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Abstract. Predictive business process monitoring (PBPM) techniques
predict future process behaviour based on historical event log data to im-
prove operational business processes. Concerning the next activity pre-
diction, recent PBPM techniques use state-of-the-art deep neural net-
works (DNNs) to learn predictive models for producing more accurate
predictions in running process instances. Even though organisations mea-
sure process performance by key performance indicators (KPIs), the
DNN’s learning procedure is not directly affected by them. Therefore,
the resulting next most likely activity predictions can be less benefi-
cial in practice. Prescriptive business process monitoring (PrBPM) ap-
proaches assess predictions regarding their impact on the process per-
formance (typically measured by KPIs) to prevent undesired process ac-
tivities by raising alarms or recommending actions. However, none of
these approaches recommends actual process activities as actions that
are optimised according to a given KPI. We present a PrBPM technique
that transforms the next most likely activities into the next best actions
regarding a given KPI. Thereby, our technique uses business process
simulation to ensure the control-flow conformance of the recommended
actions. Based on our evaluation with two real-life event logs, we show
that our technique’s next best actions can outperform next activity pre-
dictions regarding the optimisation of a KPI and the distance from the
actual process instances.

Keywords: Prescriptive business process monitoring, predictive busi-
ness process monitoring, business process management.

1 Introduction

Predictive business process monitoring (PBPM) techniques predict future pro-
cess behaviour to improve operational business processes [9]. A PBPM technique
constructs predictive models from historical event log data [10] to tackle different
prediction tasks like predicting next activities, process outcomes or remaining
time [4]. Concerning the next activity prediction, recent PBPM techniques use
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state-of-the-art deep neural networks (DNNs) to learn predictive models for pro-
ducing more accurate predictions in running process instances [25]. DNNs belong
to the class of deep-learning (DL) algorithms. DL is a subarea of machine learn-
ing (ML) that identifies intricate structures in high-dimensional data through
multi-representation learning [8]. After learning, models can predict the next
most likely activity of running process instances.

However, providing the next most likely activity does not necessarily sup-
port process stakeholders in process executions [21]. Organisations measure the
performance of processes through key performance indicators (KPIs) in regard
to three dimensions: time, cost and quality [23]. Recent PBPM techniques rely
on state-of-the-art DNNs that can only learn predictive models from event log
data. Even though an event log can include KPI information, it does not directly
affect such an algorithm’s learning procedure unless a KPI is the (single) learn-
ing target itself. As a consequence, the learned models can output next activity
predictions, which are less beneficial for process stakeholders.

Some works tackled this problem with prescriptive business process monitor-
ing (PrBPM) approaches. PrBPM approaches assess predictions regarding their
impact on the process performance – typically measured by KPIs – to prevent
undesired activities [21]. To achieve that, existing approaches generate alarms
[21,5,11,13] or recommend actions [3,6]. However, none of these approaches rec-
ommends next best actions in the form of process activities that are optimised
regarding a given KPI for running processes. In our case, best refers to a KPI’s
optimal value regarding the future course of a process instance. Additionally, the
next best actions, which depend on next activity predictions and prediction of a
particular KPI, might obscure the actual business process. Therefore, transform-
ing methods should check whether a recommended action is conform regarding
a process description.

A

B

DC

E

(a) Activity

A

B

DC

E

(c) Action
(with optimisation
and simulation)

Id Activity name

A Create purchase order

B Record goods receipt

C Remove payment block

D Record invoice receipt

E Payment

(b) Action
(with optimisation)

A

DC

E

B

Completed

Next (selected)

Next (not selected)

Fig. 1: A next activity prediction vs. a next best action recommendation.

Given a running process instance of a purchase order handling process after
finishing the first two activities, a DNN model predicts the next most likely
activity D (cf. (a) in Fig. 1). Additionally, the KPI time is of interest and the
the first two activities A and B take each 1 hour, the predicted activity D takes 2
hours and the last activity E takes 2 hours. In sum, the complete process instance
takes 6 hours and a deadline of 5 hours – that exists due to a general agreement
– is exceeded. In contrast, the recommended action with optimisation can be the
activity E (cf. (b) in Fig. 1). Even though the complete process instance takes 4
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hours, the mandatory activity D is skipped. With an additional simulation, the
activity “Remove payment block” can be recommended (cf. (c) in Fig. 1) taking
1 hour. Afterwards, the activities D and E are followed with a duration of 2
hours and 1 hour. Here, the activity E takes 1 hour instead of 2 hours since the
payment block is already removed. Thus, the complete process instance takes 5
hours, and the deadline is met.

