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Abstract

Algorithmic decision making based on computer vision and machine learning methods continues 

to permeate our lives. But issues related to biases of these models and the extent to which they 

treat certain segments of the population unfairly, have led to legitimate concerns. There is 

agreement that because of biases in the datasets we present to the models, a fairness-oblivious 

training will lead to unfair models. An interesting topic is the study of mechanisms via which the 

de novo design or training of the model can be informed by fairness measures. Here, we study 

strategies to impose fairness concurrently while training the model. While many fairness based 

approaches in vision rely on training adversarial modules together with the primary classification/

regression task, in an effort to remove the influence of the protected attribute or variable, we show 

how ideas based on well-known optimization concepts can provide a simpler alternative. In our 

proposal, imposing fairness just requires specifying the protected attribute and utilizing our 

routine. We provide a detailed technical analysis and present experiments demonstrating that 

various fairness measures can be reliably imposed on a number of training tasks in vision in a 

manner that is interpretable.

1 Introduction

Fairness and non-discrimination is a core tenet of modern society. Driven by advances in 

vision and machine learning systems, algorithmic decision making continues to permeate 

our lives in important ways. Consequently, ensuring that the decisions taken by an algorithm 

do not exhibit serious biases is no longer a hypothetical topic, rather a key concern that has 

started informing legislation [23] (e.g., Algorithmic Accountability act). On one extreme, 

some types of biases can create inconvenience – a biometric access system could be more 

errorprone for faces of persons from certain skin tones [9] or a search for homemaker or 

programmer may return gender-stereotyped images [8]. But there are serious ramifications 

as well – an individual may get pulled aside for an intrusive check while traveling [50] or a 

model may decide to pass on an individual for a job interview after digesting their social 

media content[13,25]. Biases in automated systems in estimating recidivism within the 

criminal judiciary have been reported [38]. There is a growing realization that these 

problems need to be identified and diagnosed, and then promptly addressed. In the worst 
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case, if no solutions are forthcoming, we must step back and reconsider the trade-off 

between the benefits versus the harm of deploying such systems, on a case by case basis.

What leads to unfair learning models?

One finds that learning methods in general tend to amplify biases that exist in the training set 

[46]. While this creates an incentive for the organization training the model to curate 

datasets that are “balanced” in some sense, from a practical standpoint, it is often difficult to 

collect data that is balanced along multiple “protected” variables, e.g., gender, race and age. 

If a protected feature is correlated with the response variable, a learning model can cheat and 

find representations from other features that are collinear or a good surrogate for the 

protected variable. A thrust in current research is devoted to devising ways to mitigate such 

shortcuts. If one does not have access to the underlying algorithm, a recent result [24] shows 

the feasibility of finding thresholds that can impose certain fairness criteria. Such a threshold 

search can be post-hoc applied to any learned model. But in various cases, because of the 

characteristics of the dataset, a fairness-oblivious training will lead to biased models. An 

interesting topic is the study of mechanisms via which the de novo design/training of the 

model can be informed by fairness measures.

Some general strategies for Fair Learning.

Motivated by the foregoing issues, recent work which may broadly fall under the topic of 

algorithmic fairness has suggested several concepts or measures of fairness that can be 

incorporated within the learning model. While we will discuss the details shortly, these 

include demographic parity [40], equal odds and equal opportunities [24], and disparate 

treatment [42]. In general, existing work can be categorized into a few distinct categories. 

The first category of methods attempts to modify the representations of the data to ensure 

fairness. While different methods approach this question in different ways, the general 

workflow involves imposing fairness before a subsequent use of standard machine learning 

methods [10,27]. The second group of methods adjusts the decision boundary of an already 

trained classifier towards making it fair as a post-processing step while trying to incur as 

little deterioration in overall performance as possible [22,21,39]. While this procedure is 

convenient and fast, it is not always guaranteed to lead to a fair model without sacrificing 

accuracy. Part of the reason is that the search space for a fair solution in the post-hoc tuning 

is limited. Of course, we may impose fairness during training directly as adopted in the third 
category of papers such as [43,4], and the approach we take here. Indeed, if we are training 

the model from scratch and have knowledge of the protected variables, there is little reason 

not to incorporate this information directly during model training. In principle, this strategy 

provides the maximum control over the model. From the formulation standpoint, it is 

slightly more involved because it requires satisfying a fairness constraint derived from one 

or more fairness measure(s) in the literature, while concurrently learning the model 

parameters. The difficulty varies depending both on the primary task (shallow versus deep 

model) as well as the specific fairness criteria. For instance, if one were using a deep 

network for classification, we would need to devise ways to enforce constraints on the 

output of the network, efficiently.
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Scope of this paper and contributions.

