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Abstract

We present a novel resizing module for neural networks: shape adaptor, a drop-in en-
hancement built on top of traditional resizing layers, such as pooling, bilinear sampling,
and strided convolution. Whilst traditional resizing layers have fixed and deterministic
reshaping factors, our module allows for a learnable reshaping factor. Our implementa-
tion enables shape adaptors to be trained end-to-end without any additional supervision,
through which network architectures can be optimised for each individual task, in a fully
automated way. We performed experiments across seven image classification datasets,
and results show that by simply using a set of our shape adaptors instead of the origi-
nal resizing layers, performance increases consistently over human-designed networks,
across all datasets. Additionally, we show the effectiveness of shape adaptors on two
other applications: network compression and transfer learning. The source code is avail-
able at: https://github.com/lorenmt/shape-adaptor.

1 Introduction

Deep neural networks have become popular for many machine learning applications, since
they provide simple strategies for end-to-end learning of complex representations. However,
success can be highly sensitive to network architectures, which places a great demand on
manual engineering of architectures and hyper-parameter tuning.

A typical human-designed convolutional neural architecture is composed of two types of
computational modules: i) a normal layer, such as a stride-1 convolution or an identity map-
ping, which maintains the spatial dimension of incoming feature maps; ii) a resizing layer,
such as max/average pooling, bilinear sampling, or stride-2 convolution, which reshapes
the incoming feature map into a different spatial dimension. We hereby define the shape of
a neural network as the composition of the feature dimensions in all network layers, and the
architecture as the overall structure formed by stacking multiple normal and resizing layers.

To move beyond the limitations of human-designed network architectures, there has been a
growing interest in developing Automated Machine Learning (AutoML) algorithms [13] for
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Figure 1: Left: Visualisation of a shape adaptor module build on top of two resizing layers.
Right: Different network shapes in the exact same network architecture ResNet-50 can result
a significantly different performance.

automatic architecture design, known as Neural Architecture Search (NAS) [30, 2, 21}, 20].
However, whilst this has shown promising results in discovering powerful network archi-
tectures, these methods still rely heavily on human-designed network shapes, and focus pri-
marily on learning connectivities between layers. Typically, reshaping factors of 0.5 (down-
sampling) and 2 (up-sampling) are chosen, and the total number of reshaping layers is de-
fined manually, but we argue that network shape is an important inductive bias which should
be directly optimised.

For example, Figure [1| Right shows three networks with the exact same design of network
structure, but different shapes. For the two human-designed networks [11], we see that a
ResNet-50 model designed specifically for CIFAR-100 dataset (Human Designed B) leads to
a 15% performance increase over a ResNet-50 model designed for ImageNet dataset (Human
Designed A). The performance can be further improved with the network shape designed
by the shape adaptors we will later introduce. Therefore, by learning network shapes rather
than manually designing them, a more optimal network architecture can be found.

To this end, we propose Shape Adaptor, a novel resizing module which can be dropped into
any standard neural network to learn task-specific network shape. A shape adaptor module
(see Figure[I| Left) takes in an input feature, and reshapes it into two intermediate features.
Each reshaping operation is done using a standard resizing layer F; (x,r;),i = 1,2, where each
resizing layer has a different, pre-defined reshaping factor r; to reshape feature map x. These
two reshaping factors then define the search space (r1,72) (assuming r; < ry) for a shape
adaptor module. Finally, the two intermediate features are softly combined with a scalar
weighting 1 — « and « respectively (for a € (0,1)), after reshaping them into the same spatial
dimension via a learned reshaping factor in the search space s(a) € (r1,12). The module’s
output represents a mixed combination over these two intermediate features, and the scalar «
can be learned solely based on the task-specific training loss with stochastic gradient descent,
without any additional supervision. Thus, by simply optimising these scaling weights for
every shape adaptor, the entire neural architecture is differential and we are able to learn
network shape in an automated, end-to-end manner.

We evaluated shape adaptors on seven standard image classification datasets of various com-
plexities. Our results show that shape adaptors can consistently improve human-designed



networks, and notably achieve up to 10% relative performance gains on fine-grained classi-
fication datasets. Further experiments show that shape adaptors are robust to initialisations
and hyper-parameters, and for a given dataset, they consistently result in the same overall
network shape, suggesting that shape adaptors are able to achieve a globally optimal shape.
Finally, we further show the effectiveness of shape adaptors in two additional applications:
automated neural shape compression, and architecture-level transfer learning.

2 Related Work & Background

Neural Architecture Search Neural architecture search (NAS) presents an interesting re-
search direction in AutoML, in automatically discovering an optimal neural structure for a
particular dataset, alleviating the hand design of neural architectures which traditionally in-
volves tedious trial-and-error. NAS approaches can be highly computationally demanding,
requiring hundreds of thousands of GPU days of search time, due to intensive techniques
such as reinforcement learning [43] and evolutionary search [31]. Several approaches have
been proposed to speed up the search, based on parameter sharing [30], hyper-networks
[1], and gradient-based optimisation [21]. But despite their promising performance, these
approaches come with controversial debate questioning the lack of reproducibility, and sen-
sitivity to initialisations [19) 39]. Whilst NAS methods learn network structures based on
pre-defined network shapes, shape adaptors are designed in an orthogonal direction, and
instead search network shapes in pre-defined network structures. Nevertheless, shape adap-
tors could be potentially incorporated into modern NAS frameworks, which we consider as
future work.

