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Abstract

Humans view the world through many sensory channels,
e.g., the long-wavelength light channel, viewed by the left
eye, or the high-frequency vibrations channel, heard by the
right ear. Each view is noisy and incomplete, but impor-
tant factors, such as physics, geometry, and semantics, tend
to be shared between all views (e.g., a “dog” can be seen,
heard, and felt). We investigate the classic hypothesis that
a powerful representation is one that models view-invariant
factors. We study this hypothesis under the framework of
multiview contrastive learning, where we learn a represen-
tation that aims to maximize mutual information between
different views of the same scene but is otherwise compact.
Our approach scales to any number of views, and is view-
agnostic. We analyze key properties of the approach that
make it work, finding that the contrastive loss outperforms
a popular alternative based on cross-view prediction, and
that the more views we learn from, the better the resulting
representation captures underlying scene semantics. Our ap-
proach achieves state-of-the-art results on image and video
unsupervised learning benchmarks. Code is released at:

http://github.com/HobbitLong/CMC/.

1. Introduction

A foundational idea in coding theory is to learn com-
pressed representations that nonetheless can be used to re-
construct the raw data. This idea shows up in contemporary
representation learning in the form of autoencoders [65] and
generative models [40, 24], which try to represent a data
point or distribution as losslessly as possible. Yet lossless
representation might not be what we really want, and indeed
it is trivial to achieve — the raw data itself is a lossless rep-
resentation. What we might instead prefer is to keep the
“good” information (signal) and throw away the rest (noise).
How can we identify what information is signal and what is
noise?

To an autoencoder, or a max likelihood generative model,
a bit is a bit. No one bit is better than any other. Our con-
jecture in this paper is that some bits are in fact better than
others. Some bits code important properties like seman-
tics, physics, and geometry, while others code attributes that
we might consider less important, like incidental lighting
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Figure 1: Given a set of sensory views, a deep representation is
learnt by bringing views of the same scene together in embedding
space, while pushing views of different scenes apart. Here we show
and example of a 4-view dataset (NYU RGBD [53]) and its learned
representation. The encodings for each view may be concatenated
to form the full representation of a scene.

conditions or thermal noise in a camera’s sensor.

We revisit the classic hypothesis that the good bits are the
ones that are shared between multiple views of the world,
for example between multiple sensory modalities like vision,
sound, and touch [70]. Under this perspective “presence of
dog” is good information, since dogs can be seen, heard,
and felt, but “camera pose” is bad information, since a cam-
era’s pose has little or no effect on the acoustic and tactile
properties of the imaged scene. This hypothesis corresponds
to the inductive bias that the way you view a scene should
not affect its semantics. There is significant evidence in
the cognitive science and neuroscience literature that such
view-invariant representations are encoded by the brain (e.g.,
[70, 15, 32]). In this paper, we specifically study the setting
where the different views are different image channels, such
as luminance, chrominance, depth, and optical flow. The fun-
damental supervisory signal we exploit is the co-occurrence,
in natural data, of multiple views of the same scene. For
example, we consider an image in Lab color space to be a
paired example of the co-occurrence of two views of the
scene, the L view and the ab view: {L, ab}.

Our goal is therefore to learn representations that capture
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information shared between multiple sensory channels but
that are otherwise compact (i.e. discard channel-specific
nuisance factors). To do so, we employ contrastive learning,
where we learn a feature embedding such that views of the
same scene map to nearby points (measured with Euclidean
distance in representation space) while views of different
scenes map to far apart points. In particular, we adapt the
recently proposed method of Contrastive Predictive Coding
(CPC) [57], except we simplify it — removing the recurrent
network — and generalize it — showing how to apply it to
arbitrary collections of image channels, rather than just to
temporal or spatial predictions. In reference to CPC, we term
our method Contrastive Multiview Coding (CMC), although
we note that our formulation is arguably equally related to
Instance Discrimination [79]. The contrastive objective in
our formulation, as in CPC and Instance Discrimination,
can be understood as attempting to maximize the mutual
information between the representations of multiple views
of the data.

We intentionally leave “good bits” only loosely defined
and treat its definition as an empirical question. Ultimately,
the proof is in the pudding: we consider a representation
to be good if it makes subsequent problem solving easy, on
tasks of human interest. For example, a useful representation
of images might be a feature space in which it is easy to learn
to recognize objects. We therefore evaluate our method by
testing if the learned representations transfer well to standard
semantic recognition tasks. On several benchmark tasks, our
method achieves results competitive with the state of the
art, compared to other methods for self-supervised repre-
sentation learning. We additionally find that the quality of
the representation improves as a function of the number of
views used for training. Finally, we compare the contrastive
formulation of multiview learning to the recently popular
approach of cross-view prediction, and find that in head-to-
head comparisons, the contrastive approach learns stronger
representations.

The core ideas that we build on: contrastive learning,
mutual information maximization, and deep representation
learning, are not new and have been explored in the literature
on representation and multiview learning for decades [64,
45, 80, 3]. Our main contribution is to set up a framework to
extend these ideas to any number of views, and to empirically
study the factors that lead to success in this framework. A
review of the related literature is given in Section 2; and Fig.
1 gives a pictorial overview of our framework. Our main
contributions are:

* We apply contrastive learning to the multiview setting,
attempting to maximize mutual information between
representations of different views of the same scene (in
particular, between different image channels).

* We extend the framework to learn from more than two
views, and show that the quality of the learned represen-

tation improves as number of views increase. Ours is
the first work to explicitly show the benefits of multiple
views on representation quality.

* We conduct controlled experiments to measure the ef-
fect of mutual information estimates on representation
quality. Our experiments show that the relationship
between mutual information and views is a subtle one.

* Our representations rival state of the art on popular
benchmarks.

¢ We demonstrate that the contrastive objective is supe-
rior to cross-view prediction.

2. Related work

Unsupervised representation learning is about learning
transformations of the data that make subsequent problem
solving easier [7]. This field has a long history, starting with
classical methods with well established algorithms, such as
principal components analysis (PCA [37]) and independent
components analysis (ICA [33]). These methods tend to
learn representations that focus on low-level variations in
the data, which are not very useful from the perspective of
downstream tasks such as object recognition.

Representations better suited to such tasks have been
learnt using deep neural networks, starting with seminal
techniques such as Boltzmann machines [71, 65], autoen-
coders [30], variational autoencoders [40], generative adver-
sarial networks [24] and autoregressive models [56]. Nu-
merous other works exist, for a review see [7]. A power-
ful family of models for unsupervised representations are
collected under the umbrella of “self-supervised” learning
[64, 35, 85, 84, 78, 60, 83]. In these models, an input X to
the model is transformed into an output X, which is sup-
posed to be close to another signal Y (usually in Euclidean
space), which itself is related to X in some meaningful way.
Examples of such X/Y pairs are: luminance and chromi-
nance color channels of an image [85], patches from a single
image [57], modalities such as vision and sound [58] or the
frames of a video [78]. Clearly, such examples are numerous
in the world, and provides us with nearly infinite amounts
of training data: this is one of the appeals of this paradigm.
Time contrastive networks [68] use a triplet loss framework
to learn representations from aligned video sequences of
the same scene, taken by different video cameras. Closely
related to self-supervised learning is the idea of multi-view
learning, which is a general term involving many different
approaches such as co-training [8], multi-kernel learning
[13] and metric learning [6, 87]; for comprehensive surveys
please see [80, 45]. Nearly all existing works have dealt with
one or two views such as video or image/sound. However, in
many situations, many more views are available to provide
training signals for any representation.