Many studies on fairness in learning and vision are somewhat recent and were partly 

motivated in response to more than a few controversial reports in the news media [17,31]. As 

a result, the literature on mathematically sound and practically sensible fairness measures 

that can still be incorporated while training a model is still in a nascent stage. In vision, 

current approaches have largely relied on training adversarial modules in conjunction with 

the primary classification or regression task, to remove the influence of the protected 

attribute. Adversarial training via SGD needs a great deal of care and is not straightforward 

[36]. In contrast, the contribution of our work is to provide a simpler alternative. We show 

that a number of fairness measures in the literature can be incorporated by viewing them as 

constraints on the output of the learning model. This view allows adapting ideas from 

constrained optimization, to devise ways in which training can be efficiently performed in a 

way that at termination, the model parameters correspond to a fair model. For a practitioner, 

this means that no changes in the architecture or model are needed: imposing fairness only 

requires specifying the protected attribute, and utilizing our proposed optimization routine.

2 A Primer on Fairness Functions

In this section, we introduce basic notations and briefly review several fairness measures 

described in the literature.

Basic notations.

We denote classifiers using h : x ↦ y where x and y are random variables that represent the 

features and labels respectively. A protected attribute is a random variable s on the same 

probability space as x and y – for example, s may be gender, age, or race. Collectively, a 

training example would be z ≔ (x, y, s). So, our goal is to learn h (predict y given x) while 

imposing fairness-type constraints over s. We will use ℋ = ℎ1, ℎ2, …, ℎN  to denote a set/

family of possible classifiers and ΔN to denote the probability simplex in ℝN, i.e., 

Δ ≔ q: ∑i = 1
N qi = 1, qi ≥ 0  where qi is the i-th coordinate of q.

We will assume that the distribution of s has finite support. Unless explicitly specified, we 

will assume that y ∈ {0, 1}. For each ℎ ∈ ℋ, we will use eh to denote the misclassification 

rate of h and eℋ ∈ ℝN to be the vector containing all misclassification rates. We will use 

superscript to denote conditional expectations. That is, if μh corresponds to expectation of 

some function μ (that depends on ℎ ∈ ℋ), then the conditional expectation/moment of μh 

with respect to s will be denoted by μℎ
s. With a slight abuse of notation, we will use μℎ

s0 to 

denote the elementary conditional expectation μh|(s = s0) whenever it is clear from context. 

We will use dh to denote the difference between the conditional expectation of the two 

groups of s, that is, dℎ ≔ μℎ
s0 − μℎ

s1. For example, let s be the random variable representing 

gender, that is, s0 and s1 may correspond to male and female. Then, eℎ
si corresponds to the 

misclassification rate of h on group si, and dℎ = eℎ
s0 − eℎ

s1. Finally, μℎ
si, tj ≔ μℎ ∣ (s = si, t = tj)

denotes the elementary conditional expectation with respect to two random variables s, t.
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2.1 Fairness through the lens of Confusion Matrix

Recall that a fairness constraint corresponds to a performance requirement of a classifier h 
on subgroups of features x induced by a protected attribute s. For instance, say that h 
predicts the credit-worthiness y of an individual x. Then, we may require that eh be 

“approximately” the same across individuals for different races given by s. Does it follow 

that functions/metrics that are used to evaluate fairness may be written in terms of the error 

of a classifier eh conditioned on the protected variable s (or in other words eℎ
s)? Indeed, it 

does turn out to be the case. In fact, many widely used functions in practice can be viewed as 

imposing constraints on the confusion matrix as our intuition suggests. We will now discuss 

few common fairness metrics to illustrate this idea.

a. Demographic Parity (DP) [40]. A classifier h is said to satisfy Demographic 

Parity (DP) if h(x) is independent of the protected attribute s. Equivalently, h 

satisfies DP if dh = 0 where we set μℎ
si = eℎ

si (using notations introduced above). 

DP can be seen as equating the total false positives and false negatives between 

the confusion matrices of the two groups. We denote DDP by the difference of 

the demographic parity between the two groups.

b. Equality of Opportunity (EO) [24]. A classifier h is said to satisfy EO if h(x) is 

independent of the protected attribute s for y ∈ {0, 1}. Equivalently, h satisfies 

EO if dℎ
y = 0 where we set μℎ

si = eℎ
si ∣ (y ∈ 0, 1 ) ≕ eℎ

si, yj conditioning on both s 

and y. Depending on the choice of y in μℎ
si, we get two different metrics: (i) y = 0 

corresponds to h with equal False Positive Rate (FPR) across si [14], whereas (ii) 

y = 1 corresponds to h with equal False Negative Rate (FNR) across si [14]. 

Moreover, h satisfies Equality of Odds if dℎ
0 + dℎ

1 = 0, i.e., h equalizes both TPR 

and FPR across s [24]. We denote the difference in EO by DEO.

c. Predictive Parity (PP) [11]. A classifier h satisfies PP if the likelihood of 

making a misclassification among the positive predictions of the classifier is 

independent of the protected variable s. Equivalently, h satisfies PP if dℎ
y = 0

where we set μℎi
si = eℎ

si ∣ (y = 1). It corresponds to matching the False Discovery 

Rate between the confusion matrices of the two groups.

3 How to learn fair models?

At a high level, the optimization problem that we seek to solve is written as,

min 
ℎ ∈ ℋ

Ez:(x, y, s) Dℒ(ℎ; (x, y))   subject to  ℎ ∈ ℱdℎ, (1)

where ℒ denotes the loss function that measures the accuracy of h in predicting y from x, 

and ℱdℎ denotes the set of fair classifiers. Our approach to solve (1) provably efficiently 

involves two main steps: (i) first, we reformulate problem (1) to compute a posterior 

distribution q over ℋ; (ii) second, we incorporate fairness as soft constraints on the output of 

Lokhande et al. Page 4

Comput Vis ECCV. Author manuscript; available in PMC 2021 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



q using the augmented Lagrangian of Problem (1). We assume that we have access to 

sufficient number of samples to approximate D and solve the empirical version of Problem 

(1).

3.1 From Fair Classifiers to Fair Posteriors

The starting point of our development is based on the following simple result that follows 

directly from the definitions of fairness metrics in Section 2:

Observation 1. Fairness metrics such as DP/EO are linear functions of h, whereas PP takes 
a linear fractional form due to the conditioning on y, see [11].

Observation 1 immediately implies that ℱdℎ can be represented using linear (fractional) 

equations in h. To simplify the discussion, we will focus on the case when ℱdℎ is given by 

the DP metric. Hence, we can reformulate (1) as,

min
q ∈ Δ

  ∑
i

qieℎi s.t. qi μℎi
s0 − μℎi

s1 = 0   ∀i ∈ [N], (2)

where q represents a distribution over ℋ.

3.2 Imposing Fairness via Soft Constraints

In general, there are two ways of treating the N constraints qidℎi = 0 in Problem (2) viz., (i) 

as hard constraints; or (ii) as soft constraints. Algorithms that can handle explicit constraints 

efficiently require access to an efficient oracle that can minimize a linear or quadratic 

function over the feasible set in each iteration. Consequently, algorithms that incorporate 

hard constraints come with high periteration computational cost since the number of 

constraints is (at least) linear in N, and is not applicable in large scale settings. Hence, we 

propose to use algorithms that incorporate fairness as soft constraints. With these two minor 

modifications, we will now describe our approach to solve problem (2).

4 Fair Posterior from Proximal Dual

Following the reductions approach in [1], we first write the Lagrangian dual of DP 

constrained risk minimization problem (2) using dual variables λ as,

max 
λ ∈ ℝN

min 
q ∈ Δ

L(q, λ) ≔ ∑
i

qieℎi + λ ∑
i

qi μℎi
s0 − μℎi

s1
(3)

Interpreting the Lagrangian.

Problem 3 can be understood as a game between two players: a q-player and a λ-player [16]. 

We recall an important fact regarding the dual problem (3):

Fact 2. The objective function of the dual problem (3) is always nonsmooth with respect to 
λ because of the inner minimization problem in q.
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Technically, there are two main reasons why optimizing nonsmooth functions can be 

challenging [19]: (i) finding a descent direction in high dimensions N can be difficult; and 

(ii) subgradient methods can be slow to converge in practice. Due to these difficulties arising 

from Fact 2, using a first order algorithm such as gradient descent to solve the dual problem 

in (3) directly can be problematic, and may be suboptimal.

Accelerated optimization using Dual Proximal Functions.

To overcome the difficulties due to the nonsmoothness of the dual problem, we propose to 

augment the Lagrangian with a proximal term. Specifically, for some λT, the augmented 

Lagrangian function can be written as,

LT(q, λ) = ∑
i

qieℎi + λ ∑
i

qi μℎi
s0 − μℎi

s1 − 1
2η λ − λT

2
(4)

Note that, as per our simplified notation, LT ≡ LλT . The following lemma relates the 

standard Lagrangian in (3) with its proximal counterpart in (4).

Lemma 1. At the optimal solution (q*, λ*) to L, we have maxλ minq∈Δ L = maxλ minq∈Δ 

Lλ*.

This is a standard property of proximal objective functions, where λ* forms a fixed point of 

minq∈Δ Lλ*(q, λ*) (section 2.3 of [32]). Intuitively, Lemma 1 states that L and LT are not at 

all different for optimization purposes.

Remark 1. While the augmented Lagrangian LT still may be nonsmooth, the proximal 

(quadratic) term can be exploited to design provably faster optimization algorithms as we 

will see shortly.

5 Our Algorithm – FairALM

It is common [1,16,28] to consider the minimax problem in (4) as a zero sum game between 

the λ-player and the q-player. The Lagrangian(s) LT (or L) specify the cost which the q-

player pays to the λ-player after the latter makes its choice. We update the λ-player by 

follow-the-leader method [37] which minimizes the cumulative regret. This is distinct from a 

dual ascent method which relies on a gradient based update scheme. Further, the q-player is 

updated by following a best response strategy as in [1]. While the q-player’s move relies on 

the availability of an efficient oracle to solve the minimization problem, LT(q, λ), being a 

linear program in q makes it less challenging. We describe our algorithm in Alg. 1 and call it 

FairALM: Linear Classifier.

5.1 Convergence Analysis

As the game with respect to λ is a maximization problem, we get a reverse regret bound as 

shown in the following Lemma. Proofs are deferred to the appendix.

Lemma 2. Let rt denote the reward at each round of the game. The reward function ft(λ) is 

defined as ft(λ) = λrt − 1
2η λ − λt

2. We choose λ in round T + 1 to maximize the cumulative 
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reward: λT + 1 = argmaxλ∑t = 1
T ft(λ). Define L = maxt |rt|. The following bound on the 

cumulative reward holds, for any λ

∑
t = 1

T
λrt − 1

2η λ − λt
2 ≤ ∑

t = 1

T
λtrt + ηL2O(log T ) (5)

The above lemma indicates that the cumulative reward grows in time as O(log T ). The 

proximal term in the augmented Lagrangian gives us a better bound than an ℓ2 or an entropic 

regularizer (which provides a T  bound [37]).

Next, we evaluate the cost function LT(q, λ) after T rounds of the game. We observe that the 

average play of both the players converges to a saddle point with respect to LT(q, λ). We 

formalize this in the following theorem,

Theorem 3. Recall that dh represents the difference of conditional means. Assume that 
∥dh∥∞ ≤ L and consider T rounds of the game described above. Let the average plays of the 

q-player be q = 1
T ∑t = 1

T qt and the λ-player be λ = 1
T ∑t = 1

T λt. Then under the following 

conditions on q, λ and η, we have LT (q, λ) ≤ LT (q, λ) + ν and LT (q, λ) ≥ LT (q, λ) − ν

•
If η = O B2T

L2(log T + 1)
, ν = O B2L2(log T + 1)

T ; ∀|λ|≤ B, ∀q ∈ Δ

•
If η = 1

T , ν = O L2(log T + 1)2
T ; ∀λ ∈ ℝ, ∀q ∈ Δ

The above theorem indicates that the average play of the q-player and the λ-player reaches a 

ν-approximate saddle point. Our bounds for ν = 1
T  and λ ∈ ℝ are better than [1].

Algorithm 1

FairALM: Linear Classifier

1: Notations: Dual step size η

 ht ∈ {h1, h2,…, hN }.

2: Input: Error Vector eℋ,

 Conditional mean vector μℋ
s

3: Initializations: λ0 = 0

4: for t = 0,1, 2, …, T do

5:  (Primal) ℎt argmini eℎi + λt μℎi
s0 − μℎi

s1

6:   (Dual) λt + 1 λt + η μℎt
s0 − μℎt

s1 /t

7: end for

8: Output: hT
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Algorithm 2

FairALM: DeepNet Classifier

1: Notations: Dual step size η, Primal step size τ

2: Input: Training Set D

3: Initializations: λ0 = 0, w0

4: for t = 0, 1, 2, …, T do

5:  Sample z ~ D

6:  Pick vt ∈ ∂ eℎw(z) + λt + η μℎw
s0 (z) − λt − η μℎw

s1 (z)

7:   (Primal) wt ← wt−1 – τvt

8:   (Dual) λt + 1 λt + η μℎwt
s0 (z) − μℎwt

s1 (z)

9: end for

10: Output: wT

5.2 Can we train Fair Deep Neural Networks by adapting Alg. 1?

The key difficulty from the analysis standpoint we face in extending these results to the deep 

networks setting is that the number of classifiers ℋ  may be exponential in number of nodes/

layers. This creates a potential problem in computing Step 5 of Algorithm 1 – if viewed 

mechanistically, it is not practical since an epsilon net over the family ℋ (representable by a 

neural network) is exponential in size. Interestingly, notice that we often use over-

parameterized networks for learning. This is a useful fact here because it means that there 

exists a solution where argmini eℎi + λtdℎi  is 0. While iterating through all his will be 

intractable, we may still able to obtain a solution via standard stochastic gradient descent 

(SGD) procedures [45]. The only unresolved question then is if we can do posterior 

inference and obtain classifiers that are “fair”. It turns out that the above procedure provides 

us an approximation if we leverage two facts: first, SGD can find the minimum of L(h, λ) 

with respect to h and second, recent results show that SGD, in fact, performs variational 

inference, implying that the optimization can provide an approximate posterior [12]. Having 

discussed the the exponential sized ℋ  issue – for which we settle for an approximate 

posterior – we make three additional adjustments to the algorithm to make it suitable for 

training deep networks. First, the non-differentiable indicator function 1[ ⋅ ] is replaced with 

a smooth surrogate function (such as a logistic function). Second, as it is hard to evaluate 

eℎ/μℎ
s due to unavailability of the true data distribution, we instead calculate their empirical 

estimates z = (x; y; s), and denote it by eℎ(z)/μℎ
s (z). Third, by exchanging the “max” and 

“min” in (3), we obtain an objective that upper-bounds our current objective in (3). This 

provides us with a closed-form solution to λ thus reducing the minmax objective to a single 

simpler minimization problem. We present our FairALM: DeepNet Classifier algorithm for 

deep neural network training in Alg. 2 (more details are in the supplement).
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6 Experiments

A central theme in our experiments is to assess whether our proposed algorithm, FairALM, 

can indeed obtain meaningful fairness measure scores without compromising the test set 

performance. We evaluate FairALM on a number of problems where the dataset reflects 

certain inherent societal/stereotypical biases. Our evaluations are also designed with a few 

additional goals in mind.

Overview.

Our first experiment on the CelebA dataset seeks to predict the value of a label for a face 

image while controlling for certain protected attributes (gender, age). We discuss how 

prediction of some labels is unfair in an unconstrained model and contrast with our 

FairALM. Next, we focus on the label where predictions are the most unfair and present 

comparisons against methods available in the literature. For our second experiment, we use 

the ImSitu dataset where images correspond to a situation (activities, verb). Expectedly, 

some activities such as driving or cooking are more strongly associated with a specific 

gender. We inspect if an unconstrained model is unfair when we ask it to learn to predict two 

gender correlated activities/verbs. Comparisons with baseline methods will help measure 

FairALM’s strengths/weaknesses. We can use heat map visualizations to qualitatively 

interpret the value of adding fairness constraints. We threshold the heat-maps to get an 

understanding of a general behavior of the models. Our third experiment addresses an 

important problem in medical/scientific studies. Small sample sizes necessitate pooling data 

from multiple sites or scanners [49], but introduce a site or scanner specific nuisance 

variable which must be controlled for – else a deep (also, shallow) model may cheat and use 

site specific (rather than disease-specific) artifacts in the images for prediction even when 

the cohorts are age or gender matched [20]. We study one simple setting here: we use 

FairALM to mitigate site (hospital) specific differences in predicting “tuberculosis” from X-

ray images acquired at two hospitals, Shenzhen and Montgomery (and recently made 

publicly available [26]).

In all the experiments, we impose Difference in Equality of Opportunity (DEO) constraint 

(defined in Section 2.1). We adopt NVP (novel validation procedure) [18] a two-step 

procedure: first, we search for the hyper-parameters that achieve the best accuracy, and then, 

we report the minimum fairness measure (DEO) for accuracies within 90% of the highest 

accuracy.

Remark.

Certain attributes such as attractiveness, obtained via crowd-sourcing, may have socio-

cultural ramifications. Similarly, the gender attribute in the dataset is binary (male versus 

female) which may be insensitive. We clarify that our goal is to present evidence showing 

that our algorithm can impose fairness in a sensible way on datasets used in the literature 

and acknowledge that larger/improved datasets focused on societally relevant themes, as 

they become available, will be much more meaningful.
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6.1 CelebA dataset

Data and Setup.—CelebA [29] consists of 200K celebrity face images from the internet 

annotated by a group of paid adult participants [7]. There are up to 40 labels available in the 

dataset, each of which is binary-valued.

Quantitative results.—We begin our analysis by predicting each of the 40 labels with a 

3-layer ReLU network. The protected variable, s, we consider are the binary attributes like 

Male and Young representing gender and age respectively. We train the SGD algorithm for 

5-epochs and select the labels predicted with at least at 70% precision and with a DEO of at 

least 4% across the protected variables. The biased set of labels thus estimated are shown in 

Fig 1. These labels are consistent with other reported results [34]. It is important to bear in 

mind that the bias in the labels should not be attributed to its relatedness to a specific 

protected attributed alone. The cause of bias could also be due to the skew in the label 

distributions. When training a 3-layer ReLU net with FairALM, the precision of the model 

remained about the same (±5%) while the DEO measure reduced significantly, see Fig 1. 

Next, choosing the most unfair label in Fig 1 (i.e., attractiveness), we train a ResNet18 for a 

longer duration of about 100 epochs and contrast the performance with a simple ℓ2-penalty 

baseline. The training profile is observed to be more stable for FairALM as indicated in Fig 

2. This finding is consistent with the results of [5,30] that discuss the ill-conditioned 

landscape of non-convex penalties. Comparisons to more recent works such as [35,33] is 

provided in Fig 2. Here, we present a new state-of-the-art result for the DEO measure with 

the label attractiveness and protected attribute gender.

Qualitatively assessing Interpretability.—While the DEO measure obtained by 

FairALM is lower, we can ask an interesting question: when we impose the fairness 

constraint, precisely which aspects of the image are no longer “legal” for the neural network 

to utilize? This issue can be approached via visualizing activation maps from models such as 

CAM [48]. As a representative example, our analysis suggests that in general, an 

unconstrained model uses the entire face image (including the gender-revealing parts). We 

find some consistency between the activation maps for the label attractiveness and activation 

maps of an unconstrained model trained to predict gender! In contrast, when we impose the 

fairness constraint, the corresponding activation maps turn out to be clustered around 

specific regions of the face which are not gender revealing. In particular, a surprising finding 

was that the left regions in the face were far more prominent which turns out to be consistent 

with studies in psychology [6].

Summary.—FairALM minimized the DEO measure without compromising the test error. It 

has a more stable training profile than an ℓ2 penalty and is competitive with recent fairness 

methods in vision. The activation maps in FairALM focus on non-gender revealing features 

of the face when controlled for gender.

6.2 Imsitu Dataset

Data and Setup.—ImSitu [41] is a situation recognition dataset consisting of ~ 100K 

color images taken from the web. The annotations for the image is provided as a summary of 

the activity in the image and includes a verb describing it, the interacting agents and their 
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roles. The protected variable in this experiment is gender. Our objective is to classify a pair 

of verbs associated with an image. The pair is chosen such that if one of the verbs is biased 

towards males then the other would be biased towards females. The authors in [47] report 

the list of labels in the ImSitu dataset that are gender biased: we choose our verb pairs from 

this list. In particular, we consider the verbs Cooking vs Driving, Shaving vs Moisturizing, 

Washing vs Saluting and Assembling vs Hanging. We compare our results against multiple 

baselines such as (1) Unconstrained (2) ℓ2-penalty, the penalty applied on the DEO measure 

(3) Re-weighting, a weighted loss functions where the weights account for the dataset skew 

(4) Adversarial [44] (5) Lagrangian [47] (6) Proxy-Lagrangian [15]. The supplement 

includes more details on the baseline methods.

Quantitative results.—From Fig 5, it can be seen that FairALM reaches a zero DEO 

measure very early in training and attains better test errors than an unconstrained model. 

Within the family of Lagrangian methods such as [47,15], FairALM performs better on verb 

pair ‘Shaving vs Moisturizing’ in both test error and DEO measure as indicated in Table 1. 

While the results on the other verb pairs are comparable, FairALM was observed to be more 

stable to different hyper-parameter choices. This finding is in accord with recent studies by 

[2] who prove that proximal function models are robust to step-size selection. Detailed 

analysis is provided in the supplement. Turning now to an adversarial method such as [47], 

results in Table 1 show that the DEO measure is not controlled as competently as FairALM. 

Moreover, complicated training routines and unreliable convergence [3,36] makes model-

training harder.

Interpretable Models.—We again used CAM [48] to inspect the image regions used by 

the model for target prediction. We observe that the unconstrained model ends up picking 

features from locations that may not be relevant for the task description but merely co-occur 

with the verbs in this particular dataset (and are gender-biased). Fig 4 highlights this 

observation for the selected classification tasks. Overall, we observe that the semantic 

regions used by the constrained model are more aligned with the action verb present in the 

image, and this adds to the qualitative advantages of the model trained using FairALM in 

terms of interpretability.

Limitations.—We also note that there are cases where both the unconstrained model and 

FairALM look at incorrect image regions for prediction, owing to the small dataset sizes. 

However, the number of such cases are far fewer for FairALM than the unconstrained setup.

Summary.—FairALM successfully minimizes the fairness measure while classifying verb/

action pairs associated with an image. FairALM uses regions in an image that are more 

relevant to the target class and less gender revealing.

7 Pooling multi-site chest X-Ray datasets

Data and Setup.

The datasets we examine here are publicly available from the U.S. National Library of 

Medicine [26]. The images come from two sites/sources - first set is collected from patients 

in Montgomery county, USA and includes 138 X-rays and the second set of 662 images is 
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collected from a hospital in Shenzhen, China. The task is to predict pulmonary tuberculosis 

(TB) from the X-ray images. Being collected from different X-ray machines with different 

characteristics, and the images have site-specific markings or artifacts, see Fig 6. We pool 

the dataset and set aside 25% of the samples for testing.

Quantitative Results.

We treat the site information, Montgomery or Shenzhen, as a nuisance/protected variable 

and seek to decorrelate it from the TB labels. We train a ResNet18 network and compare an 

unconstrained model with FairALM model. Our datasets of choice are small in size, and so 

deep models easily overfit to site-specific biases present in the training data. Our results 

corroborate this conjecture, the training accuracies reach 100% very early and the test set 

accuracies for the unconstrained model has a large variance over multiple experimental runs. 