Architecture Pruning & Compression Network pruning is another direction towards ob-
taining optimal network architectures. But instead of searching from scratch as in NAS, net-
work pruning is applied to existing human-design networks and removes redundant neu-
rons and connectivities. Such methods can be based on Ly regularisation [23], batch-norm
scaling parameters [22], and weight quantization [9]. As with our shape adaptors, network
pruning does not require the extensive search cost of NAS, and can performed alongside
regular training. Our shape adaptors can also be formulated as a pruning algorithm, by
optimising the network shape within a bounded search space. We provide a detailed expla-
nation of this in Section 5.1

Design of Resizing Modules A resizing module is one of the essential components in deep
convolutional network design, and has seen continual modifications to improve performance
and efficiency. The most widely used resizing modules are max pooling, average pooling, bi-
linear sampling, and strided convolutions, which are deterministic, efficient, and simple. But
despite their benefits in increasing computational efficiency and providing regularisation,
there are two issues with current designs: i) lack of spatial invariance, and ii) fixed scale. Prior
works focus on improving spatial robustness with a learnable combination between max and
average pooling [38,[18], and with anti-aliased low-pass filters [41]. Other works impose reg-
ularisation and adjustable inference by stochastically inserting pooling layers [40, 17], and



sampling different network shapes [42]. In contrast, shape adaptors solve both problems
simultaneously, with a learnable mixture of features in different scales, and with which re-
shaping factors can be optimised automatically based on the training objective.

3 Shape Adaptors

In this section, we introduce the details of the proposed shape adaptor module. We discuss
the definition of these modules, and the optimisation strategy used to train them.

3.1 Formation of Shape Adaptors

A visual illustration of a shape adaptor module is presented in Figure [1| Left. It is a two-
branch architecture composed of two different resizing layers F;(x, r;);—1, assuming r1 < 1y,
taking the same feature map x as the input. A resizing layer F; can be any classical sampling
layer, such as max pooling, average pooling, bilinear sampling, or strided convolution, with
a fixed reshaping factor r;. Each resizing layer reshapes the input feature map by this factor,
which represents the ratio of spatial dimension between the output and input feature maps,
and outputs an intermediate feature. An adaptive resizing layer G with a learnable reshaping
factor is then used to reshape these intermediate features into the same spatial dimension,
and combine them with a weighted average to compute the module’s output.

Each module has a learnable parameter « € (0,1), parameterised by a sigmoid function,
which is the only extra learnable parameter introduced by shape adaptors. The role of « is to
optimally combine two intermediate features after reshaping them by an adaptive resizing
layer G. To enable a non-differential reshaping factor in G to be learned, we use a monotone
function s, which monotonically maps from « into the search space s(a) € R = (r1,12),
representing the scaling ratio of the module’s reshaping operation. With this formulation, a
learnble reshaping factor s(«) allows a shape adaptor to reshape at any scale between rq and
12, rather than being restricted to a discrete set of scales as with typical manually-designed
network architectures.

Using this formulation, a shape adaptor module can be expressed as function:

ShapeAdaptor(x,a,r15) = (1 —a) -G <F1(x, 1), SS/?) +ua-G (Fz(x, r2), Sr?) , D

with reshaping factor s(«), a monotonic function which satisfies,

lims(a) =7, and lims(a)=ry. (2)
x—0 a—1

We choose our adaptive resizing layer G to be a bilinear interpolation function, which al-
lows feature maps to be resized into any shape. We design module’s learnable reshaping
factor s(a) = (r, — r1)a + 1, a convex combination over these pre-defined reshaping factors,
assuming having no prior knowledge on the network shape.
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Figure 2: Visualisation of a down-sampling shape adaptor built on a single convolutional
cell and a residual cell with a reshaping factor in the range R = (r,1).

Each shape adaptor is arranged as a soft and learnable operator to search the optimal reshap-
ing factor s(a*) = r* € R over a combination of intermediate reshaped features F;(x, ;).
Thus, it can also be easily coupled with a continuous approximate of categorical distribu-
tion, such as Gumbel SoftMax [14, 24], to control the softness. This technique is commonly
used in gradient-based NAS methods [21], where a categorical distribution is learned over
different operations.

The overall shape adaptor module ensures that its reshaping factor s(¢) can be updated
through the updated scaling weights. Thus, we enable differentiability of s(«) in a shape
adaptor module as an approximation from the mapping of the derivative of its learnable scal-
ing weight: Vs(a) ~ s(Va). This formulation enables shape adaptors to be easily trained
with standard back-propagation and end-to-end optimisation.

In our implementation, we use one resizing layer to maintain the incoming feature dimension
(an identity layer), and the other resizing layer to change the dimension. If F, is the layer
which maintains the dimension with 7, = 1, then a shape adaptor module acts as a learnable
down-sampling layer when 0 < r; < 1, and a learnable up-sampling layer when rq > 1.