In this paper, we provide a PrBPM technique for recommending the next
best actions depending on a KPI. Thereby, it conducts a business process sim-
ulation (BPS) to remain within the allowed control-flow. To reach our research
objective, we develop a PrBPM technique and evaluate its actions regarding the
optimisation of a KPI and the distance from ground truth process instances with
two real-life event logs.

This paper is an extended and revised version of a research-and-progress
paper [26]. Additionally, it includes a BPS and an evaluation with two real-life
logs. The paper is structured as follows: Sec. 2 presents the required background
for our PrBPM technique. Sec. 3 introduces the design of our PrBPM technique
for recommending next best actions. Further, we evaluate our technique in Sec. 4.
Sec. 5 provides a discussion. The paper concludes with a summary and an outlook
on future work in Sec. 7.

2 Background

2.1 Preliminaries

PBPM or PrBPM techniques require event log data. We adapt definitions by
Polato et al. [15] to formally describe the terms event, trace, event log, prefix
and suffix. In the following, A is the set of process activities, C is the set of
process instances (cases), and C is the set of case ids with the bijective projection
id : C → C, and T is the set of timestamps. To address time, a process instance
c ∈ C contains all past and future events, while events in a trace σc of c contain
all events up to the currently available time instant. E = A×C ×T is the event
universe.

Definition 1 (Event). An event e ∈ E is a tuple e = (a, c, t), where a ∈ A is
the process activity, c ∈ C is the case id, and t ∈ T is its timestamp. Given an
event e, we define the projection functions Fp = {fa, fc, ft}: fa : e→ a, fc : e→
c, and ft : e→ t.

Definition 2 (Trace). A trace is a sequence σc = 〈e1, . . . , e|σc|〉 ∈ E∗ of events,
such that fc(ei) = fc(ej) ∧ ft(ei) ≤ ft(ej) for 1 ≤ i < j ≤ |σc|. Note a trace σc
of process instance c can be considered as a process instance σc.

Definition 3 (Event log). An event log Lτ for a time instant τ is a set of
traces, such that ∀σc ∈ Lτ .∃c ∈ C . (∀e ∈ σc . id(fc(e)) = c) ∧ (∀e ∈ σc . ft(e) ≤
τ), i. e. all events of the observed cases that already happened.

Definition 4 (Prefix, suffix of a trace). Given a trace σc = 〈e1, .., ek, .., en〉,
the prefix of length k is hdk(σc) = 〈e1, .., ek〉, and the suffix of length k is
tlk(σc) = 〈ek+1, .., en〉, with 1 ≤ k < n.
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2.2 Long short-term memory neural networks

Our PrBPM technique transforms next activity predictions into the next best
actions. Thus, next activity predictions are the basis for our PrBPM technique.
To predict next activities, we use a “vanilla”, i.e. basic, long short-term mem-
ory network (LSTM) [7] because most of the PBPM techniques for predicting
next activities rely on this DNN architecture [24]. LSTMs belong to the class
of recurrent neural networks (RNNs) [8] and are designed to handle temporal
dependencies in sequential prediction problems [1]. In general, consists of three
layers: an input layer (receiving data input), a hidden layer (i.e. an LSTM layer
with an LSTM cell) and an output layer (providing predictions).

An LSTM cell uses four gates to manage its memory over time to avoid the
problem of gradient exploding/vanishing in the case of longer sequences [1]. First,
a forget gate that determines how much of the previous memory is kept. Second,
an input gate controls how much new information is stored into memory. Third,
a gate gate or candidate memory that defines how much information is stored
into memory. Fourth, an output gate that determines how much information is
read out of the memory.

To learn an LSTM’s parameters, a loss function (e.g. the cross-entropy loss
for classification) is defined on a data point (i.e. prediction and label) and mea-
sures the penalty. Additionally, a cost function in its basic form calculates the
sum of loss functions over the training set. The LSTM’s parameters are updated
iteratively via a gradient descent algorithm (e.g. stochastic gradient descent), in
that, the gradient of the cost function is computed by backpropagation through
time [19]. After learning the parameters, an LSTM model with adjusted param-
eter values exists.

