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Abstract. In many fields, self-supervised learning solutions are rapidly
evolving and filling the gap with supervised approaches. This fact oc-
curs for depth estimation based on either monocular or stereo, with
the latter often providing a valid source of self-supervision for the for-
mer. In contrast, to soften typical stereo artefacts, we propose a novel
self-supervised paradigm reversing the link between the two. Purposely,
in order to train deep stereo networks, we distill knowledge through a
monocular completion network. This architecture exploits single-image
clues and few sparse points, sourced by traditional stereo algorithms,
to estimate dense yet accurate disparity maps by means of a consen-
sus mechanism over multiple estimations. We thoroughly evaluate with
popular stereo datasets the impact of different supervisory signals show-
ing how stereo networks trained with our paradigm outperform existing
self-supervised frameworks. Finally, our proposal achieves notable gen-
eralization capabilities dealing with domain shift issues. Code available
at https://github.com/FilippoAleotti/Reversing.

Keywords: stereo matching, self-supervised learning, distillation

1 Introduction

Among techniques to infer depth, stereo is an effective and well-established strat-
egy to accomplish this task deploying two cameras. Stereo methods, at first,
compute disparity by matching corresponding points across the two images and
then recover depth through triangulation, determining the parameters of the
stereo rig beforehand with calibration. Nowadays, deep learning architectures
have outperformed traditional methods by a large margin in terms of accuracy
on standard benchmarks. Nonetheless, state-of-the-art solutions require a large
amount of data and ground-truth labels to learn how to perform matching, i.e.
find in the other view corresponding pixels. The advent of self-supervised so-
lutions based on image reprojection overcomes this limitation at the cost of
weak performance in presence of occluded and texture-less regions, i.e. where
the matching does not occur.
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In recent years, single-image depth estimation methods, in general up to a
scale factor, gained ever-increasing attention. In this field, despite the ill-posed
nature of the problem, deep learning architectures achieved outstanding results
as reported in the literature. By construction, a monocular method does not infer
depth by matching points between different views of the same scene. Therefore,
compared to stereo approaches, monocular ones infer depth relying on different
cues and thus potentially not affected by some inherent issues of stereo, such
as occlusions. Even if supervision is sourced from stereo images [9], a set of
practices suited for the specific monocular task allow networks to avoid undesired
artifacts in correspondence of occlusions [10]. Starting from these observations,
we argue that a single image method could potentially strengthen a stereo one,
especially in occluded areas, but it would suffer the inherent scale factor issue.
Purposely, in this paper we prove that traditional stereo methods and monocular
cues can be effectively deployed jointly in a monocular completion network able
to alleviate both problems, and thus beneficial to obtain accurate and robust
depth predictions.

Our contributions can be summarized as follows: i) A new general-purpose
methodology to source accurate disparity annotations in a self-supervised man-
ner given a stereo dataset without additional data from active sensors. To the
best of our knowledge, our proposal is the first leveraging at training time a novel
self-supervised monocular completion network aimed specifically at ameliorate
annotations in critical regions such as occluded areas. ii) In order to reduce as
much as possible inconsistent disparity annotations, we propose a novel con-
sensus mechanism over multiple predictions exploiting input randomness of the
monocular completion network. iii) The generated proxies are dense and accu-
rate even if we do not rely on any active depth sensor (e.g. LiDAR). iv) Our
proxies allow for training heterogeneous deep stereo networks outperforming self-
supervised state-of-the-art strategies on KITTI. Moreover, the networks trained
with our method show higher generalization to unseen environments.

2 Related work

In this section, we review the literature relevant to our work.
Traditional and Deep Stereo. Depth from stereo images has a longstand-

ing history in computer vision and several hand-designed methods based on some
of the steps outlined in [34] have been proposed. For instance, a fast yet noisy so-
lution can be obtained by simply matching pixels according to a robust function
[56] over a fixed window (Block Matching), while a better accuracy-speed trade-
off is obtained by running Semi-Global Matching (SGM) [13]. Recently, deep
learning proved unpaired performance at tackling stereo correspondence. Start-
ing from matching cost computation [57,3,26], deep networks at first replaced
single steps in the pipeline [34], moving then to optimization [36], disparity selec-
tion [37] and refinement [8]. The first end-to-end model was proposed by Mayer
et al. [28], deploying a 1D correlation layer to encode pixel similarities and feed
them to a 2D network. In alternative, Kendall et al. [17] stacked features to build
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a cost volume, processed by 3D convolutions to obtain disparity values through
a differentiable argmin operation. These two pioneering works paved the way for
more complex and effective 2D [30,23,15] and 3D [55,1,58] architectures. Finally,
multi-task frameworks combining stereo with semantic segmentation [53,5] and
edge detection [40,39] proved to be effective as well. On the other hand, deep
learning stereo methods able to learn directly from images largely alleviate the
need for ground-truth labels. These have been used either for domain adaptation
or for training from scratch a deep stereo network. In the former case, Tonioni
et al. [41,42] leveraged traditional algorithms and confidence measures, in [44]
developed a modular architecture able to be updated in real time leveraging
image reprojection and in [43] made use of meta-learning for the same purpose.
In the latter, an iterative schedule to train an unsupervised stereo CNN has
been proposed in [61], Godard et al. [9] trained a naive stereo network using
image reprojection. Zhong et al. first showed the fast convergence of 3D net-
works when trained with image reprojection [59], then adopted a RNN LSTM
network using stereo video sequences [60]. Wang et al. [49] improved their stereo
network thanks to a rigid-aware direct visual odometry module, while in [20]
the authors exploited the relationship between optical flow and stereo. Joung
et al. [16] trained a network from scratch selecting good matches obtained by
a pretrained model. Finally, in [38] a semi-supervised framework leveraging raw
LiDAR and image reprojection has been proposed.

