Skip to main content

Predictive Process Mining Meets Computer Vision

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 392))

Abstract

Nowadays predictive process mining is playing a fundamental role in the business scenario as it is emerging as an effective means to monitor the execution of any business running process. In particular, knowing in advance the next activity of a running process instance may foster an optimal management of resources and promptly trigger remedial operations to be carried out. The problem of next activity prediction has been already tackled in the literature by formulating several machine learning and process mining approaches. In particular, the successful milestones achieved in computer vision by deep artificial neural networks have recently inspired the application of such architectures in several fields. The original contribution of this work consists of paving the way for relating computer vision to process mining via deep neural networks. To this aim, the paper pioneers the use of an RGB encoding of process instances useful to train a 2-D Convolutional Neural Network based on Inception block. The empirical study proves the effectiveness of the proposed approach for next-activity prediction on different real-world event logs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://keras.io/.

  2. 2.

    https://www.tensorflow.org/.

  3. 3.

    https://github.com/vinspdb/PREMIERE.

  4. 4.

    http://www.win.tue.nl/bpi/2012/challenge.

  5. 5.

    https://data.4tu.nl/repository/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6.

  6. 6.

    https://www.win.tue.nl/bpi/doku.php?id=2013:challenge.

  7. 7.

    For this deep neural network we have used the implementation provided in [12];.

References

  1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  2. Abdel-Hamid, O., Mohamed, A., Jiang, H., Deng, L., Penn, G., Yu, D.: Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio, Speech Lang. Process. 22(10), 1533–1545 (2014)

    Article  Google Scholar 

  3. Andresini, G., Appice, A., Di Mauro, N., Loglisci, C., Malerba, D.: Exploiting the auto-encoder residual error for intrusion detection. In: 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW), pp. 281–290 (2019)

    Google Scholar 

  4. Appice, A., Di Mauro, N., Malerba, D.: Leveraging shallow machine learning to predict business process behavior. In: 2019 IEEE International Conference on Services Computing (SCC), pp. 184–188 (2019)

    Google Scholar 

  5. Appice, A., Malerba, D.: A co-training strategy for multiple view clustering in process mining. IEEE Trans. Serv. Comput. 9(6), 832–845 (2016)

    Article  Google Scholar 

  6. Appice, A., Malerba, D., Morreale, V., Vella, G.: Business event forecasting. In: Spender, J., Schiuma, G., Albino, V. (eds.) 10th International Forum on Knowledge Asset Dynamics, IFKAD 2015, pp. 1442–1453. Inst Knowledge Asset Management (2015)

    Google Scholar 

  7. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Proceedings of the 24th International Conference on Neural Information Processing Systems, NIPS 2011, pp. 2546–2554. Curran Associates Inc., USA (2011)

    Google Scholar 

  8. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. J. MIS Q. 40, 1009–1034 (2016)

    Article  Google Scholar 

  9. Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate LSTM models of business processes. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 286–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_19

    Chapter  Google Scholar 

  10. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_27

    Chapter  Google Scholar 

  11. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.: An eye into the future: leveraging a-priori knowledge in predictive business process monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 252–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_15

    Chapter  Google Scholar 

  12. Di Mauro, N., Appice, A., Basile, T.M.A.: Activity prediction of business process instances with inception CNN models. In: Alviano, M., Greco, G., Scarcello, F. (eds.) AI*IA 2019. LNCS (LNAI), vol. 11946, pp. 348–361. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35166-3_25

    Chapter  Google Scholar 

  13. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)

    Article  Google Scholar 

  14. Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi, F.M., Rizzi, W.: Predictive business process monitoring framework with hyperparameter optimization. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 361–376. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_22

    Chapter  Google Scholar 

  15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  17. Kim, T., Suh, S.C., Kim, H., Kim, J., Kim, J.: An encoding technique for CNN-based network anomaly detection. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 2960–2965, December 2018

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. CACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  21. Li, Z., Qin, Z., Huang, K., Yang, X., Ye, S.: Intrusion detection using convolutional neural networks for representation learning. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S.M. (eds.) ICONIP 2017. LNCS, vol. 10638, pp. 858–866. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70139-4_87

    Chapter  Google Scholar 

  22. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  23. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comp. 11(6), 962–977 (2018)

    Article  Google Scholar 

  24. Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: Using convolutional neural networks for predictive process analytics. In: 2019 International Conference on Process Mining (ICPM), pp. 129–136 (2019)

    Google Scholar 

  25. Pravilovic, S., Appice, A., Malerba, D.: Process mining to forecast the future of running cases. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2013. LNCS (LNAI), vol. 8399, pp. 67–81. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08407-7_5

    Chapter  Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  27. Song, M., van der Aalst, W.M.: Towards comprehensive support for organizational mining. Decis. Support Syst. 46(1), 300–317 (2008)

    Article  Google Scholar 

  28. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00328-8_11

    Chapter  Google Scholar 

  29. Szegedy, C., et al.: Going deeper with convolutions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015

    Google Scholar 

  30. Tax, N., Teinemaa, I., van Zelst, S.J.: An interdisciplinary comparison of sequence modeling methods for next-element prediction. Softw. Syst. Model. 1–21 (2020). https://doi.org/10.1007/s10270-020-00789-3

  31. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  32. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. TKDD 13(2), 17:1–17:57 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

Authors wish to thank unknown reviewers for the useful suggestions provided to improve the final quality of the paper. The research of Vincenzo Pasquadibisceglie is funded by PON RI 2014-2020 - Big Data Analytics for Process Improvement in Organizational Development - CUP H94F18000260006. The work is partially supported by the POR Puglia FESR-FSE 2014-2020 - Asse prioritario 1 - Ricerca, sviluppo tecnologico, innovazione - Sub Azione 1.4.b bando Innolabs - Research project KOMETA (Knowledge Community for Efficient Training through Virtual Technologies), funded by Regione Puglia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Pasquadibisceglie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D. (2020). Predictive Process Mining Meets Computer Vision. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds) Business Process Management Forum. BPM 2020. Lecture Notes in Business Information Processing, vol 392. Springer, Cham. https://doi.org/10.1007/978-3-030-58638-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58638-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58637-9

  • Online ISBN: 978-3-030-58638-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics