
Generating Handwriting via
Decoupled Style Descriptors

Atsunobu Kotani , Stefanie Tellex , and James Tompkin

Brown University

Abstract. Representing a space of handwriting stroke styles includes
the challenge of representing both the style of each character and the
overall style of the human writer. Existing VRNN approaches to repre-
senting handwriting often do not distinguish between these different style
components, which can reduce model capability. Instead, we introduce the
Decoupled Style Descriptor (DSD) model for handwriting, which factors
both character- and writer-level styles and allows our model to represent
an overall greater space of styles. This approach also increases flexibility:
given a few examples, we can generate handwriting in new writer styles,
and also now generate handwriting of new characters across writer styles.
In experiments, our generated results were preferred over a state of the
art baseline method 88% of the time, and in a writer identification task
on 20 held-out writers, our DSDs achieved 89.38% accuracy from a single
sample word. Overall, DSDs allows us to improve both the quality and
flexibility over existing handwriting stroke generation approaches.

1 Introduction

Producing computational models of handwriting is a deeply human and personal
topic—most people can write, and each writer has a unique style to their script.
Capturing these styles flexibly and accurately is important as it determines the
space of descriptive expression of the model; in turn, these models define the
usefulness of our recognition and generation applications. For deep-learning-based
models, our concern is how to architecture the neural network such that we can
represent the underlying stroke characteristics of the styles of writing.

Challenges in handwriting representation include reproducing fine detail,
generating unseen characters, enabling style interpolation and transfer, and using
human-labeled training data efficiently. Across these, one foundational problem
is how to succinctly represent both the style variation of each character and the
overall style of the human writer—to capture both the variation within an ‘h’
letterform and the overall consistency with other letterform for each writer.

As handwriting strokes can be modeled as a sequence of points over time,
supervised deep learning methods to handwriting representation can use recurrent
neural networks (RNNs) [17,2]. This allows consistent capture of style features
that are distant in time and, with the use of variational RNNs (VRNNs), allows
the diverse generation of handwriting by drawing from modeled distributions.
However, the approach of treating handwriting style as a ‘unified’ property of a

ar
X

iv
:2

00
8.

11
35

4v
2

 [
cs

.C
V

]
 1

4
Se

p
20

20

https://orcid.org/0000-0001-6117-6630
https://orcid.org/0000-0002-2905-4075
https://orcid.org/0000-0003-2218-2899

2 A. Kotani, S. Tellex, and J. Tompkin.

sequence can limit the representation of both character- and writer-level features.
This includes specific character details being averaged out to maintain overall
writer style, and an reduced representation space of writing styles.

Instead, we explicitly represent 1) writer-, 2) character- and 3) writer-character-
level style variations within an RNN model. We introduce a method of Decoupled
Style Descriptors (DSD) that models style variations such that character style
can still depend on writer style. Given a database of handwriting strokes as
timestamped sequences of points with character string labels [38], we learn
a representation that encodes three key factors: writer-independent character
representations (Ch for character h, Chis for the word his), writer-dependent
character-string style descriptors (wh for character h, whis for the word his),
and writer-dependent global style descriptors (w per writer). This allows new
sequence generation for existing writers (via new wshe), new writer generation
via style transfer and interpolation (via new w), and new character generation
in the style of existing writers (via new C2, from only a few samples of character
2 from any writer). Further, our method helps to improve generation quality as
more samples are provided for projection, rather than tending towards average
letterforms in existing VRNN models.

In a qualitative user study, our model’s generations were preferred 88% of the
time over an existing baseline [2]. For writer classification tasks on a held-out
20-way test, our model achieves accuracy of 89.38% from a single word sample,
and 99.70% from 50 word-level samples. In summary, we contribute:

– Decoupled Style Descriptors as a way to represent latent style information;
– An architecture with DSDs to model handwriting, with demonstration appli-

cations in generation, recognition, and new character adaptation; and
– A new database—BRUSH (BRown University Stylus Handwriting)—of hand-

written digital strokes in the Latin alphabet, which includes 170 writers, 86
characters, 488 common words written by all writers, and 3668 rarer words
written across writers.

Our dataset, code, and model will be open source at http://dsd.cs.brown.edu.

2 Related Work

Handwriting modeling methods either handle images, which capture writing
appearance, or handle the underlying strokes collected via digital pens. Each
may be online, where observation happens along with writing, or offline. Offline
methods support historical document analysis, but cannot capture the motion of
writing. We consider an online stroke-based approach, which avoids the stroke
extraction problem and allows us to focus on modelling style variation. Work
also exists in the separate problem of typeface generation [12,5,37,26,47].

General style transfer methods. Current state-of-the-art style transfer works use
a part of the encoded reference sample as a style component, e.g., the output
of a CNN encoder for 2D images [28,34], or the last output of an LSTM for
speech audio [40]. These can be mixed to allocate parts of a conditioning style

http://dsd.cs.brown.edu

Generating Handwriting via Decoupled Style Descriptors 3

Fig. 1: Illustrating synthesis approaches. Given test sample his for reference, we
wish to generate she in the same style. Left: Pixels of h and s are copied from
input with a slight modification [21]; however, this fails to synthesize e as it is
missing in the reference. Middle: A global latent writer style is inferred from his
and used as the initial state for LSTM generation [2]. Right: Our approach infers
both character and writer style vectors to improve quality and flexibility.

vector to disentangled variation [27]. Common style representations often cannot
capture small details, with neural networks implicitly filtering out this content
information, because the representations fail to structurally decouple style from
content in the style reference source. Other approaches [30,44] tackle this problem
by making neural networks predict parameters for a transformation model (an
idea that originates from neuroevolution [42,20]); our C prediction is related.

Recent image-based offline methods. Haines et al. produced a system to synthesize
new sentences in a specific style inferred from source images [21]. Some human
intervention is needed during character segmentation, and the model can only
recreate characters that were in the source images. Alonso et al. addressed the
labeling issue with a GAN-based approach [16,3]; however, their model presents
an image quality trade-off and struggles to generate new characters. There are also
studies on typeface generation from few reference data [4,43]: Baluja generates
typefaces for Latin alphabets [6], and Lian et al. for Chinese [36]. Our method
does not capture writing implement appearance, but does provides underlying
stroke generation and synthesizes new characters from few examples.

Stroke-based online methods. Deep learning methods, such as Graves’ work, train
RNN models conditioned on target characters [17,13,46]. The intra-variance of a
writer’s style was achieved with Mixture Density Networks (MDN) as the final
synthesis layer [10]. Berio et al. use recurrent-MDN for graffiti style transfer [9].
However, these methods cannot learn to represent handwriting styles per writer,
and so cannot perform writer style transfer.

4 A. Kotani, S. Tellex, and J. Tompkin.

Table 1: Property comparison of state-of-the-art handwriting generation models.
Style No human Infinite Synthesize mis- Benefit from Smooth Learn new

Method transfer? segmentation? variations? sing samples? more samples? interpolation? characters?

Graves (2013) No Yes Yes No No No No
Berio et al. (2017) Yes Yes Yes No No Sort of No
Haines et al. (2017) Yes No Sort of No Yes No No
Aksan et al. (2018) Yes Sort of Yes Yes No Sort of No
Ours Yes Yes Yes Yes Yes Yes Yes

State-of-the-art models can generate characters in an inferred style [2]. Aksan
et al.’s DeepWriting model uses Variational Recurrent Neural Networks (VRNN)
[15] and assumes a latent vector z that controls writer handwriting style. Across
writers, this method tends to average out specific styles and so reduces detail.
Further, while sample efficient, VRNN models have trouble exploiting an abun-
dance of inference samples because the style representation is only the last hidden
state of an LSTM. We avoid this limitation by extracting character-dependent
style vectors from samples and querying them as needed in generation.

Sequence methods beyond handwriting. Learning-based architectures for sequences
were popularized in machine translation [14], where the core idea is to encode
sequential inputs into a fixed-length latent representation. Likewise, text-to-
speech processing has been improved by sequence models [39,41], with extensions
to style representation for speech-related tasks like speaker verification and voice
conversion. Again, one approach is to use the (converted) last output of an LSTM
network as a style representation [23].

Other approaches [24,25] models multiple stylistic latent variables in a hierar-
chical manner and introduces an approach to transfer styles within a standard
VAE setting [33].

Broadly, variational RNN approaches [2,15,24] have the drawback that they
are incapability of improving generation performance with more inference samples.
While VRNNs are sample efficient when only a few samples are available for style
inference, a system should also generate better results as more inference samples
are provided (as in [21]). Our method attempts to be scalable and sample efficient
through learning decoupled underlying generation factors.