Monocular depth. Single image depth estimation is attractive, yet an ill-
posed problem. Nonetheless, modern deep learning strategies showed impressive
performance up to a scale factor. The first successful attempt in this field followed
a supervised paradigm [21,24,6]. Seminal works switching to self-supervision are
[9] and [62], respectively requiring stereo pairs and monocular video sequences
in place of ground-truth depth labels. Both methods paved the way for self-
supervised monocular methods [32,10]. In recent works [45,50], proxies labels
have been distilled from traditional stereo algorithms [13] in order to strengthen
the supervision from stereo pairs.

In parallel to our work, Watson et al. [51] used monocular depth networks to
train stereo models from single images through view synthesis.

Depth completion. Finally, we mention methods that aim at filling a sparse
or low resolution depth map, traditionally output of a LiDAR, to obtain dense
estimates. Two main categories exist, respectively based on depth only [25,19,7]
or guided by images [54,14,48,4,27,2]. Although inspired by these works, our
strategy is not comparable with them since processing very different input cues
and deployed for other purposes.

3 Method

This section describes in detail our strategy, that allows us to distill highly
accurate disparity annotations for a stereo dataset made up of raw rectified
images only and then use them to supervise deep stereo networks. It is worth
noting that, by abuse of notation, we use depth and disparity interchangeably
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Fig. 1. Overview of our methodology. 1© Sparse disparity points from a traditional
stereo method are given as input to a monocular completion network (MCN). Then,
in 2© we leverage MCN to distill accurate proxies through the proposed consensus
mechanism. Such labels guide the training of a deep stereo network.

although our proxy extraction method works entirely in the disparity domain.
For our purposes, we rely on two main stages, as depicted in Fig. 1: 1) we train
a monocular completion network (MCN) from sparse disparity points sourced
by traditional stereo methods and 2) we train deep stereo networks using highly
reliable points from MCN, selected by a novel consensus mechanism.

3.1 Monocular Completion Network (MCN)

Stereo algorithms struggle on occluded regions due to the difficulties to find
correspondences between images. On the contrary, monocular methods do not
rely on matching and thus, they are potentially not affected by this problem. In
this stage, our goal is to obtain a strong guidance even on occluded areas relying
on a monocular depth network. However, monocular estimates intrinsically suffer
the scale factor ambiguity due to the lack of geometric constraints. Therefore,
since stereo pairs are always available in our setup, we also leverage on reliable
sparse disparity input points from traditional stereo algorithms in addition to
the reference image. Thanks to this combination, MCN is able to predict dense
depth maps preserving geometrical information.

Reliable disparity points extraction. At first, we rely on a traditional
stereo matcher S (e.g. [56]) to obtain an initial disparity map D from a given
stereo pair (IL, IR) as

D = S(IL, IR) (1)

However, since such raw disparity map contains several outliers, especially on
ill-posed regions such as occlusions or texture-less areas as it can be noticed in
Fig. 2, a filtering strategy F (e.g. [46]) is applied to discard spurious points

D′ = F(S(IL, IR)) (2)

By doing so, only a subset D′ of highly reliable points is preserved from D
at the cost of a sparser disparity map. However, most of them do not belong
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Fig. 2. Disparity map filtering. From left to right, reference image from KITTI, the
noisy disparity map computed by [56] and the outcome of filtering [46].

to occluded regions thus not enabling supervision on such areas. This can be
clearly perceived observing the outcome of a filtering strategy in Fig. 2.

Monocular Disparity Completion. Given D′, we deploy a monocular
completion network, namely MCN, in order to obtain a dense map DO. We self-
supervise MCN from stereo and, as in [10], to handle occlusions we horizontally
flip (IL, IR) at training time with a certain probability without switching them.
Consequently, occluded regions (e.g. the left border of objects) are randomly
swapped with not-occluded areas (e.g. the right borders), preventing to always
expect high error on left and low error on right borders, thus forcing the network
to handle both. This strategy turns out ineffective in case of self-supervised
stereo, since after horizontal flip the stereo pair have to be switched in order to
keep the same search direction along the epipolar line, thus making occlusions
occur in the same regions (see the supplementary material for details). Even
if this technique helps to alleviate errors in occluded regions, a pure monocular
network struggles compared to a stereo method at determining the correct depth.
This is well-known in the literature and shown in our experiments as well. Thus,
we adopt a completion approach leveraging sparse reliable points provided by
a traditional stereo method constraining the predictions to be properly scaled.
Given the set of filtered points, only a small subset D′′, with ||D′′|| � ||D′||,
is randomly selected and used as input, while D′ itself is used for supervision
purposes. The output of MCN is defined as

DO = MCN(IL,D′′ p�1←−−− (D′)) (3)

with x
p←− (y) a random uniform sampling function extracting x values out of

y per-pixel values with probability p. This sampling is crucial to both improve
MCN accuracy, as shown in our experiments, as well as for the final distillation
step discussed in the remainder. Once trained, MCN is able to infer scaled dense
disparity maps DO, as can be perceived in Fig. 3. Looking at the rightmost and
central disparity maps, we can notice how the augmentation protocol enables
to alleviate occlusion artifacts. Moreover, our overall completion strategy, com-
pared to the output of the monocular network without disparity seeds (leftmost
and center disparity maps), achieves much higher accuracy as well as correctly
handles occlusions. Therefore, we effectively combine stereo from non-occluded
regions and monocular prediction in occluded areas. Finally, we point out that
we aim at specializing MCN on the training set to generate labels on it since its
purpose is limited to distillation.
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Fig. 3. Occlusion handling and scale recovery. The first row depicts the reference
image from KITTI, the ground-truth and the disparity map by [56] filtered with [46].
In the middle, from left to right the output of monocular depth network [45] trained
without occlusion augmentation, the same network using the occlusion augmentation
and our MCN. Last row shows the corresponding error maps. Best viewed with colors.

3.2 Proxy Distillation for Deep Stereo

Eventually, we leverage the trained MCN to distill offline proxy labels benefi-
cial to supervise stereo networks. However, such data might still contain some
inconsistent predictions, as can be perceived in the rightmost disparity map of
Fig. 3. Therefore, our goal is to discard them, keeping trustworthy reliable depth
estimates to train deep stereo networks.

Consensus mechanism and distillation. To this aim, given an RGB im-
age I and the relative D′, we perform N inferences of MCN by feeding it with
D′′i and Ĩi, with i ∈ [1, N ]. Respectively, D′′i is sampled from D′ according to
the strategy introduced in Sec. 3.1 and Ĩi is obtained through random augmen-
tation (explained later) applied to I. This way, we exploit consistencies and
contradictions among multiple DO

i to obtain reliable proxy labels DP, defined as

DP σ2({DO
i }

N
i=1)<γ←−−−−−−−−−− µ({DO

i }
N
i=1) (4)

where x
σ2(y)<γ←−−−−− µ(y) is a function that, given N values y for the same pixel,

samples the mean value µ(y) only if the variance σ2(y) is smaller γ. Being dis-
tillation performed offline, this step does not need to be differentiable.

Fig. 4 shows that such a strategy allows us to largely regularize DP compared
to DO, preserving thin structures, e.g. the poles on the right side, yet achieving
high density. It also infers significant portions of occluded regions compared to
proxies sourced from traditional methods (e.g. SGM).

Deep Stereo Training. Once highly accurate proxy labels DP are available
on the same training set, we exploit them to train deep stereo networks in a
self-supervised manner. In particular, a regression loss is used to minimize the
difference between stereo predictions and DP.
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Fig. 4. Proxy distillation. The first row depicts, from left to right, the reference
image, the disparity map computed by a single inference of MCN and the one filtered
and regularized using our consensus mechanism. The second row shows the reference
image, the disparity map generated by SGM [13] filtered using the left-right consistency
check strategy and our disparity map. Images from KITTI.

4 Experiments

In this section, we first introduce the datasets used in this work, then we thor-
oughly evaluate our proposal, proving that sourcing labels with a monocular
completion approach is beneficial to train deep stereo networks.

4.1 Datasets

KITTI. The KITTI (K) dataset [29] contains 61 scenes (about 42,382 stereo
pairs), with a typical image size of 1242×375, captured using a stereo rig mounted
on a moving car equipped with a LiDAR sensor. We conducted experiments using
all of the raw KITTI images for training excluding scenes from the KITTI 2015
training set containing 200 ground-truth images used for testing purposes. This
results in a training split containing 29K rectified stereo images.

DrivingStereo. DrivingStereo [52] (DS) is a recent large-scale dataset de-
picting autonomous driving scenarios in various weather conditions, containing
more than 180k stereo pairs with high-quality disparity annotations generated by
means of a model-guided filtering method from multi-frame LiDAR points. For
our purposes, we split the dataset into a training set and a testing set consisting
of 97681 and 1k images respectively.

Middlebury v3. The Middlebury v3 dataset [33] provides 15 stereo pairs
depicting indoor scenes, with high precision and dense ground-truth disparities
obtained using structured light. We rely on this dataset for generalization pur-
poses, using images and the ground-truth disparity maps at quarter resolution.

ETH3D. The ETH3D high-resolution dataset [35] depicts heterogeneous
scenes consisting of 27 grayscale stereo pairs with ground-truth depth values. As
for Middlebury v3, we run generalization experiments on it.
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4.2 Implementation Details

Traditional stereo methods. We consider two main non-learning based
solutions, characterized by different peculiarities, to generate accurate sparse
disparity points from a rectified stereo pair. In particular, we use the popular
semi-global matching algorithm SGM [13], exploiting the left-right consistency
check (LRC) to remove wrong disparity assignments, and the WILD strategy
proposed in [46] that selects highly reliable values from the maps computed by
the local algorithm Block-Matching (BM) [56] exploiting traditional confidence
measures. We refer to these methods (i.e. stereo method followed by a filtering
strategy) as SGM/L and BM/W, respectively.