Conversely, as seen in Fig. 6, a FairALM model not only maintains a lower variance in the 

test set errors and DEO measure but also attains improved performance on these measures. 

What stands out in this experiment is that the number of epochs to reach a certain test set 

error is lower for FairALM indicating that the model generalizes faster compared to an 

unconstrained model.

Summary.

FairALM is effective at learning from datasets from two different sites/sources and 

minimizes site-specific biases.

8 Conclusion

We introduced FairALM, an augmented Lagrangian framework to impose constraints on 

fairness measures studied in the literature. On the theoretical side, we provide better bounds: 

O log2T
T  versus O 1

T , for reaching a saddle point. On the application side, we provide 

extensive evidence (qualitative and quantitative) on image datasets commonly used in vision 

to show the benefits of our proposal. Finally, we use FairALM to mitigate site specific 

differences when performing analysis of pooled medical imaging datasets. In applying deep 

learning to scientific problems, this is important since sample sizes at individual sites/

institutions are often smaller [49]. The overall procedure is simple which we believe will 

help adoption and follow-up work on this socially relevant topic. The project page is at 

https://github.com/lokhande-vishnu/FairALM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig.1: Identifying Unfair Labels in CelebA dataset.
Using a 3-layers ReLU network, we determine the labels in CelebA dataset that are biased 

with respect to gender (left) and the attribute young (right). FairALM minimizes the DEO 

measure, indicated by the green arrow, on these labels while maintaining ±5% precision.
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Fig.2: Quantitative Results on CelebA.
The target attribute is the label attractiveness present in the CelebA dataset and the protected 

attribute is gender. (left) FairALM has a stable training profile in comparison to naive ℓ2 

penalty. (right) FairALM attains a lower DEO measure and improves the test set errors 

(ERR).
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Fig.3: Interpretable Models for CelebA.
Unconstrained/FairALM predict the label attractiveness present in the CelebA dataset while 

controlling gender. The heatmaps of Unconstrained model overlaps with gender 

classification task indicating gender leak. FairALM consistently picks non-gender revealing 

features of the face. Interestingly, these regions are on the left side which appear to agree 

with psychological studies suggesting that a face’s left side is more attractive [6].
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Fig.4: Interpretability in ImSitu.
The activation maps indicate that FairALM conceals gender revealing attributes in an image. 

Moreover, the attributes are more aligned with label of interest. The target class predicted is 

indicated by a +. These examples are representative of the general behavior of FairALM on 

this dataset. More plots in the supplement.
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Fig.5: Training Profiles.
FairALM achieves minimum DEO early in training and remains competitive on testset 

errors. More plots are available in the supplement.
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Fig.6: Datasets Pooling with FairALM.
(left:) Data is pooled from two sites/hospitals, Shenzhen s0 and Montgomery s1. (right:) 
Boxplots indicate a lower variance in testset error and the DEO measure for FairALM. 

Moreover, FairALM reaches a 20% testset error in fewer epochs.
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Table 1:
Quantitative Results on ImSitu.

Test errors (ERR) and DEO measure are reported in %. The target class that is to be predicted is indicated by a 

+. FairALM always achieves a zero DEO while remaining competitive in ERR with the best method for a 

given verb-pair.

Cooking(+)
Driving(−)

Shaving(+)
Moisturize(−)

Washing(+)
Saluting(−)

Assembling(+)
Hanging(−)

ERR DEO ERR DEO ERR DEO ERR DEO

No Constraints 17.9 7.1 23.6 4.2 12.8 25.9 7.5 15.0

ℓ2 Penalty 14.3 14.0 23.6 1.3 10.9 0.0 5.0 21.6

Reweight 11.9 3.5 19.0 5.3 10.9 0.0 4.9 9.0

Adversarial 4.8 0.0 13.5 11.9 14.6 25.9 6.2 18.3

Lagrangian 2.4 3.5 12.4 12.0 3.7 0.0 5.0 5.8

Proxy-lagrangian 2.4 3.5 12.4 12.0 3.7 0.0 14.9 3.0

FairALM 3.6 0.0 20.0 0.0 7.3 0.0 2.5 0.0
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