We compare properties of four state of the art handwriting synthesis models
(Tab. 1), and illustrate two of their different approaches (Fig. 1).

3 Method

Input, preprocess, and output. A stroke sequence x = (p1, . . . , pN) has each pt
store the change in x- and y-axis from the previous timestep (∆xt = xt − xt−1,
∆yt = yt − yt−1), and a binary termination flag for the ‘end of stroke’ (eos =
{0, 1}). This creates an (N, 3) matrix. A character sequence s = (c1, . . . , cM)
contains character vectors ct where each is a one-hot vector of length equal to
the total number of characters considered. This similarly is an (M,Q) matrix.

Generating Handwriting via Decoupled Style Descriptors 5

Fig. 2: High-level architecture. Circles are parametrized function approximators,
and rectangles/squares are variables. Blue region: Encoder-decoder architecture.
Orange region: Character-conditioned layers. Green region: Synthesis procedure.

The IAM dataset [38] and our stroke dataset were collected by asking par-
ticipants to naturally write character sequences or words, which often produces
cursive writing. As such, we must solve a segmentation problem to attribute
stroke points to specific characters in s. This is complex; we defer explanation to
our supplemental. For now, it is sufficient to say that we use unsupervised learning
to train a segmentation network kθ(x, s) to map regions in x to characters, and
to demark ‘end of character’ labels (eoc = {0, 1}) for each point.

As output, we wish to predict x′ comprised of p′t with: 1) coefficients for
Mixture Density Networks [10] (πt, µx, µy, σx, σy, ρ), which provide variation in
output by sampling ∆xt and ∆yt from these distributions at runtime; 2) ‘end
of stroke’ eos probability; and 3) ‘end of character’ eoc probability. This lets us
generate cursive writing when eos probability is low and eoc probability is high.

Decoupled Style Descriptors (DSD). We begin with the encoder-decoder archi-
tecture proposed by Cho et al. [14] (Fig. 2, blue region). Given a supervised
database x, s and a target string ct, to represent handwriting style we train a pa-
rameterized encoder function f encθ to learn writer-dependent character-dependent
latent vectors wct . Then, given wct , we simultaneously train a parameterized
decoder function fdecθ to predict the next point p′t given all past points p′1:t−1.
Both encoder and decoder fθ are RNNs such as LSTM models:

p′t = fdecθ (p′1:t−1|wct). (1)

This method does not factor character-independent writer style; yet, we have
no way of explicitly describing this property via supervision and so we must
devise a construction to learn it implicitly. Thus, we add a layer of abstraction
(Fig. 2, orange region) with three assumptions:

6 A. Kotani, S. Tellex, and J. Tompkin.

1. If two stroke sequences x1 and x2 are written by the same writer, then
consistency in their writing style is manifested by a character-independent
writer-dependent latent vector w.

2. If two character sequences s1 and s2 are written by different writers, then
consistency in their stroke sequences is manifested by a character-dependent
writer-independent latent matrix C. C can be estimated via a parameterized
encoder function gθ, which is also an RNN such as an LSTM:

Cct = gθ(s, ct). (2)

3. Cct instantiates a writer’s style w to draw a character via wct , such that
Cct and w are latent factors:

wct = Cctw, (3)

w = C−1ct wct . (4)

This method assumes that Cct is invertible, which we will demonstrate in
Sec. 4. Intuitively, the multiplication of writer-dependent character vectors wct

with the inverse of character-DSD C−1ct (Eq. 4) factors out character-dependent
information from writer-dependent information in wct to extract a writer style
representation w. Likewise, Eq. 3 restores writer-dependent character wct by
multiplying the writer-specific style w with a relevant character-DSD Cct .

We use this property in synthesis (Fig. 2, green region). Given a target
character ct, we use encoder gθ to generate a C matrix. Then, we multiply Cct

by a desired writer style w to generate wct . Finally, we use trained decoder fdecθ

to create a new point p′t given previous points p′1:t−1:

p′t = fdecθ (p′1:t−1|wct), where wct = Cctw. (5)

Interpreting the linear factors. Eq. 3 states a linear relationship between Cct

and w. This exists at the latent representation level: wct and Cct are separately
approximated by independent neural networks f encθ and gθ, which themselves are
nonlinear function approximators [30,44]. As Cct maps a vector w to another
vector wct , we can consider Cct to be a fully-connected neural network layer
(without bias). However, unlike standard layers, Cct ’s weights are not implicitly
learned through backpropagation but are predicted by a neural network gθ in
Eq. 2. A further interpretation of Cct and C−1ct as two layers of a network is that
they respectively share a set of weights and their inverse. Explicitly forming Cct

in this linear way makes it simple to estimate Cct for new characters that are
not in the training dataset, given few sample pairs of wct and w, using standard
linear least squares methods (Sec. 4).

Mapping character and stroke sequences with fθ and gθ. Next, we turn our
attention to how we map sequences of characters and strokes within our function
approximators. Consider the LSTM f encθ : Given a character sequence s as size
of (M,Q) where M is the number of characters, and a stroke sequence x of size

Generating Handwriting via Decoupled Style Descriptors 7

(N, 3) where N is the number of points, our goal is to obtain a style vector for
each character wct in that sequence. The output of our segmentation network kθ
preprocess defines ‘end of character’ bits, and so we know at which point in x
that a character switch occurs, e.g., from h to e in hello.

First, we encode x using f encθ to obtain a x∗ of size (N,L), where L is the
latent feature dimension size (we use 256). Then, from x∗, we extract M vectors
at these switch indices—these are our writer-dependent character-dependent
DSDs wct . As f encθ is an LSTM, the historical sequence data up to that index is
encoded within the vector at that index (Fig. 3, top). For instance, for his, x∗ at
switch index 2 represents how the writer writes the first two characters hi, i.e.,
whi. We refer to these wct as ‘writer-character-DSDs’.

Likewise, LSTM gθ takes a character sequence s of size (M,Q) and outputs an
array of C matrices that forms a tensor of size (M,L,L) and preserves sequential
dependencies between characters: The i-th element of the tensor Cci is a matrix
of size (L,L)—that is, it includes information about previous characters up to
and including the i-th character. Similar to x∗, for his, the second character
matrix Cc2 contains information about the first two characters hi—C is really a
character sequence matrix. Multiplying character information Cct with writer
style vector w creates a writer-character-DSD wct .

Estimating w. When we encode a stroke sequence x that
draws s characters via f encθ , we extract M character(s)-
dependent DSDs wct (e.g., wh, whi and whis, right). Via
Eq. 4, we obtain M distinct candidates for writer-DSDs
w. To overcome this, for each sample, we simply take the
mean to form w:

w =
1

M

M∑
t=1

C−1ct wct . (6)

Generation approaches via wct . Consider the synthesis task in Fig. 1: given our
trained model, generate how a new writer would write she given a reference
sample of them writing his. From the his sample, we can extract 1) segment-level
writer-character-DSDs (wh, wi, ws), and 2) the global w. To synthesize she, our
model must predict three writer-character-DSDs (ws,wsh,wshe) as input to the
decoder fdecθ . We introduce two methods to estimate wct :

Method α : wα
ct = Cctw (7a)

Method β : wβ
ct = hθ([wc1 , . . . ,wct]) (7b)

where hθ is an LSTM that restore dependencies between temporally-separated
writer-character-DSDs as illustrated in Fig. 3, green rectangle. We train our
model to reconstruct wct both ways. This allows us to use method α when test
reference samples do not include target characters, e.g., his is missing an e for
she, and so we can reconstruct we via w and Ce (Fig. 3, right). It also allows us
to use Method β when test reference samples include relevant characters that,

8 A. Kotani, S. Tellex, and J. Tompkin.

Fig. 3: Reconstruction methods to produce writer-character-DSD wct , with train-
ing sample s,x of his and test sample s of she. Green rectangle is hθ as defined in
Equation 7b. Training : Method α multiplies writer style w with each character
string matrix Cct . Method β restore temporal dependencies of segment-level
writer-character-DSDs (wh, wi, ws) via an LSTM, which produces higher-quality
results that are preferred by users (Sec. 4). Target test image is in red. Runtime:
Both prediction model Method α and β are combined to synthesize a new sample
given contents within the reference sample.

via f encθ , provide writer-character-DSDs, e.g., his contains s and h in she and so
we can estimate ws and wh. As these characters could come from any place in
the reference samples, hθ restores the missing sequence dependencies.

