich information
from all frames instead of focusing too much on the target frame.

There are no public datasets available for the joint space-time upsampling,
as it is a relatively a new topic. While there are many datasets for VSR and
FI separately, they are not ideal for the joint upsampling task. To this end, we

Deep Space-Time Video Upsampling Networks 3

collected a new dataset called the Space-Time Video Test (STVT) dataset that
can be used to evaluate joint upsampling methods. This dataset will be publicly
available.

In summary, the main contributions of our paper are as follows:
– By efficiently merging two networks of VSR and FI, we propose a novel frame-

work called the Space-Time Video Upsampling Networks (STVUN) for joint
space-time video upsampling. With careful design of each module and their
interactions, we produce better results while reducing the computation time
(×7 faster) and the number of parameters (30%) compared to sequentially
connected state-of-the-art VSR and FI networks.

– We propose Early Fusion with Spatio-Temporal weights (EFST) to fuse input
features efficiently without explicit motion compensation for VSR.

– Our framework can deal with more challenging upsampling tasks as it can
upsample 4 × 4 in space and ×∞ in time. In comparison, recent works on
joint upsampling have only shown results on doubling the resolution both in
space and time (2× 2× 2).

– We collected Space-Time Video Test (STVT) dataset for evaluating the joint
space-time upsampling task. This can be very useful for future work in this
topic.

2 Related Work

2.1 Video Super-Resolution

After Dong et al. [6] have successfully achieved the high performance by incor-
porating deep learning into the single image SR task, deep learning approaches
have also become prevalent in solving the VSR problem [13,11,4,16,29,23].

DUF [10] used dynamic up-sampling filters to improve the resolution while
reducing the flickering artifact which is prevalent in VSR task. Their method
takes the advantage of the implicit motion computed within the network, and
additionally used the learned residual image to enhance the sharpness. RBPN
[8] used an iterative refinement framework, which forwards the input frame with
other frames at multiple times. They use the idea of back-projection, which
computes a residual image for each time step to reduce the error between the
target and the output. In EDVR [32], input frames are first aligned with the
target frame using the deformable convolution [5]. Aligned frames are then fused
using the temporal and spatial attention (TSA) mechanism.

2.2 Video Frame Interpolation

Video frame interpolation can be roughly divided into two categories: kernel-
based methods and optical flow-based methods. As an interpolation kernel based
approach, Niklaus et al. [21] proposed AdaConv, which produces interpolation
kernels to generate intermediate frame. In [22], they extended the method to
reduce the computational cost, which is named as SepConv using 1D kernels
instead of 2D kernels.

4 Kang et al.

With the introduction of CNN-based optical flow algorithms [7], several
frame interpolation algorithms using the optical flow have been developed. Liu
et al. [18] produce intermediate frames by the trilinear sampling based on the
estimated deep voxel flows called DVF. Xue et al. [35] used the bi-directional
flow to warp both input frames using the backward warping function. Jiang et
al. [9] obtained the bi-directional flow through the network and then linearly
transformed two flows with respect to the time value to generate multiple in-
termediate frames. Niklaus and Liu [20] used the forward warping and further
designed a refinement network in order to fill the holes caused by the forward
warping. Liu et al. [17] used cycle consistency loss to enhance synthesized frames
to be more reliable as input frames. To deal with the occlusion problem which is
a common issue in optical flows, additional depth information was used to refine
the optical flows in DAIN [2].

2.3 Space-Time Upsampling

In [26], Shechtman et al. first proposed a space-time super-resolution frame-
work by using multiple low resolution (LR) videos of the same dynamic scene.
Different from the frame interpolation methods mentioned above, they explic-
itly deal with the motion blur to generate sharp interpolated frames. In [24],
Shahar et al. extended the work in [26] with a method that only uses a single
video to enhance the resolution. Sharma et al. [25] first used a DNN architec-
ture for the joint space-time upsampling. They used the auto-encoder to learn
the mapping between LR and high resolution (HR) frames, and the frame in-
terpolation was simply done by the tri-cubic interpolation. Another deep joint
upsampling method called FISR [12] was recently introduced, which targets for
estimating 4K, 60fps video from 2K, 30fps video. They regularized their joint
upsampling network by forwarding multiple chunks of frames into one iteration
and set multiple temporal losses at the output of each chunk. Note that, FISR
only generates 8 pixels (space ×2, time ×2) per input pixel, while our work aims
at more challenging task of generating more pixels (e.g. 64 pixels for space ×4,
time ×4).