Monocular Completion Network. We adopt the publicly available self-
supervised monocular architecture monoResMatch [45] trained with the super-
vision of disparity proxy labels specifically suited for our purposes. We modify
the network to exploit accurate sparse annotations as input by concatenating
them with the RGB image. We set the random sampling probability in Eq. 3 as
p = 1

1000 . In our experiments, we train from scratch the MCN network following
the same training protocol defined in [45] except for the augmentation procedure
which includes the flipping strategy (with 0.25 probability) aimed at handling
occlusion artifacts [10]. Instead, we empirically found out that generating DO

using a larger set of points helps to achieve more accurate predictions at infer-
ence time. In particular, we fix p = 1

20 and p = 1
200 for BM/W and SGM/L

respectively. Finally, for the consensus mechanism, we fix N = 50, the threshold
γ = 3 and apply for each Ii color augmentation and random horizontal flip (with
0.5 probability). Please see the supplementary material for more details about
hyper-parameters.

Stereo networks. We considered both 2D and 3D deep stereo architectures,
ensuring a comprehensive validation of our proposal. In particular, we designed a
baseline architecture, namely Stereodepth, by extending [10] to process stacked
left and right images, and iResNet [23] as examples of the former case, while
PSMNet [1] and GWCNet [11] as 3D architectures. At training time, the models
predict disparities DS at multiple scales in which each intermediate prediction is
upsampled at the input resolution. A weighted smooth L1 loss function (the lower
the scale, the lower the weight) minimizes the difference between DS and the
disparity provided by the proxy DP considering only valid pixels, using Adam
[18] as optimizer (β1 = 0.9 and β2 = 0.999). We adopt the original PyTorch
[31] implementation of the networks if available. Moreover, all the models have
been trained to fit a single Titan X GPU. More details are provided in the
supplementary material.

4.3 Evaluation of Proxy Label Generators

At first, we first evaluate the accuracy of proxies produced by our self-supervised
approach with respect to traditional methods. We consider both D1 and EPE,
computed on disparities, as error metrics on both non-occluded (Noc) and all
regions (All). In particular, D1 represents the percentage of pixels greater than
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Method Configuration Statistics Noc All
Source Filter A R C Density(%) Overlap(%) D1(%) EPE D1(%) EPE

MONO monoResMatch - - - - 100.0 100.0 26.63 2.96 27.00 2.99

BM BM - - - - 100.0 100.0 34.48 16.14 35.46 16.41
SGM SGM - - - - 100.0 100.0 6.65 1.67 8.12 2.16

BM/L BM LRC - - - 57.89 62.09 16.09 6.42 16.22 6.46
SGM/L SGM LRC - - - 86.47 92.28 3.99 1.00 4.01 1.00
SGM/L(hole-filling) SGM LRC - - - 100.0 100.0 6.56 1.34 7.68 1.57
BM/W BM WILD - - - 12.33 10.43 1.33 0.81 1.35 0.81

MCN-SGM/L SGM LRC - - - 100.0 100.0 6.36 1.27 7.80 1.50
MCN-SGM/L-R SGM LRC - X - 100.0 100.0 5.28 1.13 5.73 1.21
MCN-SGM/L-AC SGM LRC X - X 95.36 97.36 5.58 1.17 5.58 1.15
MCN-SGM/L-RC SGM LRC - X X 93.50 96.32 2.95 0.86 3.14 0.89
MCN-SGM/L-ARC SGM LRC X X X 92.53 95.76 2.78 0.84 2.92 0.86

MCN-BM/W BM WILD - - - 100.0 100.0 11.86 1.93 12.50 2.03
MCN-BM/W-R BM WILD - X - 100.0 100.0 6.79 1.40 7.11 1.45
MCN-BM/W-AC BM WILD X - X 91.45 94.76 8.36 1.53 8.64 1.57
MCN-BM/W-RC BM WILD - X X 91.12 95.28 3.79 0.95 4.03 1.0
MCN-BM/W-ARC BM WILD X X X 86.82 93.56 3.16 0.90 3.27 0.92

Table 1. Evaluation of proxy generators. We tested proxies generated by different
strategies on the KITTI 2015 training set.

3 or more than 5% of ground-truth, while EPE is obtained by averaging the ab-
solute difference between predictions and ground-truth values. In addition, the
density and the overlap with the ground-truth are reported to take into account
filtering strategies. Table 1 reports a thorough evaluation of different methodolo-
gies and filtering techniques. It can be noticed how BM and SGM have different
performances due to their complementarity (local vs semi-global), but containing
several errors. Filtering strategies help to remove outliers, at the cost of sparser
maps. Notice that restoring the full density through hole-filling [13] slightly im-
proves the results of SGM/L, but it is not meaningful for BM/W since filtered
maps are too sparse. Unsurprisingly, even if the depth maps produced by the
vanilla monoResMatch are fully-dense, they are not accurate due to its inher-
ent monocular nature. On the contrary, our monocular strategy MCN produces
dense yet accurate maps thanks to the initial disparity guesses, regardless the
sourcing stereo algorithm. Moreover, by applying Augmentation techniques (A)
on the RGB image or selecting Random input points (R), allow to increase vari-
ance and to exploit our Consensus mechanism (C) to filter out unreliable values,
thus achieving even better results. In fact, the consensus mechanism is able to
discard wrong predictions preserving high density, reaching best performances
when A and R are both applied. It is worth noting that if R is not performed,
the network is fed with all the available guesses both at training and testing
time, with remarkably worse results compared to configuration using random
sampling.

Disparity completion comparison. We validate our MCN combined with
the consensus mechanism comparing it to GuideNet [52], a supervised architec-
ture designed to generate high-quality disparity annotations exploiting multi-
frame LiDAR points and stereo pairs as input. Following [52], we measure the
valid pixels, correct pixels, and accuracy (i.e. 100.0 - D1) on 142 images of
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Model All Obj
Valid Correct Accuracy (%) Valid Correct Accuracy (%)

MCN-BM/W-ARC 11,551,461 11,247,966 97.37 1,718,267 1,642,872 95.61
MCN-SGM/L-ARC 12,201,763 11,860,923 97.20 1,788,154 1,672,222 93.52
MCN-LiDAR 11,773,897 11,636,787 98.83 1,507,222 1,459,726 96.84

GuideNet-LiDAR [52] † 2,973,882 2,915,110 98.02 221,828 210,912 95.07

Table 2. Model-guided comparison. Comparison between our self-supervised MCN
model and the supervised GuideNet stereo architecture [52] using 142 ground-truth
images of the KITTI 2015 training set. † indicates that the network requires LiDAR
points at training time. Accuracy is defined as 100-D1.

the KITTI 2015 training set. Table 2 clearly shows how MCN trained in a
self-supervised manner achieves comparable accuracy with respect to GuideNet-
LiDAR by exploiting sparse disparity estimates from both [46] and [13] but with
a significantly higher number of points, even on foreground regions (Obj). No-
tice that LiDAR indicates that the network is fed with LiDAR points filtered
according to [48]. To further demonstrate the generalization capability of MCN
to produce highly accurate proxies relying on points from heterogeneous sources,
we feed MCN-BM/W-R with raw LiDAR measurements. By doing so, our net-
work notably outperforms GuideNet in this configuration, despite it leverages a
single RGB image and has not been trained on LiDAR points.

4.4 Ablation study

In this subsection, we support the statement that a completion approach provides
a better supervision compared to traditional stereo algorithms. We first run
experiments on KITTI and then use our best configuration on DrivingStereo as
well, showing that it is effective on multiple large stereo datasets.

KITTI. For the ablation study, reported in Table 3, we consider both 3D
(PSMNet) and 2D (Stereodepth) networks featuring different computational
complexity. First, we train the baseline configuration of the networks, i.e. relying
image reconstruction loss functions (PHOTO) only as in [10] (see supplemen-
tary material for more details). Then, we leverage disparity values sourced by
traditional stereo algorithms in which outliers have been removed by the filtering
strategies adopted. Such labels provide a useful guidance for stereo networks and
allow to obtain more accurate models w.r.t. the baselines. Nonetheless, proxies
produced by MCN prove to be much more effective than traditional ones, im-
proving both D1 and EPE by a notable margin regardless the stereo algorithm
used to extract the input guesses. Moreover, it can be perceived that best results
are obtained when the complete consensus mechanism is enabled.

Finally, we rely also on filtered LiDAR measurements from [48] in order to
show differences with respect to supervision from active sensors. Noteworthy,
models trained using proxies distilled by ARC configuration of MCN prove to be
comparable or even better than using LiDAR with PSMNet and Stereodepth.
This behaviour can be explained due to a more representative and accurate
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Backbone Supervision Noc All
D1(%) EPE D1(%) EPE

Stereodepth PHOTO 6.50 1.30 7.12 1.40
PSMNet PHOTO 6.62 1.30 7.67 1.50

Stereodepth SGM-L 5.22 1.13 5.43 1.15
Stereodepth SGM/L(hole-filling) 6.06 1.16 6.38 1.21
Stereodepth BM/W 5.19 1.16 5.37 1.18
PSMNet SGM/L 5.46 1.19 5.61 1.21
PSMNet SGM/L(hole-filling) 6.06 1.23 6.32 1.26
PSMNet BM/W 6.89 1.59 7.03 1.60

Stereodepth MCN-SGM/L-R 5.11 1.11 5.37 1.14
Stereodepth MCN-BM/W-R 4.75 1.05 4.96 1.07
Stereodepth MCN-SGM/L-ARC 4.56 1.08 4.77 1.11
Stereodepth MCN-BM/W-ARC 4.21 1.06 4.39 1.07
PSMNet MCN-SGM/L-R 4.39 1.05 4.60 1.07
PSMNet MCN-BM/W-R 4.30 1.06 4.49 1.08
PSMNet MCN-SGM/L-ARC 4.02 1.05 4.20 1.07
PSMNet MCN-BM/W-ARC 3.68 0.99 3.85 1.01

Stereodepth LiDAR/SGM [48] 3.95 1.07 4.10 1.09
PSMNet LiDAR/SGM [48] 3.93 1.05 4.07 1.07

Table 3. Ablation study. We trained Stereodepth and PSMNet on KITTI using
supervision signals from different proxy generators and tested on KITTI 2015.