3.1 Training losses

We defer full architecture details for our supplemental material, and here explain
our losses. We begin with a point location loss L loc on predicted shifts in
x, y coordinates, (∆x,∆y). As we employ mixture density networks as a final
prediction layer in fdecθ , we try to maximize the probability for the target shifts
(∆x∗, ∆y∗) as explained by Graves et al. [17]:

L loc = −
∑
t

log
(∑

j

πjtN (∆x∗t , ∆y
∗
t |µx

j
t , µy

j
t , σx

j
t , σy

j
t , ρ

j
t)
)
.

Further, we consider ‘end of sequence’ flags eos and ‘end of character’ flags eoc
by computing binary cross-entropy losses L eos,L eoc for each.

Next, we consider consistency in predicting writer-DSD w from different
writer-character-DSDs wct . We penalize a loss L w that minimizes the variance
in wt in Equation 6:

L w =
∑
t

(w −wt)
2 (8)

Further, we penalize the reconstruction of each writer-character-DSD. We
compare the writer-character-DSD retrieved by f encθ from inference samples as
wct to their reconstructions (wα

ct , wβ
ct) via generation Methods α and β:

L
wct
A∈(α,β) =

∑
t

(wct −wA
ct)

2 (9)

Generating Handwriting via Decoupled Style Descriptors 9

When t = 1, L
wc1
β = (wc1 − hθ(wc1))2. As such, minimizing this loss prevents

hθ in generation Method β from diluting the style representation wc1 generated
by f encθ because hθ is induced to output wc1 .

Each loss can be computed for three types of writer-character-DSD wct : those
predicted by f encθ , Method α, and Method β. These losses can also be computed
at character, word, and sentence levels, e.g., for words:

Lword =
∑

A∈(fenc
θ ,α,β)

(
L loc
A + L eos

A + L eoc
A + L w

A + L
wct
A

)
. (10)

Thus, the total loss is: Ltotal = Lchar + Lword + Lsentence.
L

wct
fenc
θ

= 0 by construction from Equation 9; we include it here for completeness.

Sentence-level losses help to make the model predict spacing between words.
While our model could train just with character- and word-level losses, this would
cause a problem if we ask the model to generate a sentence from a reference
sample of a single word. Training with Lsentence lets our model predict how a
writer would space words based on their writer-DSD w.

Implicit C inverse constraint. Finally, we discuss how L wct at the character
level implicitly constrains character-DSD C to be invertible. If we consider a
single character sample, then mean w in Equation 6 is equal to C−1c1 wc1 . In this

case, as wα
ct = Cctw (Eq. 7a), L

wct
α becomes:

L
wct
α = (wc1 −Cc1C

−1
c1 wc1)2 (11)

This value becomes nonzero when C is singular (CC−1 6= I), and so our model
avoids non-invertible Cs.

Training through inverses. As we train our network end-to-end, our model must
backpropagate through Cct and C−1ct . As derivative of matrix inverses can be

obtained with dC−1

dx = −C−1 dCdx C−1, our model can train.

4 Experiments

Dataset. Our new dataset—BRUSH—provides characteristics that other on-
line English handwriting datasets do not, including the typical online English
handwriting dataset IAM [38]. First, we explicitly display a baseline in every
drawing box during data collection. This enables us to create handwriting samples
whose initial action is the x, y shift from the baseline to the starting point. This
additional information might also help improve performance in recognition tasks.

Second, our 170 individuals wrote 488 words in common across 192 sentences.
This helps to evaluate handwriting models and observe whether w and C are
decoupled: given a sample that failed to generate, we can compare the generated
results of the same word across writers. If writer A failed but B succeeded, then
it is likely that the problem is not with C representations but with either w or

10 A. Kotani, S. Tellex, and J. Tompkin.

Fig. 4: Comparison of our proposed model vs. the state-of-the-art model [2]. Top:
(i) Example writing similarity ordering task assigned to MTurk workers. (ii)
Counts of most similar results with the target image. (iii) Sample-level vote.
Bottom: Three examples of task orderings; see supplemental for all 40. The model
of Aksan et al. [2] typically over-smooths the style and loses key details.

wct . If both A and B failed to draw the word but succeeding in generating other
words, it is likely that C or wct representations are to blame. We provide further
details about our dataset and collection process in our supplemental material.

Third, for DeepWriting [2] comparisons, we use their training and test splits
on IAM that mix writer identities—i.e., in training, we see some data from every
writer. For all other experiments, we use our dataset, where we split between
writers—our 20 test writers have never been seen writing anything in training.

Invertibility of C. To compute w in Equation 4, we must invert the character-
DSD C. Our network is designed to make C invertible as training proceeds by
penalizing a reconstruction loss for wct and CctC

−1
ct wct (Sec. 3.1). To test its

success, we compute Cs from our model for all single characters (86 characters)
and character pairs (862 = 7, 396 cases), and found C to have full rank in each
case. Next, we test all possible 3-character-strings (863 = 636, 056 cases). Here,
there were 37 rare cases with non-invertible Cs, such as 1Zb and 6ak. In these
cases, we can still extract two candidate w from the first two characters (e.g., 1
and 1Z in the 1Zb sample) to complete generation tasks.

Qualitative evaluation with users. We use Amazon Mechanical Turk to asked 25
participants to rank generated handwriting similarity to a target handwriting
(Fig. 4 (i)). We randomly selected 40 sentence-level target handwriting samples

Generating Handwriting via Decoupled Style Descriptors 11

Fig. 5: Interpolation at different levels. (I) Original samples by two writers. (II)
At the writer-DSD w level. (III) At the writer-character-DSD wct level. (IV) At
C level. Left to right: Characters used are abcd, Lxhy, Rkmy, QWPg.

from the validation set of IAM dataset [38]. Each participant saw randomly-
shuffled samples; in total, 600 assessments were made. We compared the abilities
of three models to generate the same handwriting style without seeing the actual
target sample. We compare to the state-of-the-art DeepWriting model [2], which
uses a sample from the same writer (but of a different character sequence) for
style inference. We test both Methods α and β from our model. Method α uses
the same sample to predict w and to generated a new sample. Method β randomly
samples 10 sentence-level drawing by the target writer and creates a sample with
the algorithm discussed in Sec. 3. DeepWriting cannot take advantage of any
additional character samples at inference time because it estimates only a single
character-independent style vector.

Figure 4 (ii) displays how often each model was chosen as the most similar to
the target handwriting; our model with sampling algorithm was selected 5.22×
as often as Aksan et al.’s model. Figure 4 (iii) displays which model was preferred
across the 40 cases: of the 15 assessments per case, we count the number of times
each model was the most popular. We show all cases in supplemental material.

Interpolation of w, wct , and C. Figure 5 demonstrates that our method can
interpolate (II) at the writer-DSD w level, (III) at the writer-character-DSD wct

level, and (IV) at the character-DSD C level. Given two samples of the same
word by two writers xA and xB, we first extract writer-character-DSDs from
each sample (e.g., wA

rhy, wB
rhythm), then we derive writer-DSDs wA and wB as in

Sec. 3. To interpolate by γ between two writers, we compute the weighted average
wC = γwA + (1 − γ)wB. Finally, we reconstruct writer-character-DSDs from

12 A. Kotani, S. Tellex, and J. Tompkin.

Fig. 6: Predicting C from new character samples, given a version of our model
that is not trained on numbers. As we increase the number of samples used to
estimate C, the better the stylistic differences are preserved when multiplying
with ws from different writers A and B. Note: neither writers provided numeral
samples; by our construction, samples can come from any writer.

wC (e.g., wC
rhy = CrhywC) and feed this into fdecθ to generate a new sample.

For (III), we simply interpolate at the sampled character-level (e.g., wA
rhy and

wB
rhy). For (IV), we bilinearly interpolate four character-DSDs Cct placed at the

corners of each image: C = (rA ×CA + rB ×CB + rC ×CC + rD ×CD), where
all r sum to 1. From C, we compute a writer-character-DSD as wc = CW and
synthesize a new sample. In each case (II-IV), our representations are smooth.

Synthesis of new characters. Our approach allows us to generate handwriting
for new characters from a few samples from any writer. Let us assume that
writer A produces a new character sample 3 that is not in our dataset. To
make 3 available for generation in other writer styles, we need to recover the
character-DSD C3 that represents the shape of the character 3. Given x for
newly drawn character 3, encoder f encθ first extracts the writer-character-DSD
w3. Assuming that writer A provided other non-3 samples in our dataset, we
can compute multiple writer-DSD w for A. This lets us solve for C3 using least
squares methods. We form matrices Q,P3 where each column of Q is one specific
instance of w, and where each column of P3 is one specific instance of w3.
Then, we minimize the sum of the squared error, which is the Frobenius norm
‖C3Q−P3‖2F , e.g., via C3 = P3Q

+.
As architectured (and detailed in supplemental), gθ actually has two parts:

an LSTM encoder gLSTM
θ that generates a 256×1 character representation vector

crawct for a substring ct, and a fully-connected layer gFC2
θ that expands crawct and

reshapes it into a 256× 256 matrix Cct = gFC2
θ (crawct). Further, as the output of

an LSTM, we know that crawct should be constrained to values [−1,+1]. Thus,
for this architecture, we directly optimize the (smaller set of) parameters of
the latent vector crawct to create Cct given the pre-trained fully-connected layer
weights, using a constrained non-linear optimization algorithm (L-BFGS-B) via
the objective f(crawct) = ‖P3 − gFC2

θ (crawct)Q‖2F .
To examine this capability of our approach, we retrained our model with a

modified dataset that excluded numbers. In Figure 6, we see generation using our

Generating Handwriting via Decoupled Style Descriptors 13

estimate of new Cs from different sample counts. We can generate numerals in
the style of a particular writer even though they never drew them, using relatively
few drawing samples of the new characters from different writers.

Writer recognition task. Writer recognition systems try to assign test samples (e.g.,
a page of handwriting) to a particular writer given an existing database. Many
methods use codebook approaches [8,11,22,7] to catalogue characteristic patterns
such as graphemes, stroke junctions, and key-points from offline handwriting
images and compare them to test samples. Zhang et al. [45] extend this idea
to online handwriting, and Adak et al. study idiosyncratic character style per
person and extract characteristic patches to identify the writer [1].

To examine how well our model might represent the latent distribution of
handwriting styles, we perform a writer recognition task on our trained model
on the randomly-selected 20-writer hold out set from our dataset. First, we
compute 20 writer DSDs wwriter

i from 10 sentence-level samples—this is our
offline ‘codebook’ representing the style of each writer. Then, for testing, we
sample from 1–50 new word-level stroke sequences per writer (using words with at
least 5 characters), and calculate the corresponding writer DSDs (N = 1, 000 in
total). With the vector L of true writer labels, we compute prediction accuracy:

A =
1

N

N∑
i=1

I(Li, arg min
j

(wword
i −wwriter

j)2), I(x, y) =

{
1, if x = y

0, otherwise
(12)

We repeated the random sampling of 1–50
words over 100 trials and compute mean
accuracy and standard error. When multi-
ple test samples are provided, we predict
writer identity for each word and average
their predictions. Random accuracy perfor-
mance is 5%. Our test prediction accuracy
rises from 89.20%± 6.23 for one word sample,
to 97.85% ± 2.57 for ten word samples, to
99.70%±1.18 for 50 word samples. Increasing
the number of test samples per writer increases accuracy because some words
may not be as characteristic as others (e.g., ‘tick’ vs. ‘anon’). Overall, while our
model was not trained to perform this classification task, we can still achieved
promising accuracy results from few samples—this is an indication that our latent
space is usefully descriptive.

Additional experiments. In our supplemental material, along with more archi-
tecture, model training procedure, and sampling algorithm details, we also: 1)
compare to two style extraction pipelines, a stacked FC+ReLU layers and AdaIN,
and find our approach more capable; 2) demonstrate the importance of learning
style and content of character-DSD C by comparing with a randomly-initialized
version; 3) ablate parts of our loss function, and illustrate key components;
4) experimentally show that our model is more efficient than DeepWriting by
comparing generation given the same number of model parameters.

14 A. Kotani, S. Tellex, and J. Tompkin.

5 Discussion

While users preferred our model in our study, it still sometimes fails to generate
readable letters or join cursive letters. One issue here is the underlying inconsis-
tency in human writers, which we only partially capture in our data and represent
in our model (e.g., cursive inconsistency). Another issue is collecting high-quality
data with digital pens in a crowdsourced setting, which can still be a challenge
and requires careful cleaning (see supplemental for more details).

Decoupling additional styles. Our model could potentially scale to more styles.
For instance, we might create an age matrix A from a numerical age value a as C
is constructed from ct, and extract character-independent age-independent style
descriptor as w∗ = A−1C−1ct wct . Introducing a new age operator A invites our
model to find latent-style similarities across different age categories (e.g., between
a child and a mature writer). Changing the age value and thus A may predict
how a child’s handwriting changes as s/he becomes older. However, training
multiple additional factors in this way is likely to be challenging.

Alternatives to linear C multiplication operator. Our model can generate new
characters by approximating a new C matrix from few pairs of w and wct

thanks to their linear relationship. However, one might consider replacing our
matrix multiplication ‘operator’ on C with parametrized nonlinear function
approximators, such as autoencoders. Multiplication by C−1 would become an
encoder, with multiplication by C being a decoder; in this way, gθ would be
tasked with predicting encoder weights given some predefined architecture. Here,
consistency with w must still be retained. We leave this for future work.

6 Conclusion

We introduce an approach to online handwriting stroke representation via the
Decoupled Style Descriptor (DSD) model. DSD succeeds in generating drawing
samples which are preferred more often in a user study than the state-of-the-art
model. Further, we demonstrate the capabilities of our model in interpolating
samples at different representation levels, recovering representations for new
characters, and achieving a high writer-identification accuracy, despite not being
trained explicitly to perform these tasks. Online handwriting synthesis is still
challenging, particularly when we infer a stylistic representation from few numbers
of samples and try to generate new samples. However, we show that decoupling
style factors has potential, and believe it could also apply to style-related tasks
like transfer and interpolation in other sequential data domains, such as in speech
synthesis, dance movement prediction, and musical understanding.

Acknowledgements. This work was supported by the Sloan Foundation and the
National Science Foundation under award number IIS-1652561. We thank Kwang
In Kim for fruitful discussions and for being our matrix authority. We thank
Naveen Srinivasan and Purvi Goel for the ECCV deadline snack delivery service.
Finally, we thank all anonymous writers who contributed to our dataset.

Generating Handwriting via Decoupled Style Descriptors 15

References

1. Adak, C., Chaudhuri, B.B., Lin, C.T., Blumenstein, M.: Intra-variable handwriting
inspection reinforced with idiosyncrasy analysis (2019) 13

2. Aksan, E., Pece, F., Hilliges, O.: DeepWriting: Making Digital Ink Editable via Deep
Generative Modeling. In: SIGCHI Conference on Human Factors in Computing
Systems. CHI ’18, ACM, New York, NY, USA (2018) 1, 2, 3, 4, 10, 11, 19, 23, 30

3. Alonso, E., Moysset, B., Messina, R.O.: Adversarial generation of handwritten text
images conditioned on sequences. ArXiv abs/1903.00277 (2019) 3

4. Azadi, S., Fisher, M., Kim, V.G., Wang, Z., Shechtman, E., Darrell, T.: Multi-
content gan for few-shot font style transfer. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 7564–7573 (2018) 3

5. Balashova, E., Bermano, A.H., Kim, V.G., DiVerdi, S., Hertzmann, A., Funkhouser,
T.: Learning a stroke-based representation for fonts. Computer Graphics Forum
38(1), 429–442 (2019). https://doi.org/10.1111/cgf.13540, https://onlinelibrary.
wiley.com/doi/abs/10.1111/cgf.13540 2

6. Baluja, S.: Learning typographic style: from discrimination to synthesis. Machine
Vision and Applications 28(5-6), 551–568 (2017) 3

7. Bennour, A., Djeddi, C., Gattal, A., Siddiqi, I., Mekhaznia, T.: Handwriting based
writer recognition using implicit shape codebook. Forensic science international
301, 91–100 (2019) 13

8. Bensefia, A., Nosary, A., Paquet, T., Heutte, L.: Writer identification by writer’s
invariants. In: Proceedings Eighth International Workshop on Frontiers in Hand-
writing Recognition. pp. 274–279. IEEE (2002) 13

9. Berio, D., Akten, M., Leymarie, F.F., Grierson, M., Plamondon, R.: Calligraphic
stylisation learning with a physiologically plausible model of movement and recurrent
neural networks. In: Proceedings of the 4th International Conference on Movement
Computing. pp. 1–8 (2017) 3

10. Bishop, C.M.: Mixture density networks (1994) 3, 5, 29
11. Bulacu, M., Schomaker, L.: Text-independent writer identification and verification

using textural and allographic features. IEEE transactions on pattern analysis and
machine intelligence 29(4), 701–717 (2007) 13

12. Campbell, N.D., Kautz, J.: Learning a manifold of fonts. ACM Transactions on
Graphics (TOG) 33(4), 1–11 (2014) 2

13. Carter, S., Ha, D., Johnson, I., Olah, C.: Experiments in handwriting with a neural
network. Distill (2016). https://doi.org/10.23915/distill.00004, http://distill.
pub/2016/handwriting 3

14. Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares,
F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN
encoder–decoder for statistical machine translation. In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). pp. 1724–1734. Association for Computational Linguistics, Doha,
Qatar (Oct 2014). https://doi.org/10.3115/v1/D14-1179, https://www.aclweb.

org/anthology/D14-1179 4, 5
15. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A.C., Bengio, Y.: A recurrent

latent variable model for sequential data. In: Cortes, C., Lawrence, N.D., Lee, D.D.,
Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Sys-
tems 28, pp. 2980–2988. Curran Associates, Inc. (2015), http://papers.nips.cc/
paper/5653-a-recurrent-latent-variable-model-for-sequential-data.pdf

4

https://doi.org/10.1111/cgf.13540
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13540
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13540
https://doi.org/10.23915/distill.00004
http://distill.pub/2016/handwriting
http://distill.pub/2016/handwriting
https://doi.org/10.3115/v1/D14-1179
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
http://papers.nips.cc/paper/5653-a-recurrent-latent-variable-model-for-sequential-data.pdf
http://papers.nips.cc/paper/5653-a-recurrent-latent-variable-model-for-sequential-data.pdf

16 A. Kotani, S. Tellex, and J. Tompkin.

16. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014) 3

17. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013) 1, 3, 8

18. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: Labelling unsegmented sequence data with recurrent neural net-
works. In: Proceedings of the 23rd International Conference on Machine Learn-
ing. p. 369–376. ICML ’06, Association for Computing Machinery, New York,
NY, USA (2006). https://doi.org/10.1145/1143844.1143891, https://doi.org/10.
1145/1143844.1143891 30

19. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber,
J.: A novel connectionist system for unconstrained handwriting recognition. IEEE
transactions on pattern analysis and machine intelligence 31(5), 855–868 (2008) 30

20. Ha, D., Dai, A., Le, Q.V.: Hypernetworks. arXiv preprint arXiv:1609.09106 (2016)
3

21. Haines, T.S.F., Mac Aodha, O., Brostow, G.J.: My text in your handwriting.
ACM Trans. Graph. 35(3) (May 2016). https://doi.org/10.1145/2886099, https:
//doi.org/10.1145/2886099 3, 4

22. He, S., Wiering, M., Schomaker, L.: Junction detection in handwritten documents
and its application to writer identification. Pattern Recognition 48(12), 4036–4048
(2015) 13

23. Heigold, G., Moreno, I., Bengio, S., Shazeer, N.: End-to-end text-dependent speaker
verification. In: 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). pp. 5115–5119. IEEE (2016) 4

24. Hsu, W.N., Glass, J.: Scalable factorized hierarchical variational autoencoder
training. arXiv preprint arXiv:1804.03201 (2018) 4

25. Hsu, W.N., Zhang, Y., Glass, J.: Unsupervised learning of disentangled and inter-
pretable representations from sequential data. In: Advances in Neural Information
Processing Systems (2017) 4

26. Hu, C., Hersch, R.D.: Parameterizable fonts based on shape components. IEEE
Computer Graphics and Applications 21(3), 70–85 (2001) 2

27. Hu, Q., Szabó, A., Portenier, T., Favaro, P., Zwicker, M.: Disentangling factors
of variation by mixing them. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2018) 3

28. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance
normalization. In: Proceedings of the IEEE International Conference on Computer
Vision (ICCV) (Oct 2017) 2, 19

29. Jaeger, S., Manke, S., Reichert, J., Waibel, A.: Online handwriting recognition: the
npen++ recognizer. International Journal on Document Analysis and Recognition
3(3), 169–180 (2001) 30

30. Jia, X., De Brabandere, B., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In:
Advances in neural information processing systems. pp. 667–675 (2016) 3, 6

31. Keysers, D., Deselaers, T., Rowley, H.A., Wang, L.L., Carbune, V.: Multi-language
online handwriting recognition. IEEE transactions on pattern analysis and machine
intelligence 39(6), 1180–1194 (2016) 30

32. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. International
Conference on Learning Representations (12 2014) 32

33. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013) 4

https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/2886099
https://doi.org/10.1145/2886099
https://doi.org/10.1145/2886099

Generating Handwriting via Decoupled Style Descriptors 17

34. Kotovenko, D., Sanakoyeu, A., Lang, S., Ommer, B.: Content and style disen-
tanglement for artistic style transfer. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 4422–4431 (2019) 2

35. Lahiri, S.: Complexity of Word Collocation Networks: A Preliminary Structural
Analysis. In: Proceedings of the Student Research Workshop at the 14th Conference
of the European Chapter of the Association for Computational Linguistics. pp.
96–105. Association for Computational Linguistics, Gothenburg, Sweden (April
2014), http://www.aclweb.org/anthology/E14-3011 33

36. Lian, Z., Zhao, B., Chen, X., Xiao, J.: Easyfont: a style learning-based system to
easily build your large-scale handwriting fonts. ACM Transactions on Graphics
(TOG) 38(1), 1–18 (2018) 3

37. Lopes, R.G., Ha, D., Eck, D., Shlens, J.: A learned representation for scalable vector
graphics. In: The IEEE International Conference on Computer Vision (ICCV)
(October 2019) 2

38. Marti, U.V., Bunke, H.: The iam-database: an english sentence database for of-
fline handwriting recognition. International Journal on Document Analysis and
Recognition 5(1), 39–46 (2002) 2, 5, 9, 11

39. Oord, A.v.d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A., Kavukcuoglu, K.: Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499 (2016) 4

40. Qian, K., Zhang, Y., Chang, S., Yang, X., Hasegawa-Johnson, M.: Autovc: Zero-shot
voice style transfer with only autoencoder loss. In: International Conference on
Machine Learning. pp. 5210–5219 (2019) 2

41. Shen, J., Pang, R., Weiss, R.J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z.,
Zhang, Y., Wang, Y., Skerrv-Ryan, R., et al.: Natural tts synthesis by conditioning
wavenet on mel spectrogram predictions. In: 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). pp. 4779–4783. IEEE (2018)
4

42. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for
evolving large-scale neural networks. Artificial life 15(2), 185–212 (2009) 3

43. Suveeranont, R., Igarashi, T.: Example-based automatic font generation. In: Inter-
national Symposium on Smart Graphics. pp. 127–138. Springer (2010) 3

44. Wang, H., Liang, X., Zhang, H., Yeung, D.Y., Xing, E.P.: Zm-net: Real-time
zero-shot image manipulation network. arXiv preprint arXiv:1703.07255 (2017) 3, 6

45. Zhang, X.Y., Xie, G.S., Liu, C.L., Bengio, Y.: End-to-end online writer identification
with recurrent neural network. IEEE Transactions on Human-Machine Systems
47(2), 285–292 (2016) 13

46. Zhang, X.Y., Yin, F., Zhang, Y.M., Liu, C.L., Bengio, Y.: Drawing and recognizing
chinese characters with recurrent neural network. IEEE transactions on pattern
analysis and machine intelligence 40(4), 849–862 (2017) 3

47. Zongker, D.E., Wade, G., Salesin, D.H.: Example-based hinting of true type fonts.
In: Proceedings of the 27th annual conference on Computer graphics and interactive
techniques. pp. 411–416 (2000) 2

http://www.aclweb.org/anthology/E14-3011

18 A. Kotani, S. Tellex, and J. Tompkin.

Appendices for

Generating Handwriting via
Decoupled Style Descriptors

A Table of Variables . 18
B Comparison with Style Transfer Baselines 19
C Investigating the C-matrix . 19
D Network Capacity . 23
E Further Generated Comparisons . 24
F Sampling Algorithm for Writer-Character-DSD wct 27
G Sequence Decoder fdecθ . 28
H Character Encoder Function gφ . 29
I Segmentation Network kθ . 30
J Detailed Training Procedure . 31
K Dataset Specification and Collection Methodology 32

A Table of Variables

We include a brief table of the key variables used throughout the main manuscript
and in this supplemental manuscript (Table 2).