In Figure[2} we illustrate our learnable down-sampling shape adaptor in two commonly used
computational modules: a single convolutional cell in VGG-like neural networks [35], and a
residual cell in ResNet-like neural networks [11]. To seamlessly insert shape adaptors into
human-designed networks, we build shape adaptors on top of the same sampling functions
used in the original network design. For example, in a single convolutional cell, we ap-
ply max pooling as the down-sampling layer, and the identity layer is simply an identity
mapping. And in a residual cell, we use the ‘shortcut’ [1 x 1] convolutional layer as the
down-sampling layer, and the weight layer stacked with multiple convolutional layers as the
identity layer. In the ResNet design, we double the scaling weights in the residual cell, in
order to match the same feature scale as in the original design.



Shape adaptors can also be designed in more than two branches, into a more general manner.
This general design enables shape adaptors to be inserted into more complicated network ar-
chitectures, such as ResNeXt [37] and Xception [4]. The general formation of shape adaptors
is further discussed in Appendix[A]

3.2 The Optimisation Recipe

Implementations of Shape Adaptors In practice, where we have data whose spatial di-
mension is an integer multiple, a different rounding method in the implementation would
result in different learning dynamics. In order to enable shape adaptors perform at the high-
est efficiency, we propose two types of implementation aiming for specific use cases. Assum-
ing we insert shape adaptors in every network layer, and with the spatial dimension of input
data D™, the output dimensionality of the k" (k > 1) shape adaptor module D%, with its
corresponding reshaping factor r(¥), is defined as:

* Local type:
Dk — Lp(k—l) .r(k)J - plO) = pin 3)

¢ Global type:

Dk — {Dm .Hr(ﬂ (4)

i<k

where |- | represents a floor function, and || represents a round function.

The local type implementation corresponds to the same implementation in classical resizing
layers, that is to compute the current layer dimension by reshaping the output feature dimen-
sion from the previous layer. The global type implementation is a new method introduced
aiming for precise resizing: a shape adaptor reshapes input features by a holistic reshaping fac-
tor based on all previous resizing layers. This would be particularly useful when we insert a
large number of resizing layers, or when we have training dataset in a small spatial dimen-
sion, and both of which could lead to a shape collapse by a local implementation (resulting
in a very small shape despite having a large reshaping factor in every resizing layer). The
key difference between these two types of implementations is: a local type down-sampling
shape adaptor will guarantee to drop at least one spatial dimension, whilst a global type
down-sampling shape adaptor can retain the spatial dimension if desired.

For example, suppose we have training data with input spatial dimension D™ = 32, opti-
mised with a deep network composed with 20 resizing layers by the same reshaping factor
r = 0.95. The local implementation would produce an output dimension of 6, which would
be much smaller than the global implementation producing an output dimension of 11.

Number of Shape Adaptors Theoretically, shape adaptors should be inserted into every
network layer, to enable maximal search space and flexibility. In practice, we found that
beyond a certain number of shape adaptors, performance actually began to degrade. We
therefore designed a heuristic to choose an appropriate number of shape adaptor modules



N, based on the assumption that each module contributes a roughly equal amount towards
the network’s overall resizing effect. Let us consider that each module resizes its input feature
map in the range (7yin, "max ). The overall number of modules required should be sufficient
to reshape the network’s input dimension of D™ to a manually defined output dimension
D'*t, by applying a sequence of reshaping operations, where each is ~ 7,,;,. As such, the
optimal number of modules can be expressed as a logarithmic function of the overall ratio
between the network’s input and output, based on the scale of the reshaping operation in
each module:

N = Llogl/rmm (rDin/rDlast)J (5)

Initialisations in Shape Adaptors As with network weights, a good initialisation for shape
adaptors, i.e. the initial values for «, is important. Again, assuming we have every shape
adaptor designed in the same search space R = (*yin, 'max) with the reshaping factor s(a) =
(Tmax — Tmin) & + Tmin, We propose a formula to automatically compute the initialisations such
that the output feature dimension of the initialised shape would map to the user-defined
dimension D°*!. Assuming we want to initialise the raw scaling parameters a before sigmoid
function # = (&), we need to solve the following equation:

D" - s(o(a))N =D 6)

Suppose we use N as defined in Eq. 5} then Eq. [¢]is only solvable when D't < Douf,
Otherwise, we then initialise the smallest possible shape when encountering the case for
Dsst > Do, This eventually derives the following:

N ,
1 WV DO/ pint —p i 4 if Dlust < Ppout
n N out i € 1 -

V DO/ DI —1 0y

In(e) otherwise

= , e=10"% (7)

where € is a small value to avoid encountering 3-co values.

In practice, we need to avoid having the case when Dlast ~ Dout which would become a
marginal point from a sigmoid function that eventually would receive a very small gradient.

Shape Adaptors with Memory Constraint During experiments, we observed that shape
adaptors tend to converge to a larger shape than the human designed network, which may
then require very large memory. For practical applications, it is desirable to have a con-
strained search space for learning the optimal network shape given a user-defined memory
limit. For any layer designed with down-sampling shape adaptors, the spatial dimension of
which is guaranteed to be smaller than the one from the previous layers. We thus again use
the final feature dimension to approximate the memory usage for the network shape.