3 Space-time Video Upsampling Algorithm

Given a sequence of LR frames Xt, our method produces HR frames Ŷt of inputs
as well as the intermediate HR frames ŶT in-between the input frames. The
term t denotes the input time index, and T indicates the newly created time
index. The size of a LR frame is H × W × C, where H, W , and C are the
height, the width, and the number of channels respectively. The output size is
rH × rW × C, with r being the spatial upscaling factor. We can generate N
multiple upsampled intermediate frames in-between the two input frames. The
problem is very challenging as the algorithm has to generate r2× (N + 1) pixels
per pixel in the input frame. For example, we need to generate 64 pixels in the
output per input pixel with r = 4 and N = 3.

Deep Space-Time Video Upsampling Networks 5

Decoded
Features

(𝑫)

Center
Features

(𝒆𝟑)

𝒀𝟑

𝒀𝑻

Encoder

𝒘

Intermediate
Features

(𝒎𝑻)

𝑿𝟑

𝑿𝟎

D
e

n
se

 B
lo

ck

𝑿𝟒

𝑿𝟔

𝑻𝒊𝒏 𝒇𝑻→𝟑,𝟒Flow

Estimator
𝑿𝟑,𝟒

D
e

e
p

D

e
n

se
 B

lo
ck

Sh
u

ff
le

r
x4

Decoder

D
e

e
p

D
e

n
se

 B
lo

ck

Sh
u

ff
le

r
x4

𝑿𝟒

𝑹𝟑

𝒘

𝑿𝑻

𝒖

𝑹𝑻

𝒖𝑿𝟑

𝒇𝑻→𝟑,𝟒

EFST

Fig. 2: Overview of our space-time upsampling network. The network is com-
posed of several interacting modules to produce the HR frames of the center
frame Ŷ3 and the intermediate frames ŶT , where T ∈ [3, 4]. The term w and u
indicate backward warping and bilinear upsampling respectively.

3.1 Network Overview

The overview of our network is shown in Fig. 2. Our network is composed of
multiple modules: encoder, feature fusion for spatial upsampling (EFST), flow
estimator for frame interpolation, and decoder. Our framework takes 7 LR frames
as inputs, for example X[0,1,2,3,4,5,6]. Then, it produces the HR frames for the

center frame Ŷ3 as well as N HR intermediate frames ŶT , where T ∈ [3, 4].
The encoders that share weights are first used to extract features per frame.

The encoded features are fused using EFST for the spatial upsampling, and
interpolated using the computed flows for the temporal upsampling. The decod-
ing block that consists of decoders with shared weights produces residual images
for the spatial and the temporal upsampling, both of which are added to the
bilinearly upsampled images to produce the final output frames.

3.2 Network Details

Encoder Structure of the encoder is shown in Fig. 3. The encoder extracts fea-
ture representations for each frame and consists of multiple dense convolution
blocks. Each dense block is connected to the corresponding block in decoder
through EFST. This allows the decoder to keep considering the temporal rela-
tionship of inputs. The encoded features are expressed as eit, where i is the block
index and t is the time index of the input frame.

Early Fusion with Spatio-Temporal weights (EFST) In most VSR meth-
ods, features from multiple frames are aligned before fusion using explicit motion
compensation by optical flows or deformable convolutions. However, aligning
multiple frames (6 in most cases including ours) to the center frame is computa-
tionally expensive. Therefore, we exclude explicit alignment process by devising

6 Kang et al.

C
o

n
v
_

6
4

_
3

Encoder

𝑿𝟎

𝑿𝟔

𝒆𝟎
𝟎

D
e

n
s
e

_
6

4
_

3

D
e

n
s
e

_
6

4
_

3

D
e

n
s
e

_
6

4
_

3

D
e

n
s
e

_
6

4
_

3

𝒆𝟎
𝟏 𝒆𝟎

𝟐 𝒆𝟎
𝟑

𝒆𝟔
𝟎 𝒆𝟔

𝟏 𝒆𝟔
𝟐 𝒆𝟔

𝟑

Decoder

Concat

𝒆𝟑
𝟐

෩𝑬𝟐

D
e

n
s
e

_
1

2
8

_
3

D
e

n
s
e

_
2

5
6

_
3

D
e

n
s
e

_
5

1
2

_
3

Conv_128_1

Concat

෩𝑬𝟑

D
e

n
s
e

_
1

2
8

_
3

D
e

n
s
e

_
2

5
6

_
3

D
e

n
s
e

_
5

1
2

_
3

Concat

𝒎𝟑

D
e

n
s
e

_
1

2
8

_
3

D
e

n
s
e

_
2

5
6

_
3

D
e

n
s
e

_
5

1
2

_
3

Concat

Concat

𝒎𝟐

D
e

n
s
e

_
1

2
8

_
3

D
e

n
s
e

_
2

5
6

_
3

D
e

n
s
e

_
5

1
2

_
3

Conv_128_1

Concat

EFST

C
o

n
v
_

6
4

_
3

In
p

u
t_

6
4

L
e

a
k
y
 R

e
L

U

C
o

n
v
_

1
2

8
_

3

L
e

a
k
y
 R

e
L

U

O
u

tp
u

t_
6

4

Dense_64_3

𝒆𝟑
𝟑

𝑫𝟑 𝑫𝟐

Fig. 3: The structure of the encoder and decoder. Dense 64 3 denotes dense block
with 64 input channel dimension and 3×3 kernel size. We use Leaky ReLU with
the slope value 0.1.

the EFST module for implicit feature alignment and fusion for spatial upsam-
pling.

To merge input features from the encoders, we first apply early fusion to re-
duce the computational cost. Early fused features Ei are defined as Conv(Concat
[ei0, ..., e

i
6]) where Conv reduces the channel dimension by the factor of 7 with an

1×1 convolution filter. However, since the early fusion will collapse all temporal
information in the first layer, the features of the target (center) frame will be
mainly used as mentioned in [27]. Some information in other frames may vanish
due to the bottleneck. This is because most information for reconstructing the
HR target frame is contained in the input LR center frame.

In order to use valuable information in the features from all the input frames
without explicit alignment, we propose the EFST module that computes spatio-
temporal weights to compensate Ei. The structure of EFST is shown in Fig. 4.
In the early fusion result Ei, most input features are not considered equally since
Ei will be computed to mainly focus on the center frame. Therefore, we design a
confidence score to effectively fuse informative features from the neighbor frames
as well as the center frame. We estimate the confidence score by computing dot-
product between Ei and all the eit. We use this confidence score as a temporal
attention to find which frames need to be more referred. The confidence score is
computed as follows:

sit = sigmoid(θ(eit) ◦ δ(Ei)), (1)

where ◦ is dot-product and s is the confidence score. θ and δ are single convolu-
tional layer with filter size 1×1. sit has the same spatial size as eit and the values
of sit are in [0, 1]. To pay more attention to the frames with high confidence score,
we multiply this value to the original encoded features eit as follows:

ēt
i = sit � eit, (2)

where � denote element-wise multiplication.

Deep Space-Time Video Upsampling Networks 7

𝒆𝟎 𝒆𝟑 𝒆𝟔

Concat

Conv_448_1

𝑬

Element-wise
multiplication

ത𝒆𝟎 ത𝒆𝟑 ത𝒆𝟔

Pyramid
Convolution

𝜶

𝜷 ෩𝑬

Early Fusion

Conv_64_1 Conv_64_1

Sigmoid

Confidence Score

ത 𝒆
𝟎

ത 𝒆
𝟑

ത 𝒆
𝟔

C
o

n
c
a

t

C
o

n
v
_

4
4

8
_

1

A
v
g

_
M

a
x
_

p
o

o
l

C
o

n
c
a

t

C
o

n
v
_

1
2

8
_

1

C
o

n
v
_

6
4

_
3

U
p

s
m

a
p

le

A
v
g

_
M

a
x
_

p
o

o
l

C
o

n
c
a

t

C
o

n
v
_

1
2

8
_

1

C
o

n
v
_

6
4

_
3

C
o

n
v
_

6
4

_
3

S
ig

m
o

id
C

o
n

v
_

6
4

_
3

C
o

n
v
_

6
4

_
3

𝜶

𝜷

C
o

n
v
_

6
4

_
3

U
p

s
m

a
p

le

Pyramid Convolution

Fig. 4: Early Fusion with Spatio-Temporal weights (EFST) module.
Avg Max pool means pooling separately with average pooling and max
pooling. For temporally attending more frames, the confidence score is com-
puted from early fusion result Ei and eit. Then, the spatio-temporal weights α
and β are computed and applied. For simplicity, we omit the superscript i, and
see text for details.