Table 2: Brief explanation of key variables used throughout these manuscripts.
Name Shape Note

x Input data (N, 3) A handwriting sample; a time sequence of 2D points.
x∗ Encoded input (N, 256) A raw output from fenc

θ (x).
s Sentence (M) A string label for x (e.g., hello).
ct Substring (t) A substring of s (e.g., he).
ct Character vector (87×1) A one-hot vector denoting the t-th character in s .
crawt Encoded character (256×1) An output from gFC1

θ (ct). Input for gLSTM
θ .

crawct Encoded substring (256×1) An output from gLSTM
θ (crawt).

w Writer-DSD (256×1) Content-independent handwriting style for a writer A.
Cct Character-DSD (256×256) An encoded character matrix for a substring ct.
wct Writer-Character-DSD (256×1) An encoded drawing representation for ct, extracted from x∗.

fenc
θ Sequence encoder Outputs a list of Writer-Character-DSDs wct from an input drawing x.

fdec
θ Sequence decoder Outputs a drawing x from a list of wct .
gθ Character encoder Outputs a character matrix Cct . Simplified function used as shorthand.
gFC1
θ Outputs a vector crawt from a vector ct.
gLSTM
θ Outputs a vector crawct from a list [craw1 , ..., crawt].
gFC2
θ Outputs a Character-DSD Cct from a vector crawct .
hθ Temporal encoder LSTM to restore dependencies between Writer-Character DSDs wct .
kθ Segmentation function Segments a handwriting sample x into characters.

Generating Handwriting via Decoupled Style Descriptors 19

Fig. 7: Qualitative evaluation of two common style-transfer techniques.

B Comparison with Style Transfer Baselines

We evaluated our proposed model against two style transfer baselines. We define
a style vector as s = f encθ (x) and a character-content vector as c = gθ(ct). To
interweave s and c, we consider a new operator F where F (s, c) = z. Then, we
feed z into our decoder function fdecθ to synthesize a drawing. We examined two
operators for F : A) three stacked FC+ReLU layers, and B) AdaIN layer [28].

In our method, f encθ (x) produces wct , which is then decoupled from the
character content via our C matrix operation. In Method A and B, f encθ (x)
produces s, and via F the network must implicitly represent content and writer
style parts. For fairness, we keep the architectures of f encθ , fdecθ , gθ the same as
in our approach, and train each method from scratch with the same data and
loss function as in our approach.

Neither Method A or B is competitive with our method or with DeepWrit-
ing [2]. While A and B can generate readable letters, A) has only one style, and
B) fails to capture important character shape details leaving some illegible, and
has only basic style variation like slant and size (Figure 7). This is because f encθ

must represent a content-independent style for a reference sample without its
content information. The DeepWriting model decouples style and content by
making f encθ additionally predict the reference content via a character classifica-
tion loss. Our approach does not try to decouple style and content within f encθ ;
instead our model extracts style from the output of f encθ by multiplication with
a content-conditioned matrix C.

This simple experiment demonstrates that style-content decoupling is a dif-
ficult task. Instead of making one network (i.e., f encθ) responsible for filtering
out content information from the style reference sample implicitly, we show
empirically that our method to structurally decouple content information via C
matrix multiplication is more effective in the online handwriting domain.

C Investigating the C-matrix

The C matrix for a character string ct—Cct—is designed to contain information
about how people generally write ct: its role is to extract character(s)-specific

20 A. Kotani, S. Tellex, and J. Tompkin.

information from wct . Intuitively, the relationship between Cct and wct can be
seen as one of a key and a key-hole. Our model tries to create a perfect fit between
a key (wct) and a key-hole (Cct), where both shapes are learned simultaneously.
But what if we fix the key-hole shape ahead of time, and simply learn to fit the
key? That is, what if we assign pre-defined values to substring character matrices
C ahead of time? This would reduce the number of model parameters, speed up
training and inference, and allow us to store C in memory as a look-up table
rather than predict its values.

One issue with fixing the C matrix is the exponential growth in the number
of possible strings ct as we allow longer words. Thus, for this analysis, we will
initialize C for single- and two-character substrings only, which have a tractable
number of variations in our Latin alphabet (Sec. K). For example, instead of
Chello for a word ‘hello’, we consider its five constituent single- and two-character
substrings Ch, Che, Cel, Cll, Clo. Consequently, we modified the training data
format by segmenting every sentence into two-character pairs.

We consider three scenarios (Figure 8):

Fixed random single- and two-character C In principle, each substring that
C represents only needs to be different from other substrings, and so we
assign a random matrix to each two-character substring.

Fixed well-spaced single- and two-character C Two matrices Csh and Che

could contain mutual information about how to write the character h, and so
we try to assign fixed matrices in a way that places similar substrings close
to each other in high-dimensional space.

Learned single- and two-character C Our model trained only on single char-
acters and two-character pairs. This trains gθ to predict the values of C.

Well-spaced C. If we randomly initialize C (i.e., I(Csh; Che) ≈ 0), the values of
two writer-character-DSDs, whe and wshe, must be significantly different from
each other to output consistent w, and this makes the learning task harder for
the f encθ LSTM. Instead, to determine how to manually initialize C such that
they are more well spaced out, we look at the character information within wct .
As we use an LSTM to encode the input drawing to obtain wct , it models long
temporal dependencies. In other words, by the nature of LSTMs, wct tends to
‘remember’ more recent characters than older characters, and so we assume wct

remembers the second character more than the first character. Thus, we initialize
the character matrix for a two-character substring ct as follows:

Cct = rCc1 + (1.0− r)Cc2 (13)

where Cc1 and Cc2 are randomly initialized single-character-DSDs, and we set
r = 0.1. This leads to Cct that have the same ending character (i.e., c2) having
similar representations, as shown in Figure 8b.

Results. Under t-SNE projections, the learned C models create more meaningful
C representation layouts (Figure 8). Unlike the well-spaced C, when we project
C for two-character substrings (Figure 8c), we see a few outer clusters, with

Generating Handwriting via Decoupled Style Descriptors 21

(a) Random C (2-character-string) (b) Spaced C (2-character-string)

(c) Learned C (2-character-string) (d) Learned C (1-character-string)

Fig. 8: t-SNE visualization of different C. Each dot indicates different substring.
The substrings with the same last character (e.g., ‘ab’, ‘bb’, ‘cb’) are colored
same. The learned C in Figure 8c are mostly concentrated in the middle. As
each C contains information about how to draw two characters, even the two
C with the same last character (e.g., ‘ab’ and ‘bb’) are often distant from each
other, because of the different first character. By contrast, isolating the single
characters within the learned C (Figure 8d) shows them to be well mapped in
the space: similar characters such as ‘(’, ‘c’ and ‘C’ are closely positioned.

22 A. Kotani, S. Tellex, and J. Tompkin.

Fig. 9: Qualitative comparisons of results from different two-character C. When
C are fixed through training, the models failed to synthesize recognizable letters.

Fig. 10: Instances of missed delayed strokes by our proposed model.

a larger ‘more chaotic’ central concentration. As each dot in the projections
represents C for two characters, these C cannot be easily clustered by the ending
characters (e.g., considering general shapes, ‘cb’ is likely to have a representation
closer to the one of ‘C6’ than ‘fb’, despite the common 2nd character b). When
looking at just the single-characters within our learned C representations (Figure
8d), characters with similar shapes (e.g., ‘9’,‘q’,‘g’) are closely positioned, and
this indicates a successful representation learning for C.

Figure 9 shows writing generation results from these different approaches.
Both fixed C approaches fail to generate good samples.

Limitations of two-character substrings. One might think that using single- and
two-character substrings could represent most variation in writing—how much do
letters two behind the currently-written letter really affect the output? Cursive
writing especially contains delayed strokes: for example, adding the dot for ‘i’
in ‘himself’ after writing ‘f’. Changing to two-character substrings removes the
ability of our model to learn delayed strokes in writings. In practice, our original
C model can struggle to correctly place delayed strokes (Fig. 10): the model
must predict a negative x-axis stroke to finish a previous character, which rarely
occurs in our training set. This is one area for future work to improve.

Generating Handwriting via Decoupled Style Descriptors 23

Fig. 11: To match the total number of parameters between DeepWriting and our
model, we increased the LSTM dimension in DeepWriting from 512 to 1, 041.
There is little improvement in quality from the initial DeepWriting model of 512
LSTM dimension to 1, 041. These drawings are generated with 10 sentence-level
reference samples of the same writer.

D Network Capacity

To validate our network capacity, we conducted two comparison studies with the
DeepWriting model by Aksan et al. [2]. The first is to decrease the number of
parameters in our DSD-based model, and the second is to increase the number
of parameters in the DeepWriting model.