The objective functions used to train deep learning based
representations in many of the above methods are either



reconstruction-based loss functions such as Euclidean losses
in different norms e.g. [34], adversarial loss functions [24]
that learn the loss in addition to the representation, or con-
trastive losses e.g. [26, 81, 72, 25, 31, 57, 3, 29, 36] that
take advantage of the co-occurence of multiple views.

Some of the prior works most similar to our own (and
inspirational to us) are Contrastive Predictive Coding (CPC)
[57], Deep InfoMax [31], and Instance Discrimination [79].
These methods, like ours, learn representations by contrast-
ing between congruent and incongruent representations of
a scene. CPC learns from two views — the past and future —
and is applicable to sequential data, either in space or in time.
Deep Infomax [31] considers the two views to be the input
to a neural network and its output. Instance Discrimination
learns to match two sub-crops of the same image. CPC and
Deep InfoMax have recently been extended in [29] and [4]
respectively. These methods all share similar mathematical
objectives, but differ in the definition of the views. Our
method differs from these works in the following ways: we
extend the objective to the case of more than two views, and
we explore a different set of view definitions, architectures,
and application settings. In addition, we contribute a unique
empirical investigation of this paradigm of representation
learning.

The idea of contrastive learning has also started to spread
over many other tasks in various other domains [74, 86, 61,
76, 48, 38, 75].

3. Method

Our goal is to learn representations that capture informa-
tion shared between multiple sensory views without human
supervision. We start by reviewing previous predictive learn-
ing (or reconstruction-based learning) methods, and then
elaborate on contrastive learning within two views. We show
connections to mutual information maximization and extend
it to scenarios including more than two views. We consider
a collection of M views of the data, denoted as V7, ..., V.
For each view V;, we denote v; as a random variable repre-
senting samples following v; ~ P(V;).

3.1. Predictive Learning

Let V; and V5 represent two views of a dataset. For in-
stance, V; might be the luminance of a particular image and
V5 the chrominance. We define the predictive learning setup
as a deep nonlinear transformation from v to ve through la-
tent variables z, as shown in Fig. 2. Formally, z = f(v;) and
vy = g(z), where f and g represent the encoder and decoder
respectively and ¢ is the prediction of vs given v;. The pa-
rameters of the encoder and decoder models are then trained
using an objective function that tries to bring v» “close to”
ve. Simple examples of such an objective include the £;
or L9 loss functions. Note that these objectives assume in-
dependence between each pixel or element of vy given v,
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Figure 2: Predictive Learning vs Contrastive Learning. Cross-view
prediction (Top) learns latent representations that predict one view
from another, with loss measured in the output space. Common
prediction losses, such as the £1 and Lo norms, are unstructured, in
the sense that they penalize each output dimension independently,
perhaps leading to representations that do not capture all the shared
information between the views. In contrastive learning (Bottom),
representations are learnt by contrasting congruent and incongruent
views, with loss measured in representation space. The red dotted
outlines show where the loss function is applied.

i.e., p(va|v1) = II;p(ve,]v1 ), thereby reducing their ability
to model correlations or complex structure. The predictive
approach has been extensively used in representation learn-
ing, for example, colorization [84, 85] and predicting sound
from vision [58].

3.2. Contrastive Learning with Two Views

The idea behind contrastive learning is to learn an embed-
ding that separates (contrasts) samples from two different
distributions. Given a dataset of V7 and V5 that consists of
a collection of samples {v¢,v5} ¥ |, we consider contrast-
ing congruent and incongruent pairs, i.e. samples from the
joint distribution z ~ p(vy,vs) or z = {vi, vi}, which we
call positives, versus samples from the product of marginals,
y ~ p(v1)p(v2) ory = {v},v3}, which we call negatives.

We learn a “critic” (a discriminating function) hg(-)
which is trained to achieve a high value for positive pairs and
low for negative pairs. Similar to recent setups for contrastive
learning [57, 25, 51], we train this function to correctly select
a single positive sample x out of a set S = {x, y1, Y2, ..., Y }
that contains k negative samples:

ho(z)
ho(z) + X5y ho(y:)

To construct .S, we simply fix one view and enumerate pos-
itives and negatives from the other view, allowing us to
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rewrite the objective as:

hg({v%,vé})

Loy =— E

contrast —

where k is the number of negative samples vg for a given
sample v{. In practice, k can be extremely large (e.g., 1.2
million in ImageNet), and so directly minimizing Eq. 2 is
infeasible. In Section 3.4, we show two approximations that
allow for tractable computation.

Implementing the critic 'We implement the critic hg(-) as
a neural network. To extract compact latent representations
of v; and vy, we employ two encoders fy, (+) and fy, (-) with
parameters 67 and 0, respectively. The latent representions
are extracted as z1 = fp, (v1), 22 = fo,(v2). We compute
their cosine similarity as score and adjust its dynamic range
by a hyper-parameter 7:
Jo,(v1) - fo,(v2) 1

ho(tor v2b) = e S S o] 7 @

comteast 1N EqQ. 2 treats view Vj as anchor and

enumerates over V. Symmetrically, we can get L1271

by anchoring at V5. We add them up as our two-view loss:
L(Vi,Va) = L5 + L )

contrast contrast

Loss £/1"2

After the contrastive learning phase, we use the representa-
tion 21, 22, or the concatenation of both, [z1, 23], depending
on our paradigm. This process is visualized in Fig. 1.

Connecting to mutual information The optimal critic hj
is proportional to the density ratio between the joint distri-
bution p(z1, z2) and the product of marginals p(z1)p(z2)
(proof provided in supplementary material):
* p(21, 22) p(21]22)
hg({vi,v2}) o o 5)
’ p(z1)p(z2) — p(z1)
This quantity is the pointwise mutual information, and its
expectation, in Eq. 2, yields an estimator related to mutual
information. A formal proof is given by [57, 62], which we
recapitulate in supplement, showing that:

I(Zu Zj) Z log(k) - Econtra,st (6)

where, as above, k is the number of negative pairs in sample
set S. Hence minimizing the objective £ maximizes the
lower bound on the mutual information I(z;; 2;), which is
bounded above by I (v;; v;) by the data processing inequality.
The dependency on k also suggests that using more negative
samples can lead to an improved representation; we show
that this is indeed the case (see supplement). We note that
recent work [47] shows that the bound in Eq. 6 can be very
weak; and finding better estimators of mutual information is
an important open problem.

log - 2
{vlvh,vp ) Efill he({v%,vé})]

(a) Core View (b) Full Graph

Figure 3: Graphical models and information diagrams [1] associ-
ated with the core view and full graph paradigms, for the case of 4
views, which gives a total of 6 learning objectives. The numbers
within the regions show how much “weight” the total loss places on
each partition of information (i.e. how many of the 6 objectives that
partition contributes to). A region with no number corresponds to 0
weight. For example, in the full graph case, the mutual information
between all 4 views is considered in all 6 objectives, and hence is
marked with the number 6.

3.3. Contrastive Learning with More than Two
Views

We present more general formulations of Eq. 2 that can
handle any number of views. We call them the “core view”
and “full graph” paradigms, which offer different tradeoffs
between efficiency and effectiveness. These formulations
are visualized in Fig. 3.

Suppose we have a collection of M views Vp,..., V.
The “core view” formulation sets apart one view that we want
to optimize over, say V7, and builds pair-wise representations
between Vi and each other view V},j > 1, by optimizing
the sum of a set of pair-wise objectives:

M
Lo=> L,V (7)
j=2

A second, more general formulation is the “full graph” where
we consider all pairs (2, j),7 # j, and build (g) relationships
in all. By involving all pairs, the objective function that we
optimize is:

Lrp= Y LViV) ®)

1<i<j<M

Both these formulations have the effect that information is
prioritized in proportion to the number of views that share
that information. This can be seen in the information dia-
grams visualized in Fig. 3. The number in each partition of
the diagram indicates how many of the pairwise objectives,
L(V;, V), that partition contributes to. Under both the core



view and full graph objectives, a factor, like “presence of
dog”, that is common to all views will be preferred over a
factor that affects fewer views, such as “depth sensor noise”.

The computational cost of the bivariate score function in
the full graph formulation is combinatorial in the number of
views. However, it is clear from Fig. 3 that this enables the
full graph formulation to capture more information between
different views, which may prove useful for downstream
tasks. For example, the mutual information between V5
and V3 or V5 and Vj is completely ignored in the core view
paradigm (as shown by a 0 count in the information diagram).
Another benefit of the full graph formulation is that it can
handle missing information (e.g. missing views) in a natural
manner.

3.4. Implementing the Contrastive Loss

Better representations using L'X;;L‘{iast in Eqn. 2 are learnt

by using many negative samples. In the extreme case, we
include every data sample in the denominator for a given
dataset. However, computing the full softmax loss is pro-
hibitively expensive for large dataset such as ImageNet. One
way to approximate this full softmax distribution, as well as
alleviate the computational load, is to use Noise-Contrastive
Estimation [25, 79] (see supplement). Another solution,
which we also adopt here, is to randomly sample m nega-
tives and do a simple (m+1)-way softmax classification. This
strategy is also used in [4, 29, 27] and dates back to [72].

Memory bank. Following [79], we maintain a memory
bank to store latent features for each training sample. There-
fore, we can efficiently retrieve m negative samples from the
memory buffer to pair with each positive sample without re-
computing their features. The memory bank is dynamically
updated with features computed on the fly. The benefit of a
memory bank is to allow contrasting against more negative
pairs, at the cost of slightly stale features.

4. Experiments

We extensively evaluate Contrastive Multiview Coding
(CMC) on a number of datasets and tasks. We evaluate on
two established image representation learning benchmarks:
ImageNet [16] and STL-10 [12] (see supplement). We fur-
ther validate our framework on video representation learning
tasks, where we use image and optical flow modalities, as
the two views that are jointly learned. The last set of experi-
ments extends our CMC framework to more than two views
and provides empirical evidence of its effectiveness.

4.1. Benchmarking CMC on ImageNet

Following [84], we evaluate task generalization of the
learned representation by training 1000-way linear classi-
fiers on top of different layers. This is a standard benchmark
that has been adopted by many papers in the literature.

Setting ResNet-50 ResNet-50 ResNet-50
x0.5 x1 x2
{L,ab} 57.5/80.3 64.0/85.5 68.3/88.2
{Y, DbDr} 584/81.2 64.8/86.1 69.0/88.9
{Y,DbDr} +RA | 60.0/82.3 66.2/87.0 70.6/89.7

Table 1: Top-1/ Top-5 Single crop classification accuracy (%)
on ImageNet with a supervised logistic regression classifier. We
evaluate CMC using ResNet50 with different width as encoder for
each of the two views (e.g., L and ab). “RA” stands for RandAug-
ment [14].

Setup. Given a dataset of RGB images, we convert them
to the Lab image color space, and split each image into L
and ab channels, as originally proposed in SplitBrain autoen-
coders [85]. During contrastive learning, L and ab from the
same image are treated as the positive pair, and ab channels
from other randomly selected images are treated as a neg-
ative pair (for a given L). Each split represents a view of
the orginal image and is passed through a separate encoder.
As in SplitBrain, we design these two encoders by evenly
splitting a given deep network, such as AlexNet [43], into
sub-networks across the channel dimension. By concatenat-
ing representations layer-wise from these two encoders, we
achieve the final representation of an input image. As pro-
posed by previous literature [57, 31, 3, 87, 79], the quality
of such a representation is evaluated by freezing the weights
of encoder and training linear classifier on top of each layer.

Implementation. Unless otherwise specified, we use Py-
Torch [59] default data augmentation. Following [79], we
set the temperature 7 as 0.07 and use a momentum 0.5 for
memory update. We use 16384 negatives. The supplemen-
tary material provides more details on our hyperparameter
settings.

CMC with AlexNet. As many previous unsupervised meth-
ods are evaluated with AlexNet [43] on ImageNet [16, 42,
17, 84, 54, 18, 85, 55, 22, 11, 83], we also include the the
results of CMC using this network. Due to the space limit,
we present this comparison in supplementary material.

CMC with ResNets. We verify the effectiveness of CMC
with larger networks such as ResNets [28]. We experiment
on learning from luminance and chrominance views in two
colorspaces, {L,ab} and {Y, DbDr} (see sec. 4.4 for vali-
dation of this choice), and we vary the width of the ResNet
encoder for each view. We use the feature after the global
pooling layer to train the linear classifier, and the results
are shown in Table 1. {L, ab} achieves 68.3% top-1 single
crop accuracy with ResNet50x2 for each view, and switch-
ing to {Y, DbDr} further brings about 0.7% improvement.
On top of it, strengthening data augmentation with Ran-
dAugment [14] yields better or comparable results to other
state-of-the-art methods [41, 79, 87, 27, 49, 19, 29, 4].



Method # of Views UCF-101 HMDB-51
Random - 48.2 19.5
ImageNet - 67.7 28.0
VGAN* [77] 2 52.1 -
LT-Motion* [46] 2 53.0 -
TempCoh [52] 1 454 15.9
Shuffle and Learn [50] 1 50.2 18.1
Geometry [21] 2 55.1 23.3
OPN [44] 1 56.3 22.1
ST Order [10] 1 58.6 25.0
Cross and Learn [66] 2 58.7 27.2
CMC (V) 2 55.3 -
CMC (D) 2 57.1 -
CMC (V+D) 3 59.1 26.7

Table 2: Test accuracy (%) on UCF-101 which evaluates task
transferability and on HMDB-51 which evaluates fask and dataset
transferability. Most methods either use single RGB view or addi-
tional optical flow view, while VGAN explores sound as the second
view. * indicates different network architecture.