All temporally weighted encoded features ēt
i are then concatenated and

forwarded to pyramid designed convolutional layers to further consider spatio-
temporal information. Pyramid convolution can effectively enlarge the receptive
field with just few convolution layers. Afterwards, we generate learnable spatio-
temporal weights α, β. It is a tensor with same size of Ei. It transform the
initial early fusion result to learn the alignment in an implicit way. The final
fused features is computed as follows:

Ẽi = α� Ei + β. (3)

Our EFST module is similar to Fusion with Temporal and Spatial Attention
called TSA in [32]. TSA measures similarity distance between aligned frames
and target frame to temporally weight more on well-aligned frames, since mis-
alignment can severely interfere with learning. In comparison, we use confidence
score as a way to involve more features from more input frames, which eventually
works as a joint alignment and fusion process without explicit alignment.

Intermediate Feature Interpolation The feature interpolation process is
shown in green in Fig. 2. Features mi

T of an intermediate frame are synthesized
by warping the features of the input frames (X3, X4) using the optical flow
estimated by the flow estimator. To reduce the computational cost, we warp the
encoded features of the two inputs to produce the target intermediate features
instead of first creating the intermediate frame and encoding it again. Note that
explicit alignment is only used for intermediate frames but not for merging all
input features (EFST). We first use the optical flow computed by the PWC-Net
[28]. Then, we use the following formulation [9] to estimate the flow between the

8 Kang et al.

input frames and the intermediate frame:

fT→3 = −(1− Tin)Tinf3→4 + T 2
inf4→3,

fT→4 = (1− Tin)2f3→4 − Tin(1− Tin)f4→3,
(4)

where f indicates the optical flow and Tin is a relative scalar value (e.g. when
we want to get Ŷ3.5, then Tin is set to 0.5). Note that Tin is given as an input
to the network to provide the time index of the intermediate frame.

Finally, the features of the intermediate frame are computed as follows:

mi
T =

w(ei3, fT→3) + w(ei4, fT→4)

2
, (5)

where w stands for the backward warping.
At the same time, we generate LR intermediate frames XT for the subsequent

process of bilinear upsampling with

X̂T =
w(X3, fT→3) + w(X4, fT→4)

2
, (6)

and for finetuning PWC-net with ground-truth intermediate frames during train-
ing whole network, we set loss function as:

LM =
∑
T

||X̂T −XT ||1. (7)

Decoder The decoder reconstructs target HR residual image and it consists of
multiple dense convolution blocks. The same number of blocks is used to connect
with each block of the encoder. We design a more deeper dense block which is
shown in Fig. 3, since more layers and connections could boost performance
[14,33]. To generate the residual image of the target frame, features from the
last layer of the last block are convolved with a filter having C · r · r output
channels, where the output is then reshaped to the size of rH×rW ×C through
the pixel shuffler [27] with the scale factor of 4.

For space upsampling, features of target (center) frame e3 and fused features
from EFST Ẽ are used as inputs. Output residual image R3 is added to the
upsampled target frame to generate final HR output as follows:

Ŷ3 = u(X3) +R3, (8)

where u(·) is the bilinear upsampling function. The loss function for space up-
sampling is defined as:

LS = ||Ŷ3 − Y3||1. (9)

Since the decoder consists of more deeply stacked convolution layers, it cre-
ates more refined spatio-temporal information from the EFST features. There-
fore, during the space upsampling task, the decoded features Di are generated
at the end of each dense block and forwarded to the space-time upsampling task

Deep Space-Time Video Upsampling Networks 9

to supplement with more rich information. For space-time upsampling, the in-
termediate features mT are passed to another decoder that shares weights. Here,
different from space upsampling, decoded features Di are fed instead of feeding
Ẽ.

Then, HR residual image RT of the intermediate frame is generated and the
final HR intermediate frame is computed as follows:

ŶT = u(X̂T) +RT , (10)

where X̂T is from Eq. (6). Our loss function to train space-time upsampling is:

LF =
∑
T

||ŶT − YT ||1, (11)

where T can be any values in [3, 4]. Note that we can generate arbitrary number
of intermediate frames using Eq. (4).