Suppose we wish to constrain the network shape with the final feature dimension to be no
greater than D', We then limit the scaling factors in shape adaptors by use of a penalty
value p, which is applied whenever the network’s final feature dimension after the current
update D" is greater than the defined limit, i.e. when D" > D't When this occurs, the
penalty term p is applied on every shape adaptor module, and we compute p dynamically for
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every iteration so that we make sure D < D!t in the entire training stage. The penalised
scaling parameter &, is then defined as follows,

T'min
ap=wu-p+ ————(p—1). (8)

Tmax — Vmin
Then the penalised module’s reshaping factor s(«,) becomes,

S(D‘p) = (rmax - rmin)“p + Yimin = 5(“)9- (9)

N[ Dlimit
0=\ Deour- (10)
Iterative Optimisation Strategy To optimise a neural network equipped with shape adap-
tor modules, there are two sets of parameters to learn: the weight parameters w = {w;}, and
the shape parameters @ = {«;}. Unlike NAS algorithms which require optimisation of net-

work weights and structure parameters on separate datasets, shape adaptors are optimised
on the same dataset and require no re-training.

Using Eq. [6} we can compute p as,

Since the parameter space for the network shape is significantly smaller than the network
weight, we update the shape parameters less frequently than the weight parameters, at a rate
of once every «; steps. The entire optimisation for a network equipped with shape adaptors
is illustrated in Algorithm I}

Algorithm 1: Optimisation for Shape Adaptor Networks

1 Define: shape adaptors: s, 7in, 'max, D'*, DO, Dlimit

2 Define: network architecture f, ., defined with shape and network parameters
3 Initialise: shape parameters: « = {a;} with Eq. |5 and Eq.

4 Initialise: weight parameters: w = {w;

5 Initialise: learning rate: A1, Ay

6 while not converged do

7 for each training iteration i do

8 (x(iy Y¥a)) € (x,y) > fetch one batch of training data
9 if requires memory constraint then

10 | Compute: p using Eq.

11 else

12 | Define: p =1

13 end

14 if in a; step then

15 ‘ Update: & < A VaL(fu,w0(x(i), Y(i)) > update shape parameters
16 end

17 Update: w < A2V L(fu,,w0(X(1)), Y (i) > update weight parameters
18 end

19 end




4 Experiments

In this section, we present experimental results to evaluate shape adaptors on image classi-
fication tasks. Please see the Appendix for further results, and a list of negative results for
other experiments we attempted.

4.1 Experimental Setup

Datasets We evaluate on seven different image classification datasets, with varying sizes
and complexities to fully assess the robustness and generalisation of shape adaptors. These
seven datasets are divided into three categories: i) small (resolution) datasets: CIFAR-10/100
[16], SVHN [7]; ii) fine-grained classification datasets: FGVC-Aircraft (Aircraft) [25], CUBS-
200-2011 (Birds) [36], Stanford Cars (Cars) [15]; and iii) ImageNet [5]. Small datasets are in
resolution [32 x 32], and fine-grained classification and ImageNet datasets are in resolution
[224 x 224].

Baselines We ran experiments with three widely-used networks: VGG-16 [35], ResNet-50
[11], and MobileNetv2 [34]. The baseline Human represents the original human-designed
networks, which require manually adjusting the number of resizing layers according to the
resolution of each dataset. For smaller [32 x 32| datasets, human-designed VGG-16, ResNet-
50 and MobileNetv2 networks were equipped with 4, 3, 3 resizing layers respectively, and
for [224 x 224] datasets, all human designed networks have 5 resizing layers.

Implementation of Shape Adaptors For all experiments in this section, since we assume
no prior knowledge of the optimal network architecture, we inserted shape adaptors uni-
formly into the network layers (except for the last layer). We initialised shape adaptors with
Dlast — 2 Dout — 8 which we found to work well across all datasets and network choices.
All shape adaptors use the search space R = (0.5,1) with the design in Fig. 2l We applied
local type shape adaptors, to have a similar resizing effect from human-designed resizing lay-
ers, and with memory constraint on shape adaptors so that the network shape can grow no
larger than the running GPU memory. We optimised shape adaptors every a; = 20 steps for
non-ImageNet datasets, and every a; = 1500 steps for ImageNet. The full hyper-parameter
choices are provided in the Appendix B}

4.2 Results on Image Classification Datasets

First, we compared networks built with shape adaptors to the original human-designed net-
works, to test whether shape adaptors can improve performances solely by finding a better
network shape, without using any additional parameter space. To ensure fairness, all net-
work weights in the human-designed and shape adaptor networks were optimised using the
same hyper-parameters, optimiser, and scheduler.



Table[I]shows the test accuracies of shape adaptor and human-designed networks, with each
accuracy averaged over three individual runs. We see that in nearly all cases, shape adaptor
designed networks outperformed human-designed networks by a significant margin, de-
spite both methods using exactly the same parameter space. We also see that performance
of shape adaptor designed networks are stable, with a relatively low variance across different
runs. This is similar to the human-designed networks, showing stability and robustness of
our method without needing the domain knowledge that is required for human-designed
networks. A detailed analysis on robustness and perturbation of shape adaptors compared
to other resizing modules is further discussed in Appendix