Fig. 5. Impact of proxies. From top, input stereo pair and ground-truth disparity
map, predictions by Stereodepth trained with SGM/L (left), LiDAR (center) and our
MCN-BM/W-ARC (right), error maps. Best viewed with colors.

supervision on occluded areas than traditional stereo and filtered LiDAR, thus
making the deep networks more robust even there, as clearly shown in Fig. 5.

DrivingStereo. We validate the proposed strategy also on DrivingStereo,
proving that our distillation approach is able to largely improve the performances
of stereo networks also on different datasets. In particular, in Table 4 we compare
Stereodepth and PSMNet errors when trained using MCN-BM/W-ARC method
(i.e. the best configuration on KITTI) with LiDAR and BM/W. Again, our
proposal outperforms BM/W, and reduces the gap with high quality LiDAR
supervision. Moreover, to verify generalization capabilities, we test on KITTI
also correspondent models trained on DrivingStereo, without performing any
fine-tuning (DS → K), and vice versa (K → DS). It can be noticed that the gap
between KITTI models (see Table 3) and those trained on DrivingStereo gets
smaller, proving that the networks are able to perform matching correctly even
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Source → Target

Backbone Supervision DS → DS K → DS DS → K
D1(%) EPE D1(%) EPE D1(%) EPE

Stereodepth BM/W 4.46 1.20 4.67 1.10 6.35 1.36
PSMNet BM/W 8.81 1.94 5.06 1.30 7.07 1.65

Stereodepth MCN-BM/W-ARC 2.47 0.94 2.97 0.96 5.64 1.22
PSMNet MCN-BM/W-ARC 1.87 0.86 2.32 0.88 5.16 1.17

Stereodepth LiDAR [52] 1.20 0.69 3.60 1.23 4.57 1.17
PSMNet LiDAR [52] 0.59 0.54 2.64 1.03 4.52 1.26

Table 4. Cross-validation analysis. We tested on the Target dataset models trained
on the Source one, leveraging different proxies. Notice that no fine-tuning on the target
dataset is performed in case of cross-validation.

Method RMSE RMSE log D1 (%) EPE δ <1.25 δ < 1.252 δ < 1.253

Godard et al.[9] (stereo) 5.742 0.202 10.80 - 0.928 0.966 0.980
Lai et al.[20] 4.186 0.157 8.62 1.46 0.950 0.979 0.990
Wang et al.[49] (stereo only) 4.187 0.135 7.07 - 0.955 0.981 0.990
Zhong et al.[59] 4.857 0.165 6.42 - 0.956 0.976 0.985
Wang et al.[49] (stereo videos) 3.404 0.121 5.94 - 0.965 0.984 0.992
Zhong et al.[60]* (3.176) (0.125) (5.14) - (0.967) - -

Ours (Stereodepth) 3.882 0.117 4.39 1.07 0.971 0.988 0.993
Ours (GWCNet) 3.614 0.111 3.93 1.04 0.974 0.989 0.993
Ours (IResNet) 3.464 0.108 3.88 1.02 0.975 0.988 0.993
Ours (PSMNet) 3.764 0.115 3.85 1.01 0.974 0.988 0.993

Table 5. Comparison with state-of-the-art. Results of different self-supervised
stereo networks on the KITTI 2015 training set with max depth set to 80m. Ours in-
dicates networks trained using MCN-BM/W-ARC labels. * indicates networks trained
on the same KITTI 2015 data, therefore not directly comparable with other methods.

in cross-validation scenario. We want to point out that this is due to our proxies,
as can be clearly perceived by looking at rows 1-2 vs 3-4 in Table 4.

4.5 Comparison with state-of-the-art

We compare our models with state-of-the-art self-supervised stereo methods. Ta-
ble 5 reports, in addition to D1 and EPE, also RMSE and RMSE log as depth
error measurements and δ < 1.25, δ < 1.252, δ < 1.253 accuracy metrics accord-
ing to [49,61]. Notice that some of these methods exploit additional information,
such as stereo videos [49] or adaptation strategies [60]. Proxies distilled by MCN-
BM/W-ARC can be successfully exploited using both 2D and 3D architectures,
enabling even the simplest 2D network Stereodepth to outperform all the com-
petitors. Our strategy is effective, allowing all the adopted backbones to improve
depth estimation by a notable margin on 6 metrics out of 7. Furthermore, we
test our PSMNet trained using MCN-BM/W-ARC proxies on the KITTI 2015
online benchmark, reporting the results in Table 6. Our model not only outper-
forms [13] and self-supervised competitors, as can be also perceived in Fig. 6,
but also supervised strategies [44,28] on both non-occluded and all areas.