3.3 Training

Vimeo septuplets dataset [35] is usually used to train VSR and FI tasks. But
the length of video frames in Vimeo dataset is too short for our task. It consists
of 7 frames per clip, but we need at least 8 frames for training. Therefore, we
collect training videos of 240fps from YouTube. This training dataset consists of
various scenes with global camera motions and local object motions. In total, the
dataset contains about 1800 video clips and 220K frames. To make LR frames,
HR frames are first smoothed with a Gaussian filter and then subsampled with
respect to the scaling factor r = 4. For the data augmentation, we randomly flip
left-right and rotate 90/180 degrees. We also reverse the order of the sequence
to enlarge the training dataset. The whole training and test is processed in RGB
channels.

It is difficult to train all the networks in our framework simultaneously from
scratch, as there are many interactions between the components. We first pre-
train the encoder and the spatial decoder by minimizing LS (VSR part only).
For this pretraining, we use 7 frames Y[0,1,2,3,4,5,6] in the training dataset and
128× 128 patches are cropped. We use the Adam optimizer for 300K iterations
with the mini-batch size of 32. The learning rate is initialized to 0.0001 and
decreased by a factor of 2 every 100K iterations.

After pretraining the VSR part, we train the whole network using the fol-
lowing total loss function:

L = λMLM + λSLS + λFLF , (12)

where λM, λS , and λF are the weight parameters. In our experiment, we em-
pirically set λM = 1, λS = 1, and λF = 1 for the best results. For the joint
training, 256× 256 patches are used rather than 128× 128 in order to deal with
large motions. Intermediate frames in-between Y3, Y4 (e.g. Y3.5) as well as the
7 frames are used for training VSR and FI part together. We train the whole
network for 400K iterations and the initial learning rate is set to 0.00005. The
same learning rate decay is used.

10 Kang et al.

4 Experiments

In this section, we provide both quantitative and qualitative evaluations of our
algorithm.

Testsets While there are some datasets for VSR and FI separately, they are not
ideal for the joint space-time upsampling task. For example, the Vid4 testset [15]
for VSR have a lot of details, but the motion between the frames is too small.
This limits the assessment of FI performance. MPI Sintel testset [3] is synthetic
dataset which dose not have much detail to assess VSR performance. REDS-
VTSR dataset [19] is used for VSR and FI separately, but it contains unnatural
camera movements. In addition, the Vimeo [34], Middleburry [1] and FISR [12]
testset are not available, since at least 15 frames are required for each scene to
evaluate the performance.

To this end, we use Vid4, MPI Sintel and REDS-VTSR [19] for testing the
generalization our performance. In addition, we create Space-Time Video Test
(STVT) dataset that consists of 12 dynamic scenes with both natural motions
and spatial details for the joint upsampling evaluation. Each scene has at least
50 frames, and we will make STVT dataset publicly available to promote more
research in this topic.

Baselines We make two baseline methods (V → F and F → V) that combine
VSR and FI, which run consequently. V and F indicate VSR and FI respectively.
For example, F → V indicates running FI first and then VSR. For V and F ,
we use EDVR [32] and DAIN [2] respectively, which are the state-of-the-art
methods with publicly available codes. As the bias of the dataset affect the
evaluation performance [30], for fair comparison, we try to finetune the baseline
methods with our YouTube training dataset. However, since their weights are
already highly finetuned, we find that the performance is rather reduced when
we jointly train both networks at the same time (0.15dB is reduced for Vid4
testset). Therefore, we fix their weights to produce the results. We also compare
our method with FISR [12], the only deep learning based work that we can
compared to at this moment.

4.1 Comparisons

For the evaluation, we extract odd numbered frames in the testset and set them
as ground-truth frames. Only the even numbered frames are used to generate
the space-time upsampled results. We first compare our method with the two
baseline methods. We set Tin = 1/2 for generating the HR intermediate frame.
Table 1 shows the quantitative results of different approaches for ×4 space and
×2 time. In every testset, F → V consistently shows the worst performance,
because FI works better on HR input frames due to sufficient details. On the
other hand, in the case of V → F , FI can access sufficient details from VSR,

Deep Space-Time Video Upsampling Networks 11

Table 1: Quantitative evaluation of the joint space-time upsampling on multiple
testsets. We compare our method with the two baseline approaches by measuring
the PSNR and SSIM. We set Tin = 1/2 for comparison. We also write down the
number of parameters and the running time for each method. The running time
is measured when generating the results with the resolution 960× 540. The best
is shown in bold.

F → V V → F Ours

Dataset Vid4 25.22/0.7506 26.39/0.8163 26.49/0.8231
Sintel 26.99/0.7986 27.56/0.8185 27.58/0.8134

REDS-VTSR 23.70/0.6541 23.63/0.6533 23.78/0.6601
STVT 26.43/0.8435 26.96/0.8619 27.23/0.8644

#Params 44.7M 44.7M 30.9M
Running Time 0.52s 2.14s 0.30s

Table 2: Comparison with FISR [12]. We train our model with the upsampling
factor space ×2 and time ×2 which is the same as FISR.

FISR [12] Ours

Dataset Vid4 26.93/0.8534 30.60/0.9369
Sintel 27.17/0.8115 28.36/0.8329

REDS-VTSR 23.89/0.6601 23.66/0.6550
STVT 26.49/0.8514 28.01/0.8895

#Params 62.3M 30.9M
Running Time 1.10s 0.98s

thus it can generate sharper results. However, the improvement in the resolution
increases the amount of computation for FI (×4 slower).

Our results show better performance for all datasets as shown in Table 1.
The performance difference in Vid4, Sintel and REDS-VTSR testset is not that
big because those testsets are not constructed for this particular tasks and not
optimal for evaluating the joint upsampling task. The performance gap between
our method and the baselines become larger with the STVT dataset, which is
specifically designed for the joint upsampling.

Table 1 also shows the number of parameters and the computation time of
different methods. In this experiment, our total parameters and computational
times does include PWC-Net [28]. We run the methods on Nvidia Geforce Titan
X and measure the time taken to generate one 960 × 540 jointly upsampled
frame. The number of parameters is reduced by more than 30% compared to
the baseline methods, and the speed is 7 times faster than V → F and 1.7
times faster than F → V . Although ours is lighter than the baseline methods,
it exceeds the performance of baseline methods, indicating that our network is
designed efficiently.

Additionally, we compare our model with FISR [12] in Table 2. As the up-
sampling factor of FISR is space ×2 and time ×2, we train our network with the
same settings. Note that only the number of output channels of the last convo-
lutional layer in the decoder is changed. As can be seen in Table 2, our method

12 Kang et al.

Ŷ0 Ŷ0.25 Ŷ0.5 Ŷ0.75 Ŷ1

Parade 1

F → V

V → F

STVUN
(Ours)

Soccer

F → V

V → F

STVUN
(Ours)

Racing

F → V

V → F

STVUN
(Ours)

(a) Comparison with baseline methods on STVT dataset.

FISR
STVUN
(Ours)

FISR
STVUN
(Ours)

(b) Comparison with FISR on REDS-VTSR testset.

Fig. 5: Visual comparisons of the space-time upsampling results. In (a), we gen-
erate a total of 5 frames that consist of 2 space upsampling and 3 intermediate
frames. Parade 1, Soccer, Racing scenes are used in our STVT dataset. In (b),
we generate one intermediate frame. 002 and 007 in REDS-VTSR testset are
used.

Deep Space-Time Video Upsampling Networks 13

Table 3: Ablation studies on the EFST and our network structure. STVT dataset
is used for comparison.

w/o EFST w/o D w/ A&F Ours

PSNR/SSIM 27.06/0.8613 27.15/0.8615 27.20/0.8652 27.23/0.8644
#Params 30.5M 30.9M 32.4M 30.9M

Running Time 0.27s 0.30s 0.75s 0.30s

outperforms FISR by a large margin except for REDS-VTSR. In addition, our
method runs faster than FISR with fewer parameters.

Fig. 5 visually compares our method with the two baseline methods and
FISR. In Fig. 5(a), we generate multiple frame (Tin = 0.25, 0.5, 0.75) in-between
two input frames. To better illustrate the results, we enlarge the corresponding
red areas. As STVT dataset has a large motion, two baseline methods have
difficulty in handling the large motion. In the soccer scene, F → V shows more
pleasing result than V → F because it is easier to estimate the motion at
smaller input size. Except for the large motion scene, V → F is clearer than
F → V . Overall, our method is more accurate in estimating the motion and
shows less artifacts. In Fig. 5(b), we generate one intermediate frame (Tin = 0.5)
for comparison with FISR. The results in FISR show ghost artifact due to wrong
motion estimation, but ours restore sharper edge details. However, due to the
unnatural movement of REDS-VTSR testset, most center frames are not in the
middle of the front and rear frames. So, only for this testset, the blurry results of
FISR reduce average pixel error than ours. We recommend watching our demo
video in the supplementary material to see the difference more clearly.

Beside the STVUN, our network can be used for VSR. As our main objective
is the space-time upsampling, the experiments on VSR will be shown in the
supplementary material.

4.2 Ablation Studies

We conduct ablation studies to investigate the contribution of EFST and our
network design. Table 3 summarizes the ablation results. First, we test our model
without EFST (w/o EFST), which means only the early fusion is used to fuse
input features. This test demonstrates the effectiveness of EFST as it shows that
our final model improves the performance without the large difference in running
time.

To show the effectiveness of using decoded features Di for space-time up-
sampling, we test our model when EFST features is used instead (w/o D). The
performance gain shows learned features from space upsampling enhance the
space-time upsampling results, indicating the decoder learn more rich informa-
tion from EFST features.

We also evaluate our model with the explicit alignment (w/ A&F). The over-
all structure is the same as our proposed method except for the alignment and
fusion parts. We use two modules in EDVR [31] – Pyramid, Cascading and De-
formable Convolution (PCD) for the alignment and TSA for the feature fusion.

14 Kang et al.

0 1 2 3 4 5 7

0

1

60k

320k

Fig. 6: We visualize the confidence score si. Green box numbers are the time
index, and the blue box numbers are the number of iterations. High confidence
score is shown in red, and this means to be more referred and dark blue is vice
versa. In the last row, we overlap results of the input and color map of 320k
iterations. Zoom in to see better visualization.

As the explicit alignment process is a computational burden, it increases the run-
ning time by about 2.5 times. But the performance gap is minor, demonstrating
EFST can effectively fuse features without explicit motion compensation..

Fig. 6 shows the visualization of the confidence score to analyze how confi-
dence score changes with learning in EFST. In the early stages of training, confi-
dence scores are ambiguous to determine where to concentrate more. Therefore,
the overall scores are high and shown in dark red. As the learning progresses,
the confidence score gets the ability to determine the important parts among
all inputs. High confidence scores remain for the regions which are helpful for
reconstructing the center frame. On the other hand, occluded regions such as
under the trunk lid in frame 0 have low confidence score because they are un-
necessary for reconstructing center frame. It demonstrates that our confidence
score effectively fuses features from all frames without explicit alignment.

5 Conclusion

In this paper, we present a deep Space-Time Video Upsampling Networks (STVUN)
for joint space-time video upsampling by merging VSR and FI network effi-
ciently. This task has many practical applications, yet a challenging task as the
network has to perform two tasks in an efficient manner. In addition, we pro-
pose Early Fusion with Spatio-Temporal weights (EFST) modules that learns
to fuse information by considering spatio-temporal relationship without any ex-
plicit alignment. Our network can generate visually pleasing results with reduced
computational time (×7) and number of parameters (30%) compared to sequen-
tially connected VSR and FI networks. Our method also outperforms a previous
space-time upsampling task by a large margin.

Deep Space-Time Video Upsampling Networks 15

References

1. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database
and evaluation methodology for optical flow. International Journal of Computer
Vision 92(1), 1–31 (2011) 10

2. Bao, W., Lai, W.S., Ma, C., Zhang, X., Gao, Z., Yang, M.H.: Depth-aware video
frame interpolation. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 3703–3712 (2019) 2, 4, 10

3. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie
for optical flow evaluation. In: A. Fitzgibbon et al. (Eds.) (ed.) European Conf.
on Computer Vision (ECCV). pp. 611–625. Part IV, LNCS 7577, Springer-Verlag
(Oct 2012) 10

4. Caballero, J., Ledig, C., Aitken, A., Acosta, A., Totz, J., Wang, Z., Shi, W.: Real-
time video super-resolution with spatio-temporal networks and motion compen-
sation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2017) 3

5. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convo-
lutional networks. In: Proceedings of the IEEE International Conference on Com-
puter Vision. pp. 764–773 (2017) 3

6. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for
image super-resolution. In: European Conference on Computer Vision. pp. 184–
199. Springer (2014) 3

7. Fischer, P., Dosovitskiy, A., Ilg, E., Häusser, P., Hazırbaş, C., Golkov, V., Van der
Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional
networks. arXiv preprint arXiv:1504.06852 (2015) 4

8. Haris, M., Shakhnarovich, G., Ukita, N.: Recurrent back-projection network for
video super-resolution. In: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition. pp. 3897–3906 (2019) 2, 3

9. Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J.: Super
slomo: High quality estimation of multiple intermediate frames for video interpo-
lation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 9000–9008 (2018) 2, 4, 7

10. Jo, Y., Wug Oh, S., Kang, J., Joo Kim, S.: Deep video super-resolution network
using dynamic upsampling filters without explicit motion compensation. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 3224–3232 (2018) 3

11. Kappeler, A., Yoo, S., Dai, Q., Katsaggelos, A.K.: Video super-resolution with
convolutional neural networks. IEEE Transactions on Computational Imaging 2(2),
109–122 (2016) 3

12. Kim, S.Y., Oh, J., Kim, M.: Fisr: Deep joint frame interpolation and super-
resolution with a multi-scale temporal loss. In: AAAI. pp. 11278–11286 (2020)
4, 10, 11

13. Liao, R., Tao, X., Li, R., Ma, Z., Jia, J.: Video super-resolution via deep draft-
ensemble learning. In: Proceedings of the IEEE International Conference on Com-
puter Vision. pp. 531–539 (2015) 3

14. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for
single image super-resolution. In: Proceedings of the IEEE conference on computer
vision and pattern recognition workshops. pp. 136–144 (2017) 8

15. Liu, C., Sun, D.: On bayesian adaptive video super resolution. IEEE Transactions
on Pattern Analysis and Machine Intelligence 36(2), 346–360 (2014) 10

16 Kang et al.

16. Liu, D., Wang, Z., Fan, Y., Liu, X., Wang, Z., Chang, S., Huang, T.: Robust video
super-resolution with learned temporal dynamics. In: Proceedings of the IEEE
International Conference on Computer Vision (2017) 3

17. Liu, Y.L., Liao, Y.T., Lin, Y.Y., Chuang, Y.Y.: Deep video frame interpolation
using cyclic frame generation. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 33, pp. 8794–8802 (2019) 4

18. Liu, Z., Yeh, R.A., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using
deep voxel flow. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 4463–4471 (2017) 4

19. Nah, S., Baik, S., Hong, S., Moon, G., Son, S., Timofte, R., Mu Lee, K.: Ntire
2019 challenge on video deblurring and super-resolution: Dataset and study. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. pp. 0–0 (2019) 10

20. Niklaus, S., Liu, F.: Context-aware synthesis for video frame interpolation. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 1701–1710 (2018) 2, 4

21. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive convolution. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 670–679 (2017) 3

22. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable
convolution. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 261–270 (2017) 3

23. Sajjadi, M.S., Vemulapalli, R., Brown, M.: Frame-recurrent video super-resolution.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. pp. 6626–6634 (2018) 2, 3

24. Shahar, O., Faktor, A., Irani, M.: Space-time super-resolution from a single video.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. pp. 3353–3360 (2011) 4

25. Sharma, M., Chaudhury, S., Lall, B.: Space-time super-resolution using deep learn-
ing based framework. In: International Conference on Pattern Recognition and
Machine Intelligence. pp. 582–590. Springer (2017) 4

26. Shechtman, E., Caspi, Y., Irani, M.: Space-time super-resolution. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (4), 531–545 (2005) 4

27. Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert,
D., Wang, Z.: Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 1874–1883 (2016) 6, 8

28. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 8934–8943 (2018) 7, 11

29. Tao, X., Gao, H., Liao, R., Wang, J., Jia, J.: Detail-revealing deep video super-
resolution. In: Proceedings of the IEEE International Conference on Computer
Vision (2017) 2, 3

30. Tommasi, T., Patricia, N., Caputo, B., Tuytelaars, T.: A deeper look at dataset
bias. In: Domain adaptation in computer vision applications, pp. 37–55. Springer
(2017) 10

31. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 7794–7803 (2018) 13

Deep Space-Time Video Upsampling Networks 17

32. Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: Edvr: Video restoration
with enhanced deformable convolutional networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops. pp. 0–0
(2019) 2, 3, 7, 10

33. Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., Change Loy, C.: Es-
rgan: Enhanced super-resolution generative adversarial networks. In: Proceedings
of the European Conference on Computer Vision (ECCV). pp. 0–0 (2018) 8

34. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with
task-oriented flow. arXiv (2017) 2, 10

35. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-
oriented flow. International Journal of Computer Vision 127(8), 1106–1125 (2019)
4, 9