VGG-16 ResNet-50 MobileNetv2
Dataset
Human Shape Adaptor Human Shape Adaptor Human Shape Adaptor
CIFAR-10 94.11:‘:0,17 95.3540.06 95.504-0.09 95.48j:0,17 93-7110.25 93.86-+0.23
CIFAR-100 75.391011 79.16+0.23 78.531011 80.2949.10 73.800.17 75.74 1031
SVHN 96.2610 03 96.8940.07 96.7410 20 96.84 1013 96.500.08 96.8610.14
Aircraft 85.28.10.09 86.9510.29 81.57 951 85.60-+0.32 77.64.1023 83.00-+0.30
Birds 73.37 1035 74.86-+0.50 68.624010 71.02 048 60.37 4112 68.53 1 0.21
Cars 89.3040.21 90.1340.11 87.23 1048 89.67+0.20 80.861013 84.62 38
ImageNet 73.92:}:0.12 73.53:|:0,09 77-18i0.04 78.74:|:0.12 71~72:|:0‘02 73.32;&0.07

Table 1: Top-1 test accuracies on different datasets for networks equipped with human-
designed resizing layers and with shape adaptors. We present the results with the range
of three independent runs. Best results are in bold.

Note that shape adaptors presented here are optimised purely to achieve an optimal per-
formance, in a defined representation space, without considering the expense of memory
consumption. However, we may also design memory-efficient shape adaptors for network
compression which we will present in Section

4.3 Ablative Analysis & Visualisations

In this section, we perform an ablative analysis on CIFAR-100 and Aircraft datasets to under-
stand the behaviour of shape adaptors with respect to the number of shape adaptors, and
shape adaptor initialisation. We observed that conclusions are consistent across different
networks, thus we perform experiments in two networks only: VGG-16 and MobileNetv2.
All results are averaged over two independent runs.

4.3.1 Number of Shape Adaptors

We first evaluate the performance by varying different number of shape adaptors used in
the network, whilst fixing all other hyper-parameters used in Section In Table 2, we
show that the performance of shape adaptor networks is consistent across the number of
shape adaptors used. Notably, performance is always better than networks with human-
designed resizing layers, regardless of the number of shape adaptors used. This again shows
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Shape Adaptor (with number of) Shape Adaptor (with number of)
CIFAR-100 Human Aircraft Human
3 4 5 6 8 5 6 7 8 10

VGG-16 7539 79.03 79.16 7856 7843 78.16 VGG-16 85.28 84.80 86.95 86.44 86.72 85.76
MobileNetv2 73.80 7539 75.74 7522 7492 74.86 MobileNetv2 77.64 81.12 83.00 83.02 8243 80.36

Table 2: Test accuracies of VGG-16 on CIFAR-100 and MobileNetv2 on Aircraft, when differ-
ent numbers of shape adaptors are used. Best results are in bold. The number produced in
Eq. |is highlighted in teal.

the ability of shape adaptors to automatically learn optimal shapes without requiring domain
knowledge. The optimal number of shape adaptor modules given by our heuristic in Eq. [5|is
highlighted in teal, and we can therefore see that this is a good approximation to the optimal
number of modules.

In Figure[3| we present visualisations of network shapes in human-designed and shape adap-
tor designed networks. We can see that the network shapes designed by our shape adaptors
are visually similar when different numbers of shape adaptor modules are used. In Aircraft
dataset, we see a narrower shape with MobileNetv2 due to inserting an excessive number
of 10 shape adaptors, which eventually converged to a local minima and lead to a degraded
performance.

VGG-16 on CIFAR-100 MobileNetv2 on Aircraft
4 4 6 8 5 6 8 10
Human Shape Adaptor Designed Human Shape Adaptor Designed
Designed Designed

Figure 3: Visualisation of human-designed and shape adaptor designed network shapes.
The number on the second row represents the number of resizing layers (or shape adaptors)
applied in the network.

4.3.2 Initialisations in Shape Adaptors

Here, we evaluate the robustness of shape adaptors by varying initialisation of «. Initialisa-
tion with a “wide" shape (large «) causes high memory consumption and a longer training
time, whereas initialisation with a “narrow" shape (small «) results in weaker gradient sig-
nals and a more likely convergence to a non-optimal local minima. In Table[3| we can see that
the performance is again consistently better than the human-designed architecture, across
all tested initialisations. The initialisation in shape adaptor modules given by our formula
Eq. [7]is highlighted in teal.

In Figure [, we present the learning dynamics for each shape adaptor module across the en-
tire training stage. We can observe that shape adaptors are learning in an almost identical
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Shape Adaptor (with s(a) initialised) Shape Adaptor (with s(a) initialised)
CIFAR-100 Human Aircraft Human
0.60 0.70 0.80 0.90 0.52 0.58 0.62 0.68

VGG-16 7539  79.21 79.16 78.79 78.53 VGG-16 85.28  83.90 86.95 86.36 86.54
MobileNetv2 73.80  75.16 75.74 74.89 74.74 MobileNetv2 77.64  79.64 83.00 82.51 81.56

Table 3: Test accuracies of VGG-16 on CIFAR-100 and MobileNetv2 on Aircraft datasets in
shape adaptors with different initialisations. Best results are in bold. The initialisation pro-
duced in Eq. [7]is highlighted in teal.

pattern across different initialisations in the CIFAR-100 dataset, with nearly no variance. For
the larger resolution Aircraft dataset, different initialised shape adaptors converged to a dif-
ferent local minimum. They still follow a general trend, for which the reshaping factor of a
shape adaptor inserted in the deeper layers would converge into a smaller scale.