A Increasing DeepWriting Model Parameters

We modified the hidden state dimension for the DeepWriting model from 512 to
1, 071, and the total number of parameters subsequently increased from 7.2M to
31.3M . We show a side-by-side comparison of generated samples with DSD-256
model in Figure 11. For our 8GB VRAM GPU to accommodate this large LSTM,
we decreased the batch size by half from 64 to 32, and doubled the number of
learning rate decay steps from 1, 000 to 2, 000. However, increasing the capacity
of the DeepWriting model did not improve the generated results (Figure 11).

B Decreasing DSD Model Parameters

Is our decoupled model more efficient than the DeepWriting model [2], or simply
more capacitive? With 256-dimensional latent vectors, our model has 31.33M
parameters, whereas DeepWriting has 7.27M . This difference is largely in the
gθ fully connected layer which expands crawct into Cct via 16.84M parameters.
As such, we reduced our latent vector dimension from 256 to 141, which leads

24 A. Kotani, S. Tellex, and J. Tompkin.

Fig. 12: We decreased the DSD dimension in our model from 256 to 141 to match
the total number of parameters to DeepWriting. As we decrease DSD dimensions,
there is a slight fall in quality, particularly the examples with green dots that are
generated from a single global writer-DSD w in Method α.

to a model with 7.25M parameters. While we observe minor deterioration in
generation quality (Figure 12), the model still creates higher-quality samples
than DeepWriting. This suggests that our architecture is more efficient.

E Further Generated Comparisons

Figure 13 and 14 show all 40 samples of drawing used for our qualitative/quantitative
study on Amazon Mechanical Turk.

Generating Handwriting via Decoupled Style Descriptors 25

Fig. 13: The first 20 out of 40 samples used for quantitative evaluation.

26 A. Kotani, S. Tellex, and J. Tompkin.

Fig. 14: The second 20 out of 40 samples used for quantitative evaluation.

Generating Handwriting via Decoupled Style Descriptors 27

Fig. 15: Generated image by our sampling algorithm. The black letters in the
synthesis indicate that they are predicted from w, while the colored characters
in reference samples are encoded and saved in the database in the form of
writer-character-DSDs wct and retrieved during synthesis.

F Sampling Algorithm for Writer-Character-DSD wct

When handwriting samples x with corresponding character strings s are provided
for inference, we can extract writer-character-DSDs wct from x for substrings
of s. For example, for character string his, we can first extract the following 3
arrays of writer-character-DSDs using fencθ : [wh], [wh,whi], and [wh,whi,whis].
In addition, if the handwriting is non-cursive and each character is properly
segmented, then we can also obtain 3 more ([wi], [wi,wis], and [ws]). However,
we must ensure that the handwriting is cursive, as h, i, and s could be connected
by a single stroke. In such cases, we only extract the first 3 arrays.

We create a database D of these arrays of writer-character-DSDs with sub-
strings as their keys, and query substrings in the target sentence s∗ for generation
to obtain relevant writer-character-DSDs. We also compute the mean global
writer-DSD w as w = 1

N

∑
ct

C−1ct wct where N is the number of obtained wct .

To synthesize a sample thin from his, we query the substring hi and receive
an array of DSDs: [wh,whi]. As wt and wn are computed from w:

wrec
t = hθ([wt]) (14a)

wrec
th = hθ([wt,wh]) (14b)

wrec
thi = hθ([wt,whi]) (14c)

wrec
thin = hθ([wt,whi,wn]) (14d)

We use [wt,whi] instead of [wt,wh,whi] in Equations 14c and 14d because, as one
might recall from generation Method β in the main paper (Sec. 3), the function
approximator hθ is designed to restore temporal dependencies between writer-
character-DSDs. As ‘h’ and ‘i’ are already temporally dependent within whi, we
need only connect characters ‘t’ and ‘h’ through LSTM hθ. The pseudocode for
this sampling procedure is shown in Algorithm 1, with example generations in
Figure 15.

28 A. Kotani, S. Tellex, and J. Tompkin.

Input: D: database of writer-character-DSD, s∗: target sentence to generate, w:
mean global writer-DSD

1 Function PerformSamplingAlgorithm(D, s∗, w):
2 Initialize empty sets L, R and result
3 s∗ ← MarkAllCharactersAsUncovered(s∗)
4 ss∗ ← ExtractSubStringsAndOrderByLength(s∗)
5 for each substring ss in ss∗ do
6 if ss is in D and every characters in ss are not-covered then
7 [wc1 , ...,wct] = QueryDatabaseWithKey(ss)
8 Add [wc1 , ...,wct] to L
9 s∗ ← MarkCharactersInSubstringAsCovered(s∗, ss)

10 for each uncovered character ct in s∗ do
11 wct ← Cctw
12 Add [wct] to L

13 L∗ ← OrderSetBySubstringAppearanceIn(s∗)
14 for each array A in L∗ do
15 for each wci in A do
16 wrec

ci ← hθ([R1, R2, ...,wci])
17 Add wrec

ci to the result list
18 if wct is the last element in A then
19 Add wci to the reference set R

20 return result

Algorithm 1: Pseudocode for our sampling algorithm to reconstruct writer-
character-DSDs for the target sentence to synthesize.

G Sequence Decoder fdec
θ

To synthesize a new sample from a list of writer-character-DSD wct , we train a
sequence decoder function fdecθ . The inputs to this decoder are: 1) initial point
p0 = (0, 0, 0), and 2) the first writer-character-DSD wc1 . Continuing with the
thin example, we predict the first point p1 from p0 and wt. At runtime, the
predicted point p∗1 will be fed into the LSTM at the next timestep to predict p2.
When the decoder model outputs an eoc > 0.5 (end-of-character probability), the
model stops drawing the current character and start referencing the next writer-
character-DSD so that it starts drawing the next character. This procedure is
illustrated as the red lines in Figure 16. Similarly, to determine the touch/untouch
status of the pen to the canvas, we use the eos (end-of-stroke probability) which
is enclosed in point prediction p∗t . If eost > 0.5, our model lifts up the pen; if
eost ≤ 0.5, our model continues the stroke.

Note that when we use the predicted p∗t as an input to the LSTM at runtime,
we binarize the eos value. This is because all eos values in training data are
binarized. Further, we do not use the predicted points to predict the next point
during training, because we have the true point sequence x. In other words:

p∗t+1 = fdecθ (p0, p1, ..., pt|wct) (training) (15a)

p∗t+1 = fdecθ (p0, p
∗
1, ..., p

∗
t |wct) (runtime) (15b)

Generating Handwriting via Decoupled Style Descriptors 29

Fig. 16: Overview of our decoder architecture. During training, we feed true point
sequences to the LSTM and do not use the predicted output p∗t as the next input
(the procedure shown as dotted blue lines).

Fig. 17: Variations in generated results from a single writer-character-DSD wct ,
achieved by sampling points from predicted MDN distributions.

where ∗ indicates predicted outputs by the decoder network.

Finally, the mixture density networks [10] (MDN) layer in our decoder makes
it possible for our model to generate varying samples even from the same writer-
character-DSD wct . Examples are shown in Figure 17.

H Character Encoder Function gθ

Next, we discuss in detail how the character matrix C is computed. First, we
convert each one-hot character vector ct in the sentence s into a 256 dimensional
vector crawt via a fully-connected layer gFC1

θ . Then, we feed this vector into LSTM
gLSTM
θ and receive outputs crawct of the same size. gLSTM

θ is designed to encode
temporal dependencies among characters. Then, we use a mapping function gFC2

θ

to transform the 256 × 1 vector into a 65, 536 dimensional vector, and finally

30 A. Kotani, S. Tellex, and J. Tompkin.

reshape the output vector to a 256× 256 matrix Cct . This process is as follows:

crawt = gFC1
θ (ct) (16a)

crawct = gLSTM
θ ([craw1 , ..., crawt]) (16b)

Cct = Reshape(gFC2
θ (crawct)) (16c)

The parameters in gFC2
θ take up about one third of total number of parameters

in our proposed model; this is expensive. However, using a fully-connected layer
allows each value in the output Cct to be computed from all values in the 256-
dimensional vector crawct . If each value in crawct represents some different information
about the character, then we intended to weight them 65, 536 times via distinct
mapping functions to create a matrix Cct . We leave the study of other possible
gθ architectures for future work.

I Segmentation Network kθ

We introduce an unsupervised training technique to segment sequential hand-
writing samples into characters without any human intervention. For comparison,
the existing state-of-the-art DeepWriting handwriting synthesis model [2] relies
on commercial software for character segmentation.

Our data samples for training arrive as stroke sequences and character strings,
with no explicit labeling on where one character ends and another begins within
the stroke sequence. As such, we train a segmentation network kθ to segment
sequential input data x into characters, and to predict end of character (eoc)
labels for each point in x. Relying on these predicted eoc labels, we can extract
wct from encoded x∗ and synthesize new samples with fdecθ .