Reversing the cycle 13

Models Dataset E2E D1-bg (%) D1-fg (%) D1-All (%) D1-Noc (%)

Zbontar and LeCun (acrt) [57] K - 2.89 8.88 3.89 3.33
Tonioni et al. [44] SF+K X 3.75 9.20 4.66 4.27
Mayer et al. [28] SF+K X 4.32 4.41 4.34 4.05
Chang and Chen [1] (PSMNet) SF+K X 1.86 4.62 2.32 2.14
Guo et al. [11] (GWCNet) SF+K X 1.74 3.93 2.11 1.92
Zhang et al. [58] SF+K X 1.48 3.46 1.81 1.63

Hirschmuller [12] - - 8.92 20.59 10.86 9.47
Zhou et al. [61] K X - - 9.91 -
Li and Yuan [22] K X 6.89 19.42 8.98 7.39
Tulyakov et al. [47] K - 3.78 10.93 4.97 4.11
Joung et al. [16] K - - - 4.47 -
Ours(PSMNet) K X 3.13 8.70 4.06 3.86

Table 6. KITTI 2015 online benchmark. We submitted PSMNet, trained on
MCN-BM/W-ARC labels, on the KITTI 2015 online stereo benchmark. In blue self-
supervised methods, while in red supervised strategies. We indicate with E2E archi-
tectures trained in an end-to-end manner, while SF on the SceneFlow dataset [28].

Fig. 6. KITTI 2015 online benchmark qualitatives. From left to right, the refer-
ence images, and the disparity maps computed by [13], [22] and our PSMNet trained
on MCN-BM/W-ARC labels.

4.6 Generalization

Finally, we show experiments supporting that supervision from our MCN-BM/W-
ARC labels achieves good generalization to different domains. To this aim, we
run networks trained on KITTI with our paradigm to estimate disparity on
Middlebury v3 and ETH3D, framing completely different environments.

Table 7 shows the outcome of this evaluation. We report, on top, the perfor-
mance of fully supervised methods trained on SceneFlow [28] and fine-tuned on
KITTI for comparison. On bottom, we report self-supervised frameworks trained
on the KITTI split from the previous experiments. All networks are transferred
without fine-tuning. Compared to existing self-supervised strategies (rows 4-6),
networks trained with our proxies achieves much better generalization on both
the datasets, performing comparable (or even better) with ground-truth super-
vised networks. Fig. 7 shows few examples from the two datasets, where the
structure of the scene is much better recovered when trained on our proxies.
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Method Training Middlebury v3 [33] ETH3D [35]
Dataset BAD2 (%) EPE BAD2 (%) EPE

Zhang et al.[58] SF+K 18.90 3.44 3.43 0.91
Chang and Chen [1] (PSMNet) SF+K 20.04 3.01 13.07 1.35
Guo et al.[11](GWCNet) SF+K 21.36 3.29 19.96 1.88

Wang et al.[49](stereo only) K 30.55 4.77 11.17 1.47
Wang et al.[49](stereo videos) K 31.63 5.23 19.59 1.97
Lai et al.[20](stereo videos) K 45.18 6.42 10.15 1.01
Ours(Stereodepth) K 27.43 3.72 6.94 1.31
Ours(iResNet) K 25.08 3.85 6.29 0.81
Ours(GWCNet) K 20.75 3.17 3.50 0.48
Ours(PSMNet) K 19.56 2.99 4.00 0.51

Table 7. Generalization test on Middlebury v3 and ETH3D. We evaluate
networks trained in self-supervised (blue) or supervised (red) fashion on KITTI (K)
and SceneFlow dataset (SF) [28].

Reference GT Wang [49] Lai [20] Ours [1] Zhang [58]

Fig. 7. Examples of generalization. First row shows disparity maps obtained on a
stereo pair from the Middlebury v3 dataset, while second from ETH3D. Methods in
blue are self-supervised, while in red are supervised with ground-truth.

5 Conclusion

This paper proposed a novel strategy to source reliable disparity proxy labels
in order to train deep stereo networks in a self-supervised manner leveraging
a monocular completion paradigm. Well-known stereo artefacts are soften by
learning on such labels, that can be obtained from large RGB stereo datasets in
which no additional depth information (e.g. LiDAR or active sensors) is avail-
able. Through an extensive ablation study on two popular stereo datasets, we
proved that our approach is able to infer accurate yet dense maps starting from
points sourced by (potentially) any traditional stereo algorithm, and that such
labels provide a strong supervision for both 2D and 3D stereo networks with
different complexity. We showed that these networks outperform state-of-the-
art self-supervised methods on KITTI by a large margin and are, in terms of
generalization on Middlebury v3 and ETH3D, comparable or even better than
ground-truth supervised stereo networks.
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Reversing the cycle 15

References

1. Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE (June 2018)

2. Chen, Y., Yang, B., Liang, M., Urtasun, R.: Learning joint 2d-3d representations for
depth completion. In: IEEE international conference on computer vision (ICCV).
pp. 10023–10032. IEEE (2019)

3. Chen, Z., Sun, X., Wang, L., Yu, Y., Huang, C.: A deep visual correspondence
embedding model for stereo matching costs. In: The IEEE International Conference
on Computer Vision (ICCV). IEEE (December 2015)