Initialising s(a) = [0.60 , J00] , 0.80 , 050 * VGG-16 on CIFAR-100 *

s(a) s(a) s(a) s(a)
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Figure 4: Visualisation of learning dynamics for every shape adaptor module across the en-
tire training stage.

4.4 A Detailed Study on Neural Shape Learning

In this section, we propose a study to analyse different neural shape learning strategies, and
the transferability of learned shapes. Likewise, all results are averaged over two independent
runs.

We evaluate different neural shape learning strategies by running shape adaptors in three
different versions. Standard: the standard implementation from previous sections; Fix (Fi-
nal): a network retrained with a fixed optimal shape obtained from shape adaptors; and Fix
(Large): a network retrained with a fixed largest possible shape in the current running GPU
memory. The Fix (Final) baseline is designed to align with the training strategy from NAS
algorithms [21}143]30]. The Fix (Large) baseline is to test whether naively increasing network
computational cost can give improved performance.
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Shape Adaptors Shape Adaptors

CIFAR-100 Human Aircraft Human
Standard  Fix (Final) Fix (Large) Standard  Fix (Final) Fix (Large)
7539 79.16 78.62 78.51 8528  86.95 8627 84.49
VGG-16 314M 521G 521G 9.46G VGG-16 154G 509G 509G 97.2G
4 7380 7574 7554 7546 . 7764 83.00 8226 81.18
MobileNetv2 o, 7\ goap 923M 1.35G MobileNetv2 »cnr 9,016 9.01G 120G

Table 4: Test accuracies and computational cost (MACs, the number of multiply-adds) on
CIFAR-100 and Aircraft datasets trained with different shape learning strategies.

In Table 4}, we can observe that our standard version achieves the best performance among
all shape learning strategies. In addition, we found that just having a large network would
not guarantee an improved performance (VGG-16 on Aircraft). This validates that shape
adaptors are truly learning the optimal shape, rather than naively increasing computational
cost. Finally, we can see that our original shape learning strategy without re-training per-
forms better than a NAS-like two-stage training strategy, which we assume is mainly due to
dynamically updating of network shape helping to learn spatial-invariant features.

In order to further understand how network performance is correlated with different net-
work shapes, we ran a large-scale experiment by training 200 VGG-16 networks with ran-
domly generated shapes.

Accuracy
80 | | | |
o Random Search (Best/Worst)
@ Random Search
VGG-16 on CIFAR-100 79 Shape Adaptors ¥ : Y ot ol
Human Designed e ) '? o 8
78 @l 2he *
00y 0%, Y
® “ '... °
] sl
77 4 . e 0° : +
® o4 ‘3 ‘\.....
| ] Q
_ -~ % o L
76 ®® % .'..
.0 o: o °
75 4 .t -
LI
Acc: 75.39 Acc: 79.16 Acc: 73.86 Acc: 79.12 74 > -
T T T T T T
[0.50, 0.50, 0.50, 0.50] [0.98, 0.98, 0.88, 0.57] [0.50, 0.60, 0.75, 0.96] [0.86, 0.85, 0.84, 0.74] 300M500M  1G G 5G 10G
Human Designed Shape Adaptors ~ © Worst Random Search © Best Random Search MACs

Figure 5: Visualisation and test accuracies of VGG-16 on CIFAR-100 in 200 randomly gener-
ated shapes. The second row represents the precise reshaping factor in each resizing layer

In Fig. 5, we visualise the randomly generated network shapes with the best and the worst
performance, and compare them to the network shapes in human designed and shape adap-
tor networks.

First, we can see that the best randomly searched shape obtains a very similar performance
as well as a similar structure of shape compared to the ones learned from shape adaptors.
Second, the reshaping factors in the worst searched shape are arranged from small to large,
which is the direct opposite trend to the reshaping factors automatically learned by our shape
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adaptors. Third, human-designed networks are typically under-sized, and just by increas-
ing network memory cost is not able to guarantee an improved performance. Finally, we
can see a clear correlation between memory cost and performance, where a higher memory
cost typically increases performance. However, this correlation ceases after 5G of memory
consumption, after which point we see no improved performance. Interestingly, the mem-
ory cost of shape adaptors lies just on the edge of this point, which again shows the shape
adaptor’s ability to learn optimal design.

5 Other Applications

In this section, we present two additional applications of shape adaptors: Automated Shape
Compression (AutoSC) and Automated Transfer Learning (AutoIL).

5.1 Automated Shape Compression

In previous sections, we have shown that shape adaptors are able to improve performance
by finding the optimal network shapes, but with a cost of a huge memory requirement of
the learned network. In AutoSC, we show that shape adaptors can also achieve strong re-
sults, when automatically finding optimal memory-bounded network shapes based on an
initial human design. Instead of the original implementation of shape adaptors where these
are assumed to be the only resizing layers in the network, with AutoSC we attach down-
sampling shape adaptors only on top of the non-resized layers of the human-designed ar-
chitecture, whilst keeping the original human-designed resizing layers unchanged. Here,
we insert global type shape adaptors, to be initialised so that the network shape is identical
to the human-designed architecture, and thus the down-sampling shape adaptors can only
learn to compress the network shape. This guarantees that the learned shape requires no
more memory than the human-designed shape.