2.3 Business process simulation

Actions optimised according to a KPI can be not conform to the process control-
flow. Thus, suggesting process-conform actions to process stakeholders is essen-
tial. Consequently, we add control-flow knowledge to our PrBPM technique with
formal process models.

A well-known approach to assess the quality of process executions is business
process simulation (BPS). Several approaches examine processes and their vari-
ants regarding compliance or performance with BPS [2,16]. We refer to discrete-
event-driven BPS [22]. Here, simulation models formally contain discrete events
which are interrelated via process semantics.

BPS usually delivers its insights to users [17]. Unlike existing approaches,
such as [27,18], we use the simulation results to process the predictions of an
LSTM. Thus, we use discrete-event-driven [22] short-term simulation [18] as a
boundary measure to ensure that the DNN-based next best action makes sense
from a control-flow perspective. Alike Rozinat et al. [18], our simulation starts
from a non-empty process state to aid in recommending the next best action
from the current state on.
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3 A PrBPM technique for recommending next best
actions

Our PrBPM technique transforms next activity predictions into the next best
actions. The technique consists of an offline and an online component. In the
offline component, it learns a DNN for predicting next activities and values of
a KPI. In the online component, the next best actions are recommended based
on the next activity and KPI value predictions.

3.1 Offline component

The offline component receives as input an event log Lτ , and outputs the two
ML models mpp and mcs. While mpp (process prediction model) predicts next
activities and a KPI value related to next activities, mcs (candidate selection
model) selects a fix set of suffix candidates. The technique learns both models
from individually pre-processed versions of Lτ . Fig. 2 visualises the steps of
the offline component. In the following, we describe the steps of the offline

Learn process
prediction model

Event log

Pre-process
event log for

process
prediction

Learn candidate
selection model

Event log

Pre-process
event log for

candidate
selection

Pre-processed
event log for

process prediction
Process

prediction model
Candidate

selection model

Pre-processed
event log for

candidate
selection

Fig. 2: Four-step offline component scheme with the two models mpp and mcs.

component based on the exemplary finished process instance σf1 , as represented
in (1). The last attribute per event is the KPI; here the defined costs for executing
an activity.

σf1 = 〈(1, “Create Application”, 2011-09-30 16:20:00, 0),

(1, “Concept”, 2011-09-30 17:30:00, 10),

(1, “Accepted”, 2011-09-30 18:50:00, 20),

(1, “Validating”, 2011-09-30 19:10:00, 40)〉.

(1)

Pre-process event log for process prediction. mpp is a multi-task DNN
for predicting next activities and a KPI value at each time step of a running
process instance. For mpp, the pre-processing of Lτ comprises four steps. First,
to determine the end of each process instance in Lτ , it adds a termination event
to the end of each process instance. So, for σf1 , as represented in (1), we add the
event (1, “End”, 2011-09-30 19:10:00, 0) after the fourth event with the activity
name “Validating”. Additionally, for termination events, we always overtake the
timestamp value of the previous event and set the value of the KPI to 0. Second,
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it onehot-encodes all activity names in the process instances as numeric values
(cf. (2) for σf1 including the termination event’s activity).

σf1 = 〈(0, 0, 0, 0, 1), (0, 0, 0, 1, 0), (. . . ), (0, 1, 0, 0, 0), (1, 0, 0, 0, 0)〉. (2)

This step is necessary since LSTMs, as used in this paper, use a gradient
descent optimisation algorithm to learn the network’s parameters. Third, it crops
prefixes out of process instances by using the function hdk(). For instance, a

prefix with size three of σf1 is:

hk3(σf1 ) = 〈(0, 0, 0, 0, 1),(0, 0, 0, 1, 0),(0, 0, 1, 0, 0)〉. (3)

Lastly, it transforms the cropped input data into a three-order tensor (pre-
fixes, time steps and attributes). Additionally, mpp needs two label structures
for parameter learning. First, for the onehot-encoded next activities, a two-
dimensional label matrix is required. Second, if the KPI values related to the
next activities are scaled numerically, a one-dimensional label vector is required.
If the values are scaled categorically, a two-dimensional label matrix is needed.

Create process prediction model. mpp is a multi-task DNN. The model’s
architecture follows the work of Tax et al. [20]. The input layer of mpp receives
the data and transfers it to the first hidden layer. The first hidden layer is
followed by two branches. Each branch refers to a prediction task and consists
of two layers, a hidden layer and an output layer. The output layer of the upper
branch realises next activity predictions, whereas the lower creates KPI value
predictions. Depending on the KPI value’s scaling (i.e. numerical or categorical),
the lower branch solves either a regression or classification problem. Each hidden
layer of mpp is an LSTM layer with an LSTM cell.