To prepare the input data for training, we extract 23 features per point pt
in x, as is commonly used in previous work [19,29,31]. We feed these into a
bidirectional LSTM to output a probability distribution over all character classes.
From this output O of size (N,Q), where N is the input sequence length and
Q is the total number of characters, we compute a loss that is similar to a
connectionist temporal classification (CTC) loss [18]. As seen in Figure 18, we
make a slight modification in connections among nodes to adjust the change in
two domains: character recognition and segmentation. In the recognition task, the
blank character - was introduced to fill the gap between two character predictions
(e.g., a–b–b), but because our goal is to label each point in the input sequence with
a specific character in the corresponding sentence, we must avoid unnecessary
use of the blank character and instead predict actual characters (e.g., aaabbbb).
The only case where the blank character is needed in segmentation is when a
character is repeated in a sentence. To highlight the switch from the first b case
to the second b case, we use the - (e.g., aaabb-b). This slight modification in CTC
connections enables us to train our segmentation network in an unsupervised
manner, automatically label sequential handwriting data with characters and
identify eoc indices. Examples of segmentation are shown in Figure 19.

Generating Handwriting via Decoupled Style Descriptors 31

Fig. 18: Illustration of connections between temporal nodes. (Left) Original CTC
connections. (Right) Our design of CTC connections. The connections between
non-character nodes ‘-’ are prohibited (red arrows in the original). The shaded
nodes shows an example route for prediction.

J Detailed Training Procedure

A Ablation Study

In the main paper, we discussed three different ways to obtain wct : f
enc
θ , Method

α, and Method β. As we compute losses for each type, we conducted a simple
ablation study. First, removing Lα from the total loss will take away the ability
to generate handwriting samples from the mean writer-DSD w from the model
by construction. Similarly, excluding Lβ will disallow our model to synthesize a
new sample from saved writer-character-DSDs in the database D and only allow
it to generate from the mean w. It is clear that we need both types of losses, Lα

and Lβ , to have the current model capabilities.
However, eliminating Lfenc

θ
, the loss term for a method that uses the original

writer-character-DSD extracted from f encθ , does not change model dynamics.
Hence, we trained ablated models with modified loss functions that do not
include: 1) any terms related to f encθ (i.e., Lfenc

θ
, L

wct
α and L

wct
β), and 2) just

Lfenc
θ

. Figure 20 shows the training curve for word-level location losses L loc.

Removing Lfencθ
had significant influence on Method β locational loss, L loc

β

(standard: −3.213 vs. ablated: −1.811 after 250K training steps).
From this result, we assume that Lfenc

θ
works as a learning guideline for our

model, and speeds up the training. We analyze that this is because having Lfenc
θ

in our loss function encourages accurate learning for our decoder function fdecθ . In
this setting, the function fθ is indeed an autoencoder, and the decoder is trained
to restore x from its encoded representation, writer-character-DSDs. This will

32 A. Kotani, S. Tellex, and J. Tompkin.

Fig. 19: Segmentation results. A) in handwriting image format. Different colors
indicate different character segments. B) in CTC best route format. C) enlarged
figure of the route path. D) More results.

increase the decoder performance, and as the decoder accuracy is maintained,
the model can focus on learning the encoder problem, which is reconstruction of
writer-character-DSDs by Method α and β.

The reconstruction losses, L
wct
α and L

wct
β , by contrast, did not affect the

learning speed. We assume this can also be addressed by the same reason. Even
if we constrained the reconstructed DSDs by Method α and β to minimize their
differences with the original DSDs from f encθ , those constraints will penalize the
encoder more than they do for the decoder. To effectively train the decoder
function, our model thus requires the loss term Lfenc

θ
.

B Hyperparameters

To train our synthesis model, we use Adam [32] as our optimizer and set the
learning rate to 0.001. We also clip the gradients in the range [−10.0, 10.0] to
enhance learning stability. We use 5 sentence-level samples (relevant word-level
and character-level samples are included as well) for each batch in training. We
use multi-stacked (3-layers) LSTMs for our recurrent layers.

K Dataset Specification and Collection Methodology

Our dataset considers the 86 characters: a space character ‘ ’, and the following
85 characters:

0123456789

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

!?"’*+-=:;,.<>\/[]()#$%&

Generating Handwriting via Decoupled Style Descriptors 33

Fig. 20: Effects of Lfenc
θ

on training word-level location loss L word
loc . Transparent

lines show the actual data points, and solid lines show smoothed training curves.
Full-Stacked model is trained with the full loss, while No-f model’s loss function
does not include Lfenc

θ
. Further, No-f-rec model does not have Lfenc

θ
, L

wct
α ,

L
wct
β terms in its loss function. Test data is 20 held-out writers.

We collected handwriting samples from 170 writers using Amazon Mechanical
Turk. An example screen of our data collection website is shown in Figure 21.
Writing arbitrary words is laborious, and so we set a data-collection time limit of
60 minutes. Given this, it was necessary to select a subset of English words for
our data collection.

A Defining Target Words and Sentences

We analyzed the Gutenberg Dataset [35], which is a large corpus of 3, 036
English books. These documents use 99 characters in total, including alphabetical,
numerical, and special characters. In total, 5, 831 character pairs appear in the
dataset, while theoretically there are 9, 702 possible character pairs (99×99−99).
By counting the number of occurrences of each character pair, we constructed an
ordered list of character pairs that is then used to score 2, 158, 445 distinctive
words within the corpus.

The first word to be selected from the corpus was therefore, which includes
the two most frequently used character pairs th and he. In fact, the character
pairs within therefore appear so frequently that they altogether cover 13.5% of
all character pair occurrences.

After adding therefore to the list of words for experiments, we then add
additional words iteratively: we re-calculate scores for all other words with
updated scores of character pairs (i.e., after adding therefore, the pairs th and he
will not have high scores in future iterations). This process was repeated until
the words in the list exceeded 99% coverage of all character pair occurrences.

Then, we constructed sentences from these high-scored words. Each sentence
was less than 24 characters length to meet a space constraint due to our experiment

34 A. Kotani, S. Tellex, and J. Tompkin.

Fig. 21: Example screen of our data collection website. Each drawing box is 750
pixels × 120 pixels, and we provide a baseline at 80 pixels from the top.

setup. We asked tablet owners to write the prompted sentences using their stylus
within the bounding box (750 pixels × 120 pixels), and 24 characters was the
maximum number of characters that could reasonably fit into the region.

We also added several pangram sentences as well as repeated characters
sentences (e.g., aaa bbb ccc ddd), and that led to our basic list of 192 sentences.
These sentences use 86 unique characters, instead of 99 available characters, due
to our decision to ignore rarely used special characters. They also use 1, 182
distinct character pairs which cover 99.5% of all character pair occurrences
(1, 158, 051, 103/1, 164, 429, 941). The remaining pairs could have been ignored,
yet because that 0.5% was still large—6, 378, 838 occurrences by 4, 649 character
pairs—we decided to create a list of extra words with less frequently used character
pairs, distribute them to 170 writers. Thus, each writer creates some rarer data
that varies for each writer, in addition to their basic 192 sentences. As a result,
we achieve 99.9% coverage with 3, 894 character pairs.

B Writer Behavior

Handwriting dataset collection is complex for various reasons, and in general
creating a clean dataset without heuristic or manual cleaning is difficult. In our
collection process, sometimes a writer would realizes that s/he missed certain
characters in the sentence after finishing the line, and so would go back to
the location to add new strokes. These ‘late’ character additions are accidental
rather than intentional. In contrast, conventional online handwriting recognition
literature defines delayed strokes, where in cursive writing the horizontal bar of t
and f, or the dot of i and j, are often added after a writer finished the current
word. To distinguish between these two cases of late characters and delayed
strokes, we disregard the temporal order of each stroke in a sample and reorder
them from left to right if the leftmost point in a stroke is to the right of the
rightmost point in another stroke. In this way, accidental omissions are removed.

Generating Handwriting via Decoupled Style Descriptors 35

Further, although we strongly advised participants to erase previous lines if
they made mistakes, most participants either ignored this and left mistakes in,
or scribbled over those regions to block them out. Writers also missed characters
from the prompted sentences, and not a single participant (out of 170 writers)
succeeded in near-perfect writing of 192 sentences. As our segmentation network
(Sec. I) assumes that each drawing sample is labeled with the accurate character
sequence, missed characters can directly affect the performance of segmentation.
Hence, we manually corrected these instances throughout our dataset.