200/300M MobileNetv2 Params MACs Acc. Plain MobileNetv2 Params MACs Acc.
Human 0.75x 2.6M 233M 69.8 Human 1.0x 2.3M 94.7M 73.80
AutoSC 0.85x 29M  262M 70.7 AutoSC 1.0 x 2.3M 91.5M 74.81
Human 1.0 x 35M 330M 71.8 Human 1.0x 2.3M 330M 77.64
AutoSC 1.1 x 40M 324M 723 AutoSC 1.0 x 2.3M 326M 78.95
(a) Results on ImageNet (b) Results on CIFAR-100 (up) and Aircraft (down)

Table 5: Test accuracies for AutoSC and human-designed MobileNetv2 on CIFAR-100, Air-
craft, and ImageNet. x represents the applied width multiplier.

In Table 5} we present AutoSC built on MobileNetv2, an efficient network design for mobile
applications. We evaluate AutoSC on three datasets: CIFAR-100, Aircraft and ImageNet.
During training of MobileNetv2, we initialised a small width multiplier on the network’s
channel dimension to slightly increase the parameter space (if applicable). By doing this,
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we ensure that this “wider" network after compression would have a similar memory con-
sumption as the human-designed MobileNetv2, for a fair comparison. In all three datasets,
we can observe that shape adaptors are able to improve performance, despite having similar
memory consumption compared to human-designed networks.

5.2 Automated Transfer Learning

In this section, we present how shape adaptors can be used to perform transfer learning in
an architectural level. In AutoI'L, we directly replace the human-designed resizing layers
with shape adaptors, and initialise them with the reshaping factors designed in the original
human-defined architecture, to match the spatial dimension of each pre-trained network
layer. During fine-tuning, the network is then fine-tuning with network weights along with
network shapes, thus improving upon the standard fine-tuning in a more flexible manner.

We follow the same setting as in PackNet [26] and Piggyback [26], evaluating on 5 fine-
grained classification datasets across very different domains. For all tasks, we use input
images of resolution [224 x 224], and evaluate them on an ImageNet pre-trained ResNet-50.

Birds [36] Cars [15] Flowers [29] WikiArt [33] Sketches [6]
PackNet [27] 80.41 86.11 93.04 69.40 76.17
PiggyBack [26] 81.59 89.62 94.77 71.33 79.91
NetTailor [28] 82.52 90.56 95.79 72.98 80.48
Fine-tune [8]] 81.86 89.74 93.67 75.60 79.58
SpotTune [8] 84.03 92.40 96.34 75.77 80.20
Autol'L 84.29 93.66 96.22 77.47 80.74

Table 6: Test accuracies of transfer Learning methods built on ResNet-50 on fine-grained
datasets. Best results are in bold.

The results for AutoI'L and other state-of-the-art transfer learning methods are listed in Table
6l for which we outperform 4 out of 5 datasets. The most related methods to our approach
are standard fine-tuning and SpotTune [8], which optimise the entire network parameters for
each dataset. Other approaches like PackNet [27], Piggyback [26], and NetTailor [28] focus
on efficient transfer learning by updating few task-specific weights. We design AutoI'L with
standard fine-tuning, as the simplest setting to show the effectiveness of shape adaptors. In
practice, AutoI'L can be further improved, and integrated into other efficient transfer learning
techniques.

6 Conclusions & Future Directions

In this paper, we present shape adaptor, a learnable resizing module to enhance existing
neural networks with task-specific network shapes. With shape adaptors, the learned net-
work shapes can further improve performances compared to human-designed architectures,
without requiring in increase in parameter space. We show that shape adaptors are robust to
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hyper-parameters, and typically learn very similar network shapes, regardless of the number
of shape adaptor modules used. In addition, we show that shape adaptors can also be easily
incorporated into other applications, such as network compression and transfer learning.

In future work, we will investigate shape adaptors in a multi-branch design, where the for-
mulation provided in this paper extended to integrating more than two resizing layers in
each shape adaptor module. Due to the success of shape adaptors in the other applications
we have presented in this paper, we will also study use of shape adaptors for more applica-
tions, such as neural architecture search, and multi-task learning.
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A General Formation of Shape Adaptors

Shape adaptors can be extended into a multi-branch design, into a more general manner.
Each shape adaptor module is then composed of K > 2 resizing layers F,_;.x, with fixed
reshaping factors r;_1.x > 0, and the corresponding learnable scaling weight parameters
ai—1.x € (0,1). In such design, shape adaptor modules can not only learn the optimal net-
work shape, but also the optimal operations contributing to the learned shape.

We first define a set of reshaping factors r;, and scaling weights «; in resizing layers F;:

iaizl, zxi>0}. (11)

r={riix|ri>0,Imn:ry #ry}, and a= {oc,‘_lzK
i=1

Then, we design the module’s reshaping factor which is mapped from scaling weights & —
s(a), lying in the defined search space interval R = (min(r), max(r)).

The general system for a shape adaptor module is formulated as follows,

S s(a)
ShapeAdaptor(x, &, r) = Z a; -G <Fi (x,1i), . > , (12)
i=1 i
with s(«) satisfies
s(a)gy—s1="1r, and s(a)— R. (13)

The weighted generalised mean:

K K 1/p
so() =]]r", and s,(a) = (Z owf) ,p#0 (14)
i=1

i=1
are examples of suitable reshaping function design.