Pre-process event log for candidate selection.mcs is a nearest-neighbour-
based ML algorithm for finding suffixes “similar” to predicted suffixes. For mcs,
the pre-processing of Lτ consists of three steps. First, it ordinal-encodes all
activity names in numerical values. For example, the ordinal-encoded represen-
tation of σf1 , as depicted in (1) including the termination event’s activity, is
〈(1), (2), (3), (4), (5)〉. Second, it crops suffixes out of process instances through

the function tlk(·). For instance, the suffix with size three of σf1 (lt3(σf1 )) is
〈(4), (5)〉. Lastly, the cropped input data is transformed into a two-dimensional
matrix (suffixes and attributes).

Create candidate selection model. mcs is a nearest-neighbour-based ML
algorithm. It retrieves k suffixes “nearest” to a suffix predicted for a given prefix
(i.e. a running process instance at a certain time step). The technique learns the
model mcs based on all suffixes cropped out of Lτ .

3.2 Online component

The online component receives as input a new process instance, and the two
trained predictive models mpp and mcs. It consists of five steps (see Fig. 3), and
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outputs next best actions. After pre-processing (first step) of the running process
instance, a suffix of next activities and its KPI values are predicted (second step)
by applying mpp. The second step is followed by the condition, whether the sum
of the KPI values of the suffix and the respective prefix exceeds a threshold or
not. If the threshold is exceeded, the predicted suffix of activities is transferred
from the second to the third step (i.e. find candidates) and the procedure for
generating next best actions starts. Otherwise, it provides the next most likely
activity. To find a set of suffix candidates, the technique loadsmcs from the offline
component. Subsequently, it selects the best candidate from this set depending
on the KPI and concerning BPS. Finally, the first activity of the selected suffix
represents the best action and is concatenated to the prefix of activities (i.e.
running process instance at a certain time step). If the best action is the end
of the process instance, the procedure ends. Otherwise, the procedure continues
and predicts the suffix of the new prefix. In the following, we detail the online

Predict suffix
Pre-process

process instance
Find candidates

Select best
candiate

Update process
instance

Process
predicition model

Intervention
relevant?

Yes

No

End of process
instance?

Yes

No

Yes

Best candidateProcess model
Candidates

Next best action
Running process

instance
Candidate

selection model

Suffix prediction

Fig. 3: Five-step online component scheme with the two models mpp and mcs.

component’s five steps. Thereby, we refer to the running process instance σr2, for
that the second event has just finished.

σr2 = 〈(2, “Create Application”, 2012-09-30 18:00:00, 20),

(2, “Concept”, 2012-09-30 18:30:00, 20)〉.
(4)

Pre-process process instance. To predict the suffix of the running process
instance with mpp, we onehot-encode all activity names in numerical values and
transform the output into a third-order tensor.

Predict suffix. Based on a running process instance (prefix), mpp predicts
the next sequence of activities and the KPI values. To get the complete suffix,
we apply mpp repeatedly. Afterwards, the technique calculates the sum of the
KPI values over the activities of the complete process instance consisting of the
prefix and its predicted suffix. For instance, if the prefix of a process instance is
σr2, one potential suffix is:

sσr
2

= 〈(“Accepted”, 20),(“Validating”, 40),(“End”, 10)〉. (5)

For a better intuition, we omit the suffixes’ encoding in the online compo-
nent. The values 20, 40 and 10 assigned to the events are KPI values (e.g. cost
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values) predicted by mpp. In line with Tax et al. [20], we do not perform the
suffix prediction for prefixes with size ≤ 1 since the amount of activity values is
insufficient. After predicting the suffix, the total costs of σr2 are 110. To start the
procedure for recommending the next best actions, the total KPI value of an in-
stance has to exceed a threshold value t. The value of t can be defined by domain
experts or derived from the event log (e.g. average costs of process instances).
Regarding σr2, the procedure starts because we assume t = 100 (110 > t).

Find candidates. Second, for the predicted suffix, mcs from the offline com-
ponent reveals a set of alternatives with a meaningful control-flow. For example,
mcs (k = 3) selects based on sσr

2
the following three suffix alternatives:

mcs(sσr
2
) = [〈(“End”, 10)〉,

〈(“Accepted”, 20),(“Validating”, 40),(“End”, 10)〉,
〈(“Validating”, 20),(“Accepted”, 10),(“Validating”, 10),

(“End”, 10)〉].

(6)

In (6), the first and the third suffix result in total costs (50 and 90) falling
below t.

Select the best candidate. In the third step, we select the next best action
from the set of possible suffix candidates. We sort the suffixes by the KPI value.
Thus, the first suffix is the best one in regard to the KPI. To incorporate control-
flow knowledge, a simulation model checks the resulting instance. Thereby, we
reduce the risk of prescribing nonsensical actions. The simulation uses a formal
process model to retrieve specific process semantics. The simulation produces the
current process state from the prefix and the process model. If the prefix does not
comply with the process model, the simulation aborts the suffix selection for the
prefix and immediately recommends an intervention. Otherwise, we check the k
selected suffixes whether they comply with the process model in the simulation
from the current process state on. If a candidate suffix fails the simulation, our
technique omits it in the selection. However, when all suffix candidates infringe
the simulation, the technique assumes the predicted next activity as the best
action candidate. Concerning the candidate set from (6), the best candidate is
suffix three since it does not infringe the simulation model.

Update process instance. To evaluate our technique, we assume that a
process stakeholder performs in each case the recommended action. Thus, if the
best suffix candidate exists, the activity (representing the next best action) and
the KPI value of the first event are concatenated to the running process instance
(i.e. prefix). After the update, σr2 comprises three events, as depicted in (7).

σr2 = 〈(2, “Create Application”, 2012-09-30 18:00:00, 20),

(2, “Concept”, 2012-09-30 18:30:00, 20),

(2, “Validating”, –, 20)〉.
(7)

The technique repeats the complete procedure until the termination event is
reached.
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4 Evaluation

We provide an evaluation regarding our PrPBM technique’s optimisation of a
KPI and the distance from ground truth process instances. For that, we de-
veloped a prototype that recommends next best actions depending on the KPI
throughput time and concerning a process simulation realised with DCR graphs.
We compare our results to a representative baseline [20] for two event logs.

4.1 Event logs

First, we use the helpdesk1 event log containing data from an Italian software
company’s ticketing management process. It includes 21, 348 events, 4, 580 pro-
cess instances, 226 process instance variants and 14 activities. Second, we include
the bpi2019 2 event log from the BPI challenge 2019, provided by a company for
paints and coatings. It depicts a purchase order handling processes. For this event
log, we only considered a random 10%-sampling with sequences of 30 events or
shorter, due to the high computation effort. It includes 101, 714 events, 24, 900
process instances, 3, 255 process instance variants and 32 activities.

4.2 Process models

We used DCR graphs as models for the BPS in our technique’s best candi-
date selection. In Fig. 4, we present the DCR graph for the helpdesk event log.
The three most important constraints are the following. First, after “Closed” the
other activities should not happen. Second, if “Assign seriousness” occurs, some-
one must take over the responsibility. Third, before a ticket is closed, “Resolve
ticket” must occur.

Fig. 5 shows the DCR graph for the bpi2019 event log. The three most es-
sential constraints are the following. First, “Create Purchase Order Item” may
only happen once per order. Second, After the goods were received, “Change
Quantity” and “Change price” should not occur. Third, “Record Goods Re-
ceipt”, “Record Invoice Receipt” and “Clear Invoice” must eventually follow
each other.

4.3 Procedure

We split both event logs in a 2/3 training and 1/3 test set with a random process-
instance-based sampling. As a baseline, we use the most cited next event PBPM
technique from Tax et al. [20]. We evaluate the technique in two ways. First,
we evaluate the optimisation of the KPI throughput time (in-time value) by the
percentage of process instances that could comply with the temporal threshold
for different prefix sizes. The temporal threshold is the average throughput time
of a process instance in an event log. Second, we evaluate the distance from

1https://data.mendeley.com/datasets/39bp3vv62t/1.
2https://data.4tu.nl/repository/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07.
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Fig. 4: DCR graph for the helpdesk event log.
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Fig. 5: DCR graph for the bpi2019 event log.

the ground truth process instance through the average Damerau-Levenshtein
distance. This metric determines the distance between two strings or sequences
through the minimum number of operations (consisting of insertions, deletions or
substitutions of a single character, or transposition of two adjacent characters),
i.e. the lower the value, the more similar the strings are.

To train the multi-task LSTM mpp, we apply the Nadam optimisation algo-
rithm with a categorical cross-entropy loss for next activity predictions and a
mean squared error for throughput time (KPI) predictions. Moreover, we set the
batch size to 256, i. e. gradients update after every 256th sample of the training
set. We set the default values for the other optimisation parameters. For train-
ing the candidate selection model mcs, we apply the nearest-neighbour-based
ML algorithm ball tree [14]. Ball tree utilises a binary tree data structure for
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maintaining spatial data hierarchically. We choose a spatial-based algorithm to
consider the semantic similarity between the suffixes of activities and KPI val-
ues. Moreover, we set the hyperparameter k (number of “nearest” neighbours)
of mcs to 5, 10 and 15. Thereby, we check different sizes of the suffix candidate
set.

Finally, technical details and the source code are available on GitHub3.

4.4 Results

Fig. 6 shows the results for the helpdesk event log. For most of the prefixes in
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Fig. 6: Results for the helpdesk event log.

the helpdesk event log, our technique’s next best actions are more in time than
next activity predictions. While for k = 10 next best actions have the lowest in-
time values compared to next activity predictions, in-time values of next best
actions with k = 5 and k = 15 are rather similar to each other. Furthermore, the
higher the k, the lower is the distance of the next best actions from the actual
process instances. Up to prefix size 4, the distance of the next best actions is
lower compared to next activity predictions.

Fig. 7 shows the results for the bpi2019 event log. For most of the prefixes
with a size ≥ 8, the next best actions of our technique are more in time than
next activity predictions. For k = 15 and prefixes ≥ 8, next best actions have

3https://github.com/fau-is/next-best-action.
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Fig. 7: Results for the bpi2019 event log.

an in-time value of 0. With an increasing k, the in-time values of the next best
actions vary less from prefix size 2 to 12. In contrast to next activity predictions,
the distance of next best actions is lower for prefixes with a size > 3 and < 15.
Over the three k values, the distance of next best actions is rather similar.

5 Discussion

Our contribution to academia and practice is a PrBPM technique that recom-
mends the next best actions depending on a KPI while concerning BPS. More-
over, the evaluation presents an instantiation of our PrBPM technique. The KPI
is the throughput time, and a DCR graph realises BPS via the event log.

Based on our results, our PrBPM technique can provide actions with lower
in-time values and less distance from the ground truth compared to the next
most likely activities for both event logs. However, the in-time values (i.e. the
percentage of process instances that could comply with the temporal threshold)
of next best actions differs more from the baseline’s next activity prediction for
the bpi2019 event log than for the helpdesk event log. The helpdesk event log
has a lower instance variability than the bpi2019 event log. Therefore, fewer
process paths exist from which our technique can recommend actions with lower
in-time values. Further, the number of candidates k has an effect on the KPI’s
optimisation. While we get the actions with the lowest in-time values with k = 10
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for the helpdesk event log, the KPI values with k = 5 and k = 15 are similar to
each other. For the bpi2019 event log, our technique provides actions with the
lowest in-time value if k is set to 15. The results with k = 5 are similar to those
of k = 10. A higher k value leads to lower in-time values in the bpi2019 event
log because of a higher instance variability. On the contrary, the helpdesk event
log needs a lower k value. Regarding the distance from ground truth process
instances, most of the next best actions (especially those for the bpi2019 event
log) reach a better result than next activity predictions. A reason for that could
be the limited predictive quality of the underlying DNN model for predicting
next activities. However, our technique integrates control-flow knowledge and
therefore overcomes this deficit to a certain degree. Moreover, for the bpi2019
event log, our technique provides actions with lower in-time values for prefixes
with a size ≥ 8. In terms of the helpdesk event log, we get actions with lower
in-time values for shorter prefixes. We suppose that our technique requires a
longer prefix for event logs with higher instance variability to recommend next
best actions. Finally, even though our technique provides actions with lower in-
time values, it seems that it does not terminate before the baseline. Our results
show the aggregated values over different prefix sizes. Thus, we assume that few
sequences, for which the termination can not be determined, distort the results.