4.2. CMC on videos

We apply CMC on videos by drawing insight from the
two-streams hypothesis [67, 23], which posits that human
visual cortex consists of two distinct processing streams:
the ventral stream, which performs object recognition, and
the dorsal stream, which processes motion. In our formu-
lation, given an image i, that is a frame centered at time ¢,
the ventral stream associates it with a neighbouring frame
¢4k, while the dorsal stream connects it to optical flow f;
centered at ¢t. Therefore, we extract ¢, i,y and f; from two
modalities as three views of a video; for optical flow we use
the TV-L1 algorithm [82]. Two separate contrastive learning
objectives are built within the ventral stream (¢, 4;) and
within the dorsal stream (i, f). For the ventral stream, the
negative sample for ¢; is chosen as a random frame from
another randomly chosen video; for the dorsal stream, the
negative sample for ¢, is chosen as the flow corresponding
to a random frame in another randomly chosen video.

Pre-training. We train CMC on UCF101 [73] and use two
CaffeNets [43] for extracting features from images and opti-
cal flows, respectively. In our implementation, f; represents
10 continuous flow frames centered at ¢. We use batch size of
128 and contrast each positive pair with 127 negative pairs.

Action recognition. We apply the learnt representation to
the task of action recognition. The spatial network from [69]
is a well-established paradigm for evaluating pre-trained
RGB network on action recognition task. We follow the
same spirit and evaluate the transferability of our RGB Caf-
feNet on UCF101 and HMDBS51 datasets. We initialize the
action recognition CaffeNet up to conv5 using the weights
from the pre-trained RGB CaffeNet. The averaged accuracy
over three splits is present in Table 2. Unifying both ventral

and dorsal streams during pre-training produces higher ac-
curacy for downstream recognition than using only single
stream. Increasing the number of views of the data from 2
to 3 (using both streams instead of one) provides a boost for
UCF-101.

4.3. Extending CMC to More Views

We further extend our CMC learning framework to multi-
view scenarios. We experiment on the NYU-Depth-V2 [53]
dataset which consists of 1449 labeled images. We focus on
a deeper understanding of the behavior and effectiveness of
CMC. The views we consider are: luminance (L channel),
chrominance (ab channel), depth, surface normal [20], and
semantic labels.

Setup. To extract features from each view, we use a neural
network with 5 convolutional layers, and 2 fully connected
layers. As the size of the dataset is relatively small, we adopt
the sub-patch based contrastive objective (see supplement)
to increase the number of negative pairs. Patches with a size
of 128 x 128 are randomly cropped from the original images
for contrastive learning (from images of size 480 x 640). For
downstream tasks, we discard the fully connected layers and
evaluate using the convolutional layers as a representation.

4.3.1 Does representation quality improve as number
of views increases?

To measure the quality of the learned representation, we
consider the task of predicting semantic labels from the rep-
resentation of L. We follow the core view paradigm and
use L as the core view, thus learning a set of representa-
tions by contrasting different views with L. A UNet style
architecture [63] is utilized to perform the segmentation task.
Contrastive training is performed on the above architecture
that is equivalent of the UNet’s encoder. After contrastive
training is completed, we initialize the encoder weights of
the UNet from the L encoder (which are equivalent archi-
tectures) and keep them frozen. Only the decoder is trained
during this finetuning stage.

Since we use the patch-based contrastive loss, in the 1
view setting case, CMC coincides with DIM [31]. The 2-4
view cases contrast L with ab, and then sequentially add
depth and surface normals. The semantic labeling results
are measured by mean IoU over all classes and pixel accu-
racy, shown in Fig. 4. We see that the performance steadily
improves as new views are added. We have tested different
orders of adding the views, and they all follow a similar
pattern.

We also compare CMC with two baselines. First, we ran-
domly initialize and freeze the encoder, and we call this the
Random baseline; it serves as a lower bound on the quality
since the representation is just a random projection. Rather
than freezing the randomly initialized encoder, we could
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Figure 4: We show the Intersection over Union (IoU) (left) and
Pixel Accuracy (right) for the NYU-Depth-V2 dataset, as CMC is
trained with increasingly more views from 1 to 4. As more views
are added, both these metrics steadily increase. The views are (in
order of inclusion): L, ab, depth and surface normals.

| Pixel Accuracy (%) mloU (%)

Random 45.5 214
CMC (core-view) 57.1 34.1
CMC (full-graph) 57.0 34.4
Supervised 57.8 35.9

Table 3: Results on the task of predicting semantic labels from
L channel representation which is learnt using the patch-based
contrastive loss and all 4 views. We compare CMC with Random
and Supervised baselines, which serve as lower and upper bounds
respectively. Th core-view paradigm refers to Fig. 3(a), and full-
view Fig. 3(b).

train it jointly with the decoder. This end-to-end Supervised
baseline serves as an upper bound. The results are presented
in Table 3, which shows our CMC produces high quality
feature maps even though it’s unaware of the downstream
task.

4.3.2 1Is CMC improving all views?

A desirable unsupervised representation learning algorithm
operating on multiple views or modalities should improve
the quality of representations for all views. We therefore
investigate our CMC framwork beyond L channel. To treat
all views fairly, we train these encoders following the full
graph paradigm, where each view is contrasted with all other
views.

We evaluate the representation of each view v by predict-
ing the semantic labels from only the representation of v,
where v is L, ab, depth or surface normals. This uses the
full-graph paradigm. As in the previous section, we compare
CMC with Random and Supervised baselines. As shown in
Table 4, the performance of the representations learned by
CMC using full-graph significantly outperforms that of ran-
domly projected representations, and approaches the perfor-
mance of the fully supervised representations. Furthermore,
the full-graph representation provides a good representation

Metric (%) | L ab Depth Normal
Random mloU 214 15.6 30.1 29.5
pix. acc. | 455 37.7 51.1 50.5
mloU 344 26.1 39.2 37.8
CMC pix. acc. |[57.0 49.6 594 57.8
Supervised mloU 359 29.6 41.0 41.5
pix. acc. | 57.8 52.6 59.1 59.6

Table 4: Performance on the task of using single view v to predict
the semantic labels, where v can be L, ab, depth or surface nor-
mal. Our CMC framework improves the quality of unsupervised
representations towards that of supervised ones, for all of views
investigated. This uses the full-graph paradigm Fig. 3(b).

Accuracy on STL-10 (%)
Views Predictive  Contrastive
L, Depth 55.5 58.3
L, Normal 584 60.1
L, Seg. Map 57.7 59.2
Random 25.2
Supervised 65.1

Table 5: We compare predictive learning with contrastive learning
by evaluating the learned encoder on unseen dataset and task. The
contrastive learning framework consistently outperforms predictive
learning.

learnt for all views, showing the importance of capturing
different types of mutual information across views.

4.3.3 Predictive Learning vs. Contrastive Learning

While experiments in section 4.1 show that contrastive learn-
ing outperforms predictive learning [85] in the context of
Lab color space, it’s unclear whether such an advantage is
due to the natural inductive bias of the task itself. To further
understand this, we go beyond chrominance (ab), and try to
answer this question when geometry or semantic labels are
present.

We consider three view pairs on the NYU-Depth dataset:
(1) L and depth, (2) L and surface normals, and (3) L and
segmentation map. For each of them, we train two identical
encoders for L, one using contrastive learning and the other
with predictive learning. We then evaluate the representation
quality by training a linear classifier on top of these encoders
on the STL-10 dataset.

The comparison results are shown in Table 5, which
shows that contrastive learning consistently outperforms pre-
dictive learning in this scenario where both the task and
the dataset are unknown. We also include “random” and
“supervised” baselines similar to that in previous sections.
Though in the unsupervised stage we only use 1.3K images
from a dataset much different from the target dataset STL-10,



—_ Y,1Q

X v r%“v

Sy, LUV

L>)\ 85 - L,ab O

g H,ED B,RG

3 O ORecs

g O¢™ o,

< 50 - B.RG(CIE R,GB(CIE)

S G,RB(CIE) @

4§ X,YZ

3 Yixz

= 75

@ H,5V

©

o ' ' i '
80 90 100 110

Mutual Information Estimated by MINE
(Belghazi et al 2018) (nat)

98 Q128
> i 160
s 52 192 06
5 224 )
S 51 -
288 256
< (o)e)
c 50 320
o 3560
© 384
O 4910
=
0
£ 48 - )
O T T T T
2 3 4 5

Mutual Information Estimated by MINE
(Belghazi et al 2018) (nat)

Figure 5: How does mutual information between views relate to representation quality? (Left) Classification accuracy against estimated MI
between channels of different color spaces; (Right) Classification accuracy vs estimated MI between patches at different distances (distance
in pixels is denoted next to each data point). MI estimated using MINE [5].

the object recognition accuracy is close to the supervised
method, which uses an end-to-end deep network directly
trained on STL-10.

Given two views V7 and V5 of the data, the predictive
learning approach approximately models p(vz|v1). Further-
more, losses used typically for predictive learning, such as
pixel-wise reconstruction losses usually impose an indepen-
dence assumption on the modeling: p(va|vy) & II;p(va;|vy).
On the other hand, the contrastive learning approach by con-
struction does not assume conditional independence across
dimensions of v,. In addition, the use of random jittering
and cropping between views allows the contrastive learning
approach to benefit from spatial co-occurrence (contrasting
in space) in addition to contrasting across views. We conjec-
ture that these are two reasons for the superior performance
of contrastive learning approaches over predictive learning.

4.4. How does mutual information affect represen-
tation quality?

Given a fixed set of views, CMC aims to maximize the
mutual information between representations of these views.
We have found that maximizing information in this way
indeed results in strong representations, but it would be in-
correct to infer that information maximization (infomax) is
the key to good representation learning. In fact, this paper
argues for precisely the opposite idea: that cross-view repre-
sentation learning is effective because it results in a kind of
information minimization, discarding nuisance factors that
are not shared between the views.

The resolution to this apparent dilemma is that we want
to maximize the “good” information — the signal — in our
representations, while minimizing the “bad” information —
the noise. The idea behind CMC is that this can be achieved
by doing infomax learning on two views that share signal but

have independent noise. This suggests a “Goldilocks princi-
ple” [39]: a good collection of views is one that shares some
information but not too much. Here we test this hypothesis
on two domains: learning representations on images with
different colorspaces forming the two views; and learning
representations on pairs of patches extracted from an image,
separated by varying spatial distance.

In patch experiments we randomly crop two RGB patches
of size 64x64 from the same image, and use these patches as
the two views. Their relative position is fixed. Namely, the
two patches always starts at position (z,y) and (x+d, y+d)
with (z,y) being randomly sampled. While varying the
distance d, we start from 64 to avoid overlapping. There is
a possible bias that with an image of relatively small size
(e.g., 512x512), a large d (e.g., 384) will always push these
two patches around boundary. To minimize this bias, we use
high resolution images (e.g. 2k) from DIV2K [2] dataset.

Fig. 5 shows the results of these experiments. The left
plot shows the result of learning representations on different
colorspaces (splitting each colorspace into two views, such
as (L, ab), (R, GB) etc). We then use the MINE estimator [5]
to estimate the mutual information between the views. We
measure representation quality by training a linear classifier
on the learned representations on the STL-10 dataset [12].
The plots clearly show that using colorspaces with minimal
mutual information give the best downstream accuracy (For
the outlier HSV in this plot, we conjecture the representation
quality is harmed by the periodicity of H. Note that the H
in HED is not periodic.). On the other hand, the story is
more nuanced for representations learned between patches
at different offsets from each other (Fig. 5, right). Here
we see that views with too little or too much MI perform
worse; a sweet spot in the middle exists which gives the best
representation. That there exists such a sweet spot should be



expected. If two views share no information, then, in princi-
ple, there is no incentive for CMC to learn anything. If two
views share all their information, no nuisances are discarded
and we arrive back at something akin to an autoencoder or
generative model, that simply tries to represent all the bits in
the multiview data.

These experiments demonstrate that the relationship be-
tween mutual information and representation quality is mean-
ingful but not direct. Selecting optimal views, which just
share relevant signal, may be a fruitful direction for future
research.

5. Conclusion

We have presented a contrastive learning framework
which enables the learning of unsupervised representations
from multiple views of a dataset. The principle of maximiza-
tion of mutual information enables the learning of powerful
representations. A number of empirical results show that our
framework performs well compared to predictive learning
and scales with the number of views.

Acknowledgements Thanks to Devon Hjelm for providing
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Table 6: The list of classes from ImageNet-100, which are
randomly sampled from the original ImageNet-1k dataset [16].
This list can also be downloaded at: http://github.com/
HobbitLong/CMC/blob/master/imagenet100.txt

List of ImageNet-100 classes

n02869837
n02091831
n01735189
n02105505
n02086910
n02099849
n02877765
n01820546
n03785016
n04099969
n02259212
n03637318
n02483362
n02804414
n02113978
n04238763
n03837869
n02018207
n04229816
n02116738

n01749939
n04517823
n07831146
n01983481
n02859443
n01558993
n04429376
n01692333
n03764736
n04592741
n07715103
n01980166
n04127249
n02396427
n03787032
n02231487
n03494278
n04067472
n02100583
n02108089

n02488291
n04589890
n07753275
n02788148
n13040303
n04493381
n02009229
n07714571
n03775546
n03891251
n03947888
n02113799
n02089973
n04418357
n02089867
n03032252
n04136333
n03930630
n03642806
n03424325

n02107142
n03062245
n03085013
n03530642
n03594734
n02109047
n01978455
n02974003
n02087046
n02701002
n04026417
n02086240
n03017168
n02172182
n02119022
n02138441
n03794056
n03584829
n04336792
n01855672

n13037406
n01773797
n04485082
n04435653
n02085620
n04111531
n02106550
n02114855
n07836838
n03379051
n02326432
n03903868
n02093428
n01729322
n03777754
n02104029
n03492542
n02123045
n03259280
n02090622

A. ImageNet-100 Proposed in this Paper

In this paper, we proposed a subset of ImageNet that con-
tains randomly selected 100 classes for ablation study as well
as hyper-parameter tuning. To ease a relevant study in the
future, we release the list of these categories that we consis-
tently used throughout all our experiments, as summarized
in Table 6.

B. Contrastive Loss

B.1. NCE approximation for high-dimensional soft-
max corss-entropy

In addition to the subsampled (m+1)-way softmax cross-
entropy, Noise-Contrastive Estimation (NCE [25]) is another
way to approximate the N-way (N is the dataset size) soft-
max cross entropy full softmax in Eqn 2. Compared with
the (m+1)-way softmax cross-entropy, NCE is computation-
ally faster and may result in slightly worse performance in
standard linear evaluation. It has been used in [51, 79]'. We
depict its general idea as below.

Given an anchor vi from V7, the probablity that an atom
vg € {v3]j = 1,2,..., N} from V5 is the best match of v,

IConfusingly, the literature has previously referred to Eqn.2 as “In-
foNCE” [57]. Our NCE approximation does not refer to the allusion to
NCE in the name “InfoNCE”. Rather we are here describing an NCE
approximation to the “InfoNCE” softmax objective.

12

using the score hg is given by:

_ he({ULU?}) .
SN he({vl,v3})

where the normalization factor Z = Zjvzl ho({vi,vl}) is
expensive to compute for large V.

NCE [25] is an effective way to estimate unnormalized
statistical models. NCE fits a density model p to data dis-
tributed as (unknown) distribution p4, by using a binary
classifier to distinguish it from noise samples distributed as
pn. To learn p(va|v}), we use a binary classifier, which treats
v& as the data (or positive) sample when given v¢. The noise
distribution p,, (-|v}) we choose here is a uniform distribu-
tion over all atoms from V3, i.e., p,, (-[v}) = pn(-) = 1/N.
If we sample m noise samples to pair with each data sample,
the posterior probability that a given atom vy comes from
the data distribution is:

p(va|vh) )

pa(v2|v})
pa(v2|v]) + mpp(v2|v])

P(D = 1lvg;v}) = (10)
and we estimate this probability by replacing pg(ve|v?) with
our unnormalized model distribution hg(vi,v2)/Zy, where
Z is a constant estimated from the first batch. Minimizing
the negative log-posterior probability of correct labels D
over data and noise samples yields our final objective, which
is the NCE-based approximation of Eq. 2 (p is the empirical
data distribution):

E E
vi~p(v1) ve~p(-|vl)

+ m E  [log(P(D = 0lvg;vp))]} (11)

var~pn (-|v])

Lyce= - [log(P(D = 1|vg; v))]

B.2. Contrasting Sub-patches

Instead of contrasting features from the last layer, patch-
based method [31] contrasts feature from the last layer with
features from previous layers, hence increasing the number
of negative pairs. For instance, we use features from the
last layer of fy, to contrast with feature points from feature
maps produced by the first several conv layers of fy,. This
is equivalent to contrast between global patch from one view
with local patches from the other view. In this fashion, we
directly perform m + 1 way softmax classification, the same
as [57, 31] for a fair comparison in Sec. D.1.

Such patch-based contrastive loss is computed within
each mini-batch and does not require a memory bank. There-
fore, deploying it in parallel training schemes is easy and flex-
ible. However, patch-based contrastive loss usually yields
suboptimal results compared to NCE-based contrastive loss,
according to our experiments.

C. Proofs

We prove that: (a) the optimal score function hj ({v1, v2})
is proportional to density ratio between the joint distribution
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p(v1,v2) and product of marginals p(v;)p(vs), as shown
in Eq. 5; (b) Minimizing the contrastive 10ss Lcontrast
maxmizes a lower bound on the mutual information between
two views, as shown in Eq. 6.

We will use the most general formula of contrastive loss
Lecontrast Shown in Eq. 1 for our derivation. But we note
that replacing L.ontrast With Egh‘gast is straightforward.
The overall proof follows a similar derivation introduced in

[57].

C.1. Score function as density ratio estimator

We first show that the optimal score function hjj({v1,v2})
that minimizes Eq. 1 is proportional to the density ratio be-
tween joint distribution and product of marginals, shown as
Eq. 5. For notation convenience, we denote p(v1, v2) as data
distribution p4(-) and p(v1)p(v2) as noise distribution p,,(-).
The loss in Eq. 1 is indeed a cross-entropy loss of classifying
the correct positive pair out from the given set S. Without
loss of generality, we assume the first pair (v, v9) in S is
positive or congruent and all others (v, v4),i = 1,2, ...,k
are negative or incongruent. The optimal probability for
the loss, p(pos = 0|5), should depict the fact that (v{,v9)
comes from the data distribution p,(-) while all other pairs
come from the noise distribution p,,(+). Therefore,

& o
pd(v?a 'Ug) [Ti—y pn(vi, v3)
Zj:o pa(vi, v3) Hi;éj pn(v],5)

& . )
p(v}, v3) TTi p(v1)p(vh)
k: : ; . .
Zj:o p(vi,v3) H'L;ﬁj p(vi)p(v3)
P(U?avg)
p(v?)p(v9)

p(vf,v5)

k
22520 pBp(uk)

p(pos = 0[S)

where we plug in the definition of p,(-) and p,,(+), and divide

[T, p(v3)p(v3) for both the numerator and denominator.
By comparing above equation with the loss function in Eq.

1, we can see that the optimal score function hj({v1,vs2})

is proportional to the density ratio % The above

derivation is agnostic to which layer the score function starts
from, e.g., h can be defined on either the raw input (vy, vo)
or the latent representation (21, z2). As we care more about
the property of the latent representation, for the following

derivation we will use h*({z1, 22}), which is proportional

t p(21,22)
p(z1)p(z2)"

C.2. Maximizing lower bound on MI

Now we substitute the score function in Eq. 1 with the

above density ratio, and the optimal loss objective £,
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becomes:

Lopt
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e lzf_o e

p(z7,29)
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22im0 pEDPD)

flglog
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p(27,29)
p(z?)p(zg) p(21\22)
PERE I [ ”
p(2?)p(28)
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Iglog

Q

El 1
Sog_ +

El 1
Sog_ +

p(Z%ZS))]

> log(k) —Elo
> st~ Bl | R0

E log [p(zl’ZQ) ]

log(k) —
B oo 0" ()
log(k) — I(z1; 22)

Therefore, for any two views V; and V;, we have I(z;; z;) >
log(k) — L . (Vi, V;). As the k increases, the approxi-
mation step becomes more accurate. Given any k, minimiz-
ing L (V;,V;) maximizes the lower bound on the mutual
information I(z;; z;). We should note that increasing & to
infinity does not always lead to a higher lower bound. While
log(k) increases with a larger k, the optimization problem
becomes harder and £(V;, V;) also increases.

D. Additional Experiments
D.1. CMC on STL-10

STL-10 [12] is an image recognition dataset designed
for developing unsupervised or self-supervised learning al-
gorithms. It consists of 100000 unlabeled training 96 x 96
RGB image samples and 500 labeled samples for each of the
10 classes.

Setup. We adopt the same data augmentation strategy and
network architecture as those in DIM [31]. A variant of
AlexNet takes as input 64 x 64 images, which are randomly
cropped and horizontally flipped from the original 96 x 96
size images. For a fair comparison with DIM, we also train
our model in a patch-based contrastive fashion during unsu-
pervised pre-training. With the weights of the pre-trained
encoder frozen, a two-layer fully connected network with
200 hidden units is trained on top of different layers for 100
epochs to perform 10-way classification. We also investi-
gated the strided crop strategy of CPC [57]. Fixed sized
overlapping patches of size 16 x 16 with an overlap of 8
pixels are cropped and fed into the network separately. This
ensures that features of one patch contain minimal informa-
tion from neighbouring patches; and increases the available



number of negative pairs for the contrastive loss. Addition-
ally, we include NCE-based contrastive training and linear
classifier evaluation.

Comparison. We compare CMC with the state of the art
unsupervised methods in Table 7. Three columns are shown:
the conv5 and fc7 columns use respectively these layers of
AlexNet as the encoder (again remembering that we split
across channels for L and ab views). For these two columns
we can compare against the all methods except CPC, since
CPC does not report these numbers in their paper [31]. In
the Strided Crop setup, we only compare against the ap-
proaches that use contrastive learning, DIM and CPC, since
this method was only used by those works. We note that
in Table 7 for all the methods except SplitBrain, we report
numbers are shown in the original paper. For SplitBrain, we
reimplemented their model faithfully and report numbers
based on our reimplementation (we verified the accuracy
of our SplitBrain code by the fact that we get very similar
results with our reimpementation as in the original paper
[85] for ImageNet experiments, see below).

The family of contrastive learning methods, such as DIM,
CPC, and CMC, achieve higher classification accuracy than
other methods such as SplitBrain that use predictive learning;
or BiGAN that use adversarial learning. CMC significantly
outperforms DIM and CPC in all cases. We hypothesize
that this outperformance results from the modeling of cross-
view mutual information, where view-specific noisy details
are discarded. Another head-to-head comparison happens
between CMC and SplitBrain, both of which modeling im-
ages as seprated L and ab streams; we achieve a nearly 8%
absolute improvement for conv5 and 17% improvement for
fc5. Finally, we notice that the predictive learning methods
suffer from a big drop in performance when the encoding
layer is switched from conv5 to fc7. On the other hand, the
contrastive learning approaches are much more stable across
layers, suggesting that the mutual information maximization
paradigm learns more semantically meaningful representa-
tions shared by the different views. From a practical perspec-
tive, this is a significant advantage as the selection of specific
layers should ideally not change downstream performance
by too much.

In this experiments we used AlexNet as backbone.
Switching to more powerful networks such as ResNets is
likely to further improve the representation quality.

D.2. CMC on ImageNet with AlexNet

ImageNet [16] consists of 1000 image classes and is fre-
quently considered as a testbed for unsupervised representa-
tion learning algorithms.

To compare with other methods, we adopt standard
AlexNet and split it into two encoders. Because of split-
ting, each layer only connects to half of the neurons in the
previous layer, and therefore the number of parameters in
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Method classifier | convS  fc7 | Strided Crop
AE 62.19 5578 -
NAT [9] 64.32  61.43 -
BiGAN [18] MLP 1 5153 6718 -
SplitBrain' [85] 72.35  63.15 -
DIM [31] 72.57  70.00 78.21
CPC [57] MLP - - 77.81
CMCT (Patch) Linear | 76.65 79.25 82.58
CMCT (Patch) MLP | 80.14 80.11 83.43
CMCT(NCE) Linear | 8328 86.66 -
CMC'(NCE) MLP | 84.64 86.88 -
Supervised 68.70

Table 7: Classification accuracies on STL-10 by using a two layer
MLP as classifier for evaluating the representations learned by a
small AlexNet. For all methods we compare against, we include
the numbers that are reported in the DIM [31] paper, except for
SplitBrain, which is our reimplementation. Methods marked with '
have half the number of parameters because of splitting.

our model halves. We remove local response layer and add
batch normalization to each layer. For the memory-based
CMC model, we adopt ideas from [79] for computing and
storing a memory. We retrieve 4096 negative pairs from the
memory bank to contrast each positive pair (the effect of
the number of negatives is shown in Sec. D.3). The training
details are present in Sec. E.2.

ImageNet Classification Accuracy
Method convl conv2 conv3 conv4 conv5
ImageNet-Labels 193 363 442 483 50.5
Random 11.6 17.1 169 163 14.1
Data-Init [42] 17.5 23.0 245 232 206
Context [17] 16.2 233 302 317 29.6
Colorization [84] 13.1 248 310 326 318
Jigsaw [54] 19.2 30.1 347 339 283
BiGAN [18] 177 245 310 299 280
SplitBrain® [85] 177 293 354 352 328
Counting [55] 18.0 30.6 343 325 257
Inst-Dis [79] 16.8 265 31.8 34.1 356
RotNet [22] 18.8 31.7 387 382 365
DeepCluster [11] 129 292 38.2 39.8 36.1
AET [83] 193 328 40.6 39.7 37.7
CMCT({Y,DbDr})| 183 337 383 40.5 428

Table 8: Top-1 classification accuracy on 1000 classes of ImageNet
[16] with single crop. We compare our CMC method with other
unsupervised representation learning approaches by training 1000-
way logistic regression classifiers on top of the feature maps of each
layer, as proposed by [84]. Methods marked with T only have half
the number of parameters compared to others, because of splitting.

Table 8 shows the results of comparing the CMC against
other models, both predictive and contrastive. Our CMC is
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Figure 6: We plot the number of negative examples m in NCE-
based contrastive loss against the accuracy for 100 randomly chosen
classes of Imagenet 100. It is seen that the accuracy steadily in-
creases with m.

the best among all these methods; futhermore CMC tends
to perform better at higher convolutional layers, similar to
another contrasting-based model Inst-Dis [79].

D.3. Number of negatives

Effect of the number of negative samples. We investigate
the relationship between the number of negative pairs m in
NCE-based loss and the downstream classification accuracy
on a randomly chosen subset of 100 classes of Imagenet (the
same set of classes is used for any number of negative pairs).
We train a 100-way linear classifier using CMC pre-trained
features with varying number of negative pairs, starting from
64 pairs upto 8192 (in multiples of 2). Fig. 6 shows that
the accuracy of the resulting classifier steadily increases but
saturates at around 60.3% with m = 4096 samples. We used
AlexNet and the NCE approximation in this study ((m+1)-
way softmax cross entropy, a.k.a. InfoNCE, also follow a
similar trend).

D.4. Compatibility with other methods

To test the compatibility of CMC with mechanisms pro-
posed in other self-supervised learning methods, we consider
combining CMC with MoCo [27] (i.e., switching from mem-
ory bank [79] to momentum encoder) and PIRL [49] (i.e.,
applying a second JigSaw branch). In this setup, we per-
form both unsupervised pre-training and linear evaluation on
the same ImageNet-100 subset as above. We use the same
contrastive loss objective function and training recipe for all
methods, to ensure a head-to-head comparison. Specifically,
we pre-train for 240 epochs with learning rate initialized as
0.03 and decayed with cosine annealing schedule.

Table 9 summarizes the results. We observe that combin-
ing CMC with the MoCo mechanism or JigSaw branch in
PIRL can consistently improve the performance, verifying
that they are compatible.
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Method # of Params  Top-1 Acc
MoCo 24M 73.5
PIRL 24M 75.1
CMC 12M 75.6
CMC + MoCo 12M 77.2 (+1.6)
CMC + PIRL 12M 78.0 (+2.4)
CMC + MoCo + PIRL 12M 79.3 (+3.7)
CMC + MoCo + PIRL + RA 12M 81.5 (+5.9)

Table 9: Compatibility of CMC with other mthods. We pre-train
and evaluate on ImageNet-100 subset with top-1 accuracy reported.
Specifically, we combine CMC with MoCo (i.e., switching from
memory bank to momentum encoder), PIRL (i.e., applying a second
JigSaw branch), or both. Consistent improvement is observed with
a ResNet-50. RA stands for RandAugment.

Half of AlexNet[43] for STL-10

Layer X C K S P
data 64 * - - -
convl 64 48 31 1
pooll 31 48 3 2 0
conv2 31 96 3 1 1
pool2 15 96 32 0
convd 15 192 3 1 1
convd 15 192 3 1 1
convs 15 96 31 1
pool5 7 96 3 2 0
fc6 1 2048 7 1 O
fc7 1 2048 1 1 O
fc8 1 64 1 1 0

Table 10: The variant of AlexNet architecture used in our
CMC for STL-10 (only half is present here due to splitting).
X spatial resolution of layer, C number of channels in layer; K
conv or pool kernel size; S computation stride; P padding; *
channel size is dependent on the input source, e.g. 1 for L channel
and 2 for ab channel.

E. Implementation Details
E.1. STL-10

For a fair comparison with DIM [31] and CPC [57], we
adopt the same architecture as that used in DIM and split it
into two encoders, each shown as in Table 10. For the imple-
mentation of the score function, we adopt similar “encoder-
and-dot-product” strategy, which is tantamount to a bilinear
model.

In the patch-based contrastive learning stage, we use
Adam optimizer with an initial learning rate of 0.001, 31 =
0.5, B2 = 0.999. We train for a total of 200 epochs with
learning rate decayed by 0.2 after 120 and 160 epochs. In
the non-linear classifier evaluation stage, we use the same



optimizer setting. For the NCE-based contrastive learning
stage, we train for 320 epochs with the learning rate initial-
ized as 0.03 and further decayed by 10 for every 40 epochs
after the first 200 epochs. The temperature 7 is set as 0.1. In
general, 7 € [0.05, 0.2] works reasonably well.

E.2. ImageNet

For patch-based contrastive loss, we use the same opti-
mizer setting as in Sec. E.1 except that the learning rate is
initialized as 0.01.

For NCE-basd contrastive loss in both full ImageNet and
ImageNet100 experiments present in Sec. D.3, the encoder
architecture used for either L or ab channels is shown in
Table 11. In the unsupervised learning stage of AlexNet, we
use SGD to train the network for a total of 200 epochs. The
temperature 7 is set as 0.07 by following previous work [79].
The learning rate is initialized as 0.03 with a decay of 10
for every 40 epochs after the first 120 epochs. Weight decay
is set as 10~% and momentum is kept as 0.9. For the linear
classification stage, we train for 100 epochs. The learning
rate is initialized as 0.1 and decayed by 0.2 every 15 epochs
after the first 60 epochs. We set weight decay as 0 and
momentum as 0.9.

For ResNets in CMC stage, instead of using step decay,
we choose cosine annealing to gradually decrease the learn-
ing rate. In the linear evaluation stage, we train for 100
epochs. The learning rate is initialized as 30 for ResNet-50
and ResNet-101, and 50 for ResNet-50 x2. It is decayed by
0.2 every 15 epochs after the first 60 epochs. We set weight
decay as 0 and momentum as 0.9.

Half of AlexNet[43] for ImageNet

Layer X C K S P
data 224 ® - - -
convl 55 48 11 4 2
pooll 27 48 3 2 0
conv2 27 128 5 1 2
pool2 13 128 3 2 0
convd 13 192 3 1 1
convd 13 192 3 1 1
convs 13 128 3 1 1
pool5 6 128 3 2 0
fc6 1 2048 6 1 0
fc7 1 2048 1 1 O
fc8 1 128 1 1 0

Table 11: AlexNet architecture used in CMC for ImageNet
(only half is present here due to splitting). X spatial resolution
of layer, C number of channels in layer; K conv or pool kernel
size; S computation stride; P padding; * channel size is dependent
on the input source, e.g. 1 for L channel and 2 for ab channel.
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E.3. UCF101 and HMDBS51

Following previous work [50, 44, 66, 10], we use Caf-
feNet for the video experiments. We tailor the network
and use features from the fc6 layer for contrastive learning.
Dropout of 0.5 is used to alleviate overfitting.

E.4. NYU Depth-V2

While experimenting with different views on NYU Depth-
V2 dataset, we encode the features from patches with a size
of 128 x 128. The detailed architecture is shown in Table 12.
In the unsupervised training stage, we use Adam optimizer
with an initial learning rate of 0.001, 3, = 0.5, 82 = 0.999.
We train for a total of 3000 epochs with learning rate de-
cayed by 0.2 after 2000, 2400, and 2800 epochs. For the
downstream semantic segmentation task, we use the same
optimizer setting but train for fewer epochs. We only train
200 epochs for CMC pre-trained models, and train 1000
epochs for the Random and Supervised baselines until con-
vergence. For the classification task evaluated on STL-10,
we use the same optimizer setting as in Sec. E.1 to report
numbers.

Encoder Architecture on NYU

Layer X C K S P
data 128 * - - =
convl 64 64 8 2 3
pooll 32 64 2 2 0
conv2 16 128 4 2 1
conv3 8 25%6 4 2 1
conv4 8 25%6 3 1 1
convs 4 512 4 2 1
fc6 1 512 4 1 0
fc7 1 256 1 1 0

Table 12: Encoder architecture used in our CMC for playing
with different views on NYU Depth-V2. X spatial resolution of
layer, C number of channels in layer; K conv or poo1l kernel size;
S computation stride; P padding; * channel size is dependent on
the input source, e.g. 1 for L, 2 for ab, 1 for depth, 3 for surface
normal, and 1 for segmentation map.

F. Change Log

arXiv v2 Added references to Time Contrastive Networks
[68] and Local Aggregation [87]. Fixed Typos.

arXiv v3 Added analysis of effect of mutual information,
updated results, and rearranged the contents.

arXiv v4 Added reference to the original k-pair loss [72]
and other related work. Cited some recent works to reflect
progresses after our v1 version. We also removed Fast Au-
toAugment and rearranged the contents.

arXiv v5 Added the list of ImageNet-100 proposed in this
paper, and the compatibility of CMC with other methods.