The general design for multi-branch shape adaptors can be inserted into more complicated
networks architectures, such as ResNeXt [37] and Xception [4]. It can also be seen as a direct
enhancement to spatial pyramid pooling [10, 3], and U-Net [32], to enable them to propagate
context information from various, rather than the same, feature dimensions.
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B The Complete Hyper-Parameter Table

In this section, for reproducibility, we present a detailed list of hyper-parameter choices,
across all networks and datasets evaluated in Table 1. A represents network shape parame-
ters in shape adaptors, and W represents network weight parameters.

Small Datasets: [32 x 32] Fine-Grained Datasets: [224 x 224] ImageNet: [224 x 224]

VGG-16  ResNet-50 MobileNetv2 VGG-16  ResNet-50 MobileNetv2 VGG-16 ResNet-50 MobileNetv2

A - Learning Rate 0.1 0.1 0.1

A - Optimiser SGD with 0.9 momentum SGD with 0.9 momentum SGD with 0.9 momentum
A - Scheduler Cosine Annealing Cosine Annealing Cosine Annealing

A - Update Step 20 20 1500

A - Number Eq. 2: log,(D™/2) (4 for [32 x 32] images, 6 for [224 x 224] images)

A - Initialisation Eq. 4 with D =8

A - Location Uniformly distributed (across all layers except for the last layer)

A - Search Space (0.5,1.0) (for every shape adaptor module)

W - Learning Rate 0.1 0.01 0.1 0.1 0.05
W - Optimiser SGD with 0.9 momentum SGD with 0.9 momentum SGD with 0.9 momentum

W - Weight Decay 5-107* 5.107* 4.10® 5.107* 5.107* 4.107°® 5.107% 5.107* 4.10°°

W - Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Batch Size 128 8 32 (per GPU) for 8 GPUs
Epochs 200 200 120

Table 7: The complete hyper-parameter applied to reproduce Table 1.
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C Corruptions and Perturbations Analysis

In this section, we evaluate the model robustness and uncertainty estimates in networks
equipped with shape adaptors, compared with other types of resizing modules.

Metrics We apply two metrics with respect to corruption and perturbation robustness eval-
uation respectively, introduced in [12]. For corruption analysis, we evaluate with mean Cor-
ruption Error (mean CE), which computes an average classification error on a corrupted dataset,
composed by corrupting the original dataset with 15 corruption types, and each with addi-
tional 5 severity levels. For perturbation analysis, each data in a perturbed dataset becomes a
video, to measure prediction stability. We then evaluate by measuring whether video frames
prediction match, which we call flip probability. We evaluate with 10 perturbation types, and
the mean across these is mean Flip Rate (mean FR).

We apply corruption analysis on CIFAR-10 and CIFAR-100 dataset, which give the corrupted
CIFAR-10-C and CIFAR-100-C datasets respectively. We apply perturbation analysis on CIFAR-
10 only, for perturbed CIFAR-10-P dataset, with the highest difficulty level 3. All analyses are
performed based on VGG-16, and we compare corruption and perturbation robustness for
MaxPool (used in original human-designed networks), MaxBlurPool [41] (an anti-aliasing
MaxPool), and shape adaptors. All models are trained on the clean dataset.

In Figure [f| Right, we can observe that shape adaptors equipped VGG-16 perform the best
among all tested resizing modules by a large margin, in both corrupted and the clean datasets.
In Figure|f] Left, we show that shape adaptors are able to improve almost every type of per-
turbation compared to the results from both MaxPool and the improved MaxBlurPool mod-
ules. This is most prominent in digital type perturbations (translate, rotate, tilt, scale), which
provides approximately 40% of performance improvements compared to MaxPool. These
positive results show that shape adaptors not only can improve human-designed networks
in accuracy, but also in robustness, by learning spatial-invariant features.

mean FR
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Figure 6: Left: mean flip rate of CIFAR-10-P dataset with difficulty level 3. Right: clean error
on CIFAR-10 dataset and mean corruption rate on CIFAR-10-C dataset. All results are trained
with VGG-16 on the clean dataset.
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D Negative Results

¢ Other choices in shape adaptor search space. We experimented with shape adaptors
in the search space R = (0.25,1), which we found to converge to a similar overall
network shape, but with degraded performance compared to the current setting. We
also experimented with shape adaptors using the search space in R = (0.5,2.0), which
we found to have very unstable learning dynamics, and often with out of memory
issues.

¢ Other choices in reshaping function design. We evaluated shape adaptors with its
reshaping factor s(a) = m, a weighted harmonic mean, which we found to
have no improvements compared to the current setting.

¢ Other optimisation methods. We experimented with updating network shape param-
eters and weight parameters based on a different sample in the training dataset, which
we found to have a degraded performance compared to the current setting.

¢ Learning shape with prior structure knowledge. We have experimented with directly
replacing human-designed resizing layers with shape adaptors, which we found to
have a minor effect on final performance compared to the current setting.

¢ Alternative shape adaptor design in a residual cell. We have experimented with an
alternate design of the residual cell, with a [1 x 1] convolution layer as the identity
branch, and with the weight layer as the resizing branch. The final performance with
such a design achieved worse performance compared to the design defined in Fig.
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