Despite all our efforts, our technique bears three shortcomings. First, we
did not optimise the hyperparameters of the DNN model mpp, e.g. via random
search. Instead, we set the hyperparameters for mpp according to the work of Tax
et al. [20]. We used the same setting since we compare our technique’s next best
actions to their next activity predictions. Second, even though our technique is
process-modelling-notation agnostic, we argue that declarative modelling is an
appropriate approach for the process simulation. Due to its freedoms, declarative
modelling facilitates the partial definition of the control-flow. As a consequence,
we have a more flexible definition of a process’s control-flow than by using a
restricted procedural process model. While our DNN-based technique copes well
with rather flexible processes, other techniques using traditional ML algorithms
(e.g. a decision tree) might handle restricted processes faster and with a higher
predictive quality. Third, for our PrBPM technique’s design, we neither consider
cross-instance nor cross-business-process dependencies. In an organisational en-
vironment, additional effects like direct and indirect rebound effects can hinder
our technique.

6 Related Work

A variety of PBPM techniques were proposed by researchers as summarised by,
e.g. Márquez-Chamorro et al. [10] or Di Francescomarino et al. [4]. Many of
these techniques are geared to address the next activity prediction task. For
that, most of the recent techniques rely on LSTMs [24] such as Weinzierl et
al. [25]. To predict not only the next activities with a single predictive model,
Tax et al. [20] suggest a multi-task LSTM-based DNN architecture. With this
architecture, they predict the next activities and their timestamps. Metzger et
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al. [12] extend their architecture by another LSTM layer to additionally predict
the binary process outcome whether a delay occurs in the process or not. These
techniques output predictions and do not recommend next best actions.

Furthermore, researchers suggested PrBPM approaches that raise alarms or
recommend actions to prevent undesired activities. Metzger et al. [11] investigate
the effect of reliability estimates on (1) intervention costs (called adaption cost)
and (2) the rate of non-violation of process instances by performing a simulation
of a parameterised cost model. Thereby, they determine the reliability estimates
based on the predictions of an ensemble of multi-layer perceptron classifiers at
a pre-defined point in the process. In a later work [13], reliability estimates were
determined based on an ensemble of LSTM classifiers at different points in the
process. The recommendation of actions is not part of these works. Teinemaa et
al. [21] propose a concept of an alarm-based PrBPM framework. They suggest
a cost function for generating alarms that trigger interventions to prevent an
undesired outcome or mitigate its effect. In a later work [5], a multi-perspective
extension of this framework was presented. In both versions, the framework fo-
cuses on alarms. Gröger et al. [6] present a PrBPM technique that provides action
recommendations for the next process step during the execution of a business
process to avoid a predicted performance deviation. Performance deviation is
interpreted as a binary outcome prediction, i.e. exists a deviation or not. In de-
tail, an action recommendation comprises several action items and is represented
by a rule extracted from a learned decision tree. An action item consists of the
name and value of a process attribute. Even though this approach recommends
actions in the form of process attribute values of the next process step which are
optimised according to a KPI (e.g. lead time), process steps as next best actions
are not recommended. Conforti et al. [3] propose a PrBPM technique that pre-
dicts risks depending on the deviation of metrics during process execution. The
technique’s purpose is to provide decision support for certain actions such as
the next process activity which minimises process risks. However, this technique
can only recommend actions which are optimised regarding the KPI risk. Thus,
with the best of our knowledge, there is no PrBPM approach that transforms
next most likely activity predictions into the next best actions (represented by
activities) depending on a given KPI.

7 Conclusion

Next activity predictions provided by PBPM techniques can be less beneficial for
process stakeholders. Based on our motivation and the identified research gap,
we argue that there is a crucial need for a PrBPM technique that recommends
the next best actions in running processes. We reached our research goal with
the evaluation of our developed PrBPM technique in Sec. 5. Thereby, we show
that our technique can outperform the baseline regarding KPI fulfilment and
distance from ground truth process instances. Further research might concern
different directions. First, we plan to adapt existing loss functions for LSTMs
predicting next most likely activities. Such a loss function can enable an LSTM
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to directly consider information on KPIs in the learning procedure. Second, fu-
ture research should further develop existing PrBPM approaches. More advanced
multi-tasking DNN architectures can facilitate the recommendation of more so-
phisticated next best actions. For instance, next best actions that optimise more
than one KPI. Finally, we call for PrBPM techniques that are aware of concept
evolution. Our technique is not able to recommend an activity as the best action
if it was not observed in the training phase of the ML models.
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