4. Cheng, X., Wang, P., Yang, R.: Depth estimation via affinity learned with convolu-
tional spatial propagation network. In: European Conference on Computer Vision
(ECCV). pp. 103–119. Springer (2018)

5. Dovesi, P.L., Poggi, M., Andraghetti, L., Mart́ı, M., Kjellström, H., Pieropan,
A., Mattoccia, S.: Real-time semantic stereo matching. In: IEEE International
Conference on Robotics and Automation (ICRA). IEEE (2020)

6. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using
a multi-scale deep network. In: Advances in neural information processing systems.
pp. 2366–2374. MIT Press (2014)

7. Eldesokey, A., Felsberg, M., Khan, F.S.: Propagating confidences through cnns for
sparse data regression. arXiv preprint arXiv:1805.11913 (2018)

8. Gidaris, S., Komodakis, N.: Detect, replace, refine: Deep structured prediction for
pixel wise labeling. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE (July 2017)

9. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth esti-
mation with left-right consistency. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE (2017)

10. Godard, C., Mac Aodha, O., Brostow, G.J.: Digging into self-supervised monocular
depth estimation. In: IEEE international conference on computer vision (ICCV).
IEEE (2019)

11. Guo, X., Yang, K., Yang, W., Wang, X., Li, H.: Group-wise correlation stereo
network. In: IEEE Conference on Computer Vision and Pattern Recognition. pp.
3273–3282. IEEE (2019)

12. Hirschmuller, H.: Accurate and efficient stereo processing by semi-global match-
ing and mutual information. In: Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on. vol. 2, pp. 807–814. IEEE,
IEEE (2005)

13. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual informa-
tion. IEEE TPAMI 30(2), 328–341 (2008)

14. Huang, Z., Fan, J., Cheng, S., Yi, S., Wang, X., Li, H.: Hms-net: Hierarchical multi-
scale sparsity-invariant network for sparse depth completion. IEEE Transactions
on Image Processing (2019)

15. Ilg, E., Saikia, T., Keuper, M., Brox, T.: Occlusions, motion and depth boundaries
with a generic network for optical flow, disparity, or scene flow estimation. In: 15th
European Conference on Computer Vision (ECCV). Springer (2018)

16. Joung, S., Kim, S., Park, K., Sohn, K.: Unsupervised stereo matching using confi-
dential correspondence consistency. IEEE Transactions on Intelligent Transporta-
tion Systems (2019)

17. Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P., Kennedy, R., Bachrach, A.,
Bry, A.: End-to-end learning of geometry and context for deep stereo regression.



16 F. Aleotti et al.

In: The IEEE International Conference on Computer Vision (ICCV). IEEE (Oct
2017)

18. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

19. Ku, J., Harakeh, A., Waslander, S.L.: In defense of classical image processing: Fast
depth completion on the cpu. In: 2018 15th Conference on Computer and Robot
Vision (CRV). pp. 16–22. IEEE, IEEE (2018)

20. Lai, H.Y., Tsai, Y.H., Chiu, W.C.: Bridging stereo matching and optical flow via
spatiotemporal correspondence. In: IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). IEEE (2019)

21. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth
prediction with fully convolutional residual networks. In: 3DV. IEEE (2016)

22. Li, A., Yuan, Z.: Occlusion aware stereo matching via cooperative unsupervised
learning. In: ACCV. Springer (2018)

23. Liang, Z., Feng, Y., Guo, Y., Liu, H., Chen, W., Qiao, L., Zhou, L., Zhang, J.:
Learning for disparity estimation through feature constancy. In: The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE (June 2018)

24. Liu, F., Shen, C., Lin, G., Reid, I.: Learning depth from single monocular im-
ages using deep convolutional neural fields. IEEE Trans. on Pattern Analysis and
Machine Intelligence 38(10), 2024–2039 (2016)

25. Liu, L.K., Chan, S.H., Nguyen, T.Q.: Depth reconstruction from sparse samples:
Representation, algorithm, and sampling. IEEE Transactions on Image Processing
24(6), 1983–1996 (2015)

26. Luo, W., Schwing, A.G., Urtasun, R.: Efficient deep learning for stereo matching.
In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 5695–5703.
IEEE (2016)

27. Ma, F., Cavalheiro, G.V., Karaman, S.: Self-supervised sparse-to-dense: Self-
supervised depth completion from lidar and monocular camera. In: 2019 Inter-
national Conference on Robotics and Automation (ICRA). pp. 3288–3295. IEEE,
IEEE (2019)

28. Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox,
T.: A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE (June 2016)

29. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE (2015)

30. Pang, J., Sun, W., Ren, J.S., Yang, C., Yan, Q.: Cascade residual learning: A two-
stage convolutional neural network for stereo matching. In: The IEEE International
Conference on Computer Vision (ICCV) Workshops. IEEE (Oct 2017)

31. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. In: Advances in Neural Information Processing
Systems. pp. 8024–8035. MIT Press (2019)

32. Poggi, M., Tosi, F., Mattoccia, S.: Learning monocular depth estimation with un-
supervised trinocular assumptions. In: 6th International Conference on 3D Vision
(3DV). IEEE (2018)

33. Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X.,
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