Skip to main content

DataMix: Efficient Privacy-Preserving Edge-Cloud Inference

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12356))

Included in the following conference series:

Abstract

Deep neural networks are widely deployed on edge devices (e.g., for computer vision and speech recognition). Users either perform the inference locally (i.e., edge-based) or send the data to the cloud and run inference remotely (i.e., cloud-based). However, both solutions have their limitations: edge devices are heavily constrained by insufficient hardware resources and cannot afford to run large models; cloud servers, if not trustworthy, will raise serious privacy issues. In this paper, we mediate between the resource-constrained edge devices and the privacy-invasive cloud servers by introducing a novel privacy-preserving edge-cloud inference framework, DataMix. We off-load the majority of the computations to the cloud and leverage a pair of mixing and de-mixing operation, inspired by mixup, to protect the privacy of the data transmitted to the cloud. Our framework has three advantages. First, it is privacy-preserving as the mixing cannot be inverted without the user’s private mixing coefficients. Second, our framework is accuracy-preserving because our framework takes advantage of the space spanned by images, and we train the model in a mixing-aware manner to maintain accuracy. Third, our solution is efficient on the edge since the majority of the workload is delegated to the cloud, and our mixing and de-mixing processes introduce very few extra computations. Also, our framework introduces small communication overhead and maintains high hardware utilization on the cloud. Extensive experiments on multiple computer vision and speech recognition datasets demonstrate that our framework can greatly reduce the local computations on the edge (to fewer than 20% of FLOPs) with negligible loss of accuracy and no leakages of private information.

Z. Liu and Z. Wu—Indicates equal contributions; order determined by a coin toss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: CCS (2016)

    Google Scholar 

  2. Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy preserving data mining algorithms. In: PODS (2001)

    Google Scholar 

  3. Agrawal, R., Srikant, R.: Privacy-Preserving Data Mining. In: SIGMOD (2000)

    Google Scholar 

  4. Bitouk, D., Kumar, N., Dhillon, S., Belhumeur, P.N., Nayar, S.K.: Face Swapping: Automatically Replacing Faces in Photographs. In: SIGGRAPH (2008)

    Google Scholar 

  5. Chen, J., Konrad, J., Ishwar, P.: VGAN-based image representation learning for privacy-preserving facial expression recognition. In: CVPRW (2018)

    Google Scholar 

  6. Chen, J., Wu, J., Konrad, J., Ishwar, P.: Semi-coupled two-stream fusion ConvNets for action recognition at extremely low resolutions. In: WACV (2017)

    Google Scholar 

  7. Chou, E., et al.: Privacy-preserving action recognition for smart hospitals using low-resolution depth images. In: NeurIPS Workshop (2018)

    Google Scholar 

  8. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or -1. arXiv (2016)

    Google Scholar 

  9. Dwork, C.: Differential privacy: a survey of results. In: TAMC (2008)

    Google Scholar 

  10. Gholami, A., et al.: SqueezeNext: hardware-aware neural network design. In: CVPR Workshop (2018)

    Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  12. Gross, R., Airoldi, E., Malin, B., Sweeney, L.: Integrating utility into face de-identification. In: Privacy Enhancing Technologies (2005)

    Google Scholar 

  13. Gross, R., Sweeney, L., Cohn, J., De la Torre, F., Baker, S.: Face de-identification. In: Senior, A. (ed.) Protecting Privacy in Video Surveillance. Springer, London (2009). https://doi.org/10.1007/978-1-84882-301-3_8

    Chapter  Google Scholar 

  14. Gross, R., Sweeney, L., De La Torre, F., Baker, S.: Semi-supervised learning of multi-factor models for face de-identification. In: CVPR (2008)

    Google Scholar 

  15. Gross, R., Sweeney, L., De la Torre, F., Baker, S.: Model-based face de-identification. In: CVPRW (2006)

    Google Scholar 

  16. Han, H., Jain, A., Wang, F., Shan, S., Chen, X.: Heterogeneous face attribute estimation: a deep multi-task learning approach. In: TPAMI (2018)

    Google Scholar 

  17. Han, S., Mao, H., Dally, W.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. In: ICLR (2016)

    Google Scholar 

  18. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural networks. In: NIPS (2015)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  20. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., Han, S.: AMC: AutoML for model compression and acceleration on mobile devices. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 815–832. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_48

    Chapter  Google Scholar 

  21. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: ICCV (2017)

    Google Scholar 

  22. Howard, A., et al.: Searching for MobileNetV3. arXiv (2019)

    Google Scholar 

  23. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv (2017)

    Google Scholar 

  24. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W., Keutzer, K.: SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and<0.5MB Model Size. arXiv (2016)

    Google Scholar 

  25. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  26. Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: KDD (2002)

    Google Scholar 

  27. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. In: BMVC (2014)

    Google Scholar 

  28. Jourabloo, A., Yin, X., Liu, X.: Attribute preserved face de-identification. In: ICB (2015)

    Google Scholar 

  29. Kim, T.H., Kang, D., Pulli, K., Choi, J.: Training with the invisibles: obfuscating images to share safely for learning visual recognition models. arXiv (2019)

    Google Scholar 

  30. Krishnamoorthi, R.: Quantizing deep convolutional networks for efficient inference: a whitepaper. arXiv (2018)

    Google Scholar 

  31. Leroux, S., Verbelen, T., Simoens, P., Dhoedt, B.: Privacy aware offloading of deep neural networks. In: ICML Workshop (2018)

    Google Scholar 

  32. Li, M., Lai, L., Suda, N., Chandra, V., Pan, D.Z.: PrivyNet: a flexible framework for privacy-preserving deep neural network training. arXiv (2017)

    Google Scholar 

  33. Li, T., Lin, L.: AnonymousNet: natural face de-identification with measurable privacy. In: CVPR Workshop (2019)

    Google Scholar 

  34. Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: ICCV, pp. 7083–7093 (2019)

    Google Scholar 

  35. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: ICCV (2017)

    Google Scholar 

  36. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)

    Google Scholar 

  37. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  38. Newton, E.M., Sweeney, L., Malin, B.: Preserving privacy by de-identifying face images. In: TKDE (2005)

    Google Scholar 

  39. Oh, S.J., Benenson, R., Fritz, M., Schiele, B.: Faceless person recognition: privacy implications in social media. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 19–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_2

    Chapter  Google Scholar 

  40. Oh, S.J., Fritz, M., Schiele, B.: Adversarial image perturbation for privacy protection: a game theory perspective. In: ICCV (2017)

    Google Scholar 

  41. Osia, S.A., et al.: A hybrid deep learning architecture for privacy-preserving mobile analytics. In: TKDD (2017)

    Google Scholar 

  42. Osia, S.A., Taheri, A., Shamsabadi, A.S., Katevas, K., Haddadi, H., Rabiee, H.R.: Deep Private-feature extraction. In: TKDE (2018)

    Google Scholar 

  43. Raval, N., Machanavajjhala, A., Cox, L.P.: Protecting visual secrets using adversarial nets. In: CVPRW (2017)

    Google Scholar 

  44. Ren, Z., Lee, Y.J., Ryoo, M.S.: Learning to anonymize faces for privacy preserving action detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 639–655. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_38

    Chapter  Google Scholar 

  45. Ryoo, M.S., Kim, K., Yang, H.J.: Extreme low resolution activity recognition with multi-siamese embedding learning. In: AAAI (2018)

    Google Scholar 

  46. Ryoo, M.S., Rothrock, B., Fleming, C., Yang, H.J.: Privacy-preserving human activity recognition from extreme low resolution. In: AAAI (2017)

    Google Scholar 

  47. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: CVPR (2018)

    Google Scholar 

  48. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: CCS (2015)

    Google Scholar 

  49. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  50. So, D., Le, Q., Liang, C.: The evolved transformer. In: ICML (2019)

    Google Scholar 

  51. Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. (2002)

    Google Scholar 

  52. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. ICLR (2020)

    Google Scholar 

  53. Tramèr, F., Boneh, D.: Slalom: fast, verifiable and private execution of neural networks in trusted hardware. In: ICLR (2019)

    Google Scholar 

  54. Wang, J., Zhang, J., Bao, W., Zhu, X., Cao, B., Yu, P.S.: Not just privacy: improving performance of private deep learning in mobile cloud. In: KDD (2018)

    Google Scholar 

  55. Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: HAQ: hardware-aware automated quantization with mixed precision. In: CVPR (2019)

    Google Scholar 

  56. Warden, P.: Speech commands: a dataset for limited-vocabulary speech recognition. arXiv (2018)

    Google Scholar 

  57. Wu, Z., Liu, Z., Lin, J., Lin, Y., Han, S.: Lite transformer with long-short range attention. In: ICLR (2020)

    Google Scholar 

  58. Wu, Z., Wang, Z., Wang, Z., Jin, H.: Towards privacy-preserving visual recognition via adversarial training: a pilot study. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 627–645. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_37

    Chapter  Google Scholar 

  59. Xie, Q., Hovy, E., Luong, M.T., Le, Q.V.: Self-training with noisy student improves ImageNet classification. In: arXiv (2019)

    Google Scholar 

  60. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: MIXUP: beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  61. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: CVPR (2018)

    Google Scholar 

  62. Zhu, C., Han, S., Mao, H., Dally, W.: Trained ternary quantization. In: ICLR (2017)

    Google Scholar 

Download references

Acknowledgements

We thank MIT-IBM Watson AI Lab, MIT Quest for Intelligence, Samsung and Facebook for supporting this research. We thank AWS Machine Learning Research Awards for providing the computation resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Han .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 88350 KB)

Supplementary material 2 (pdf 16944 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Wu, Z., Gan, C., Zhu, L., Han, S. (2020). DataMix: Efficient Privacy-Preserving Edge-Cloud Inference. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12356. Springer, Cham. https://doi.org/10.1007/978-3-030-58621-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58621-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58620-1

  • Online ISBN: 978-3-030-58621-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics