Skip to main content

Triggering Proactive Business Process Adaptations via Online Reinforcement Learning

  • Conference paper
  • First Online:
Book cover Business Process Management (BPM 2020)

Abstract

Proactive process adaptation can prevent and mitigate upcoming problems during process execution by using predictions about how an ongoing case will unfold. There is an important trade-off with respect to these predictions: Earlier predictions leave more time for adaptations than later predictions, but earlier predictions typically exhibit a lower accuracy than later predictions, because not much information about the ongoing case is available. An emerging solution to address this trade-off is to continuously generate predictions and only trigger proactive adaptations when prediction reliability is greater than a predefined threshold. However, a good threshold is not known a priori. One solution is to empirically determine the threshold using a subset of the training data. While an empirical threshold may be optimal for the training data used and the given cost structure, such a threshold may not be optimal over time due to non-stationarity of process environments, data, and cost structures. Here, we use online reinforcement learning as an alternative solution to learn when to trigger proactive process adaptations based on the predictions and their reliability at run time. Experimental results for three public data sets indicate that our approach may on average lead to 12.2% lower process execution costs compared to empirical thresholding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hyper-parameters are used to configure the machine learning algorithms and thereby control the learning process.

  2. 2.

    https://openai.com/blog/openai-baselines-ppo/.

  3. 3.

    https://git.uni-due.de/predictive-process-monitoring/bpm-2020-artefacts/.

References

  1. Bosnic, Z., Kononenko, I.: Comparison of approaches for estimating reliability of individual regression predictions. Data Knowl. Eng. 67(3), 504–516 (2008)

    Article  Google Scholar 

  2. Cabanillas, C., Di Ciccio, C., Mendling, J., Baumgrass, A.: Predictive task monitoring for business processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 424–432. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_31

    Chapter  Google Scholar 

  3. Conforti, R., de Leoni, M., Rosa, M.L., van der Aalst, W.M.P., ter Hofstede, A.H.M.: A recommendation system for predicting risks across multiple business process instances. Decis. Support Syst. 69, 1–19 (2015)

    Article  Google Scholar 

  4. D’Angelo, M., et al.: On learning in collective self-adaptive systems: state of practice and a 3D framework. In: Litoiu, M., Clarke, S., Tei, K. (eds.) 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS@ICSE 2019, Montreal, QC, Canada, pp. 13–24. ACM (2019)

    Google Scholar 

  5. Dewey, D.: Reinforcement learning and the reward engineering principle. In: 2014 AAAI Spring Symposia, Stanford University, Palo Alto, California, USA, 24–26 March 2014. AAAI Press (2014)

    Google Scholar 

  6. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  7. Evermann, J., Rehse, J., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)

    Article  Google Scholar 

  8. Fahrenkrog-Petersen, S.A., et al.: Fire now, fire later: alarm-based systems for prescriptive process monitoring. CoRR abs/1905.09568 (2019)

    Google Scholar 

  9. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.: An eye into the future: leveraging a-priori knowledge in predictive business process monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 252–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_15

    Chapter  Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  11. Huang, Z., van der Aalst, W.M.P., Lu, X., Duan, H.: Reinforcement learning based resource allocation in business process management. Data Knowl. Eng. 70(1), 127–145 (2011)

    Article  Google Scholar 

  12. Kang, B., Kim, D., Kang, S.: Real-time business process monitoring method for prediction of abnormal termination using KNNI-based LOF prediction. Expert Syst. Appl. 39(5), 6061–6068 (2012)

    Article  Google Scholar 

  13. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_21

    Chapter  Google Scholar 

  14. Liu, N., Huang, J., Cui, L.: A framework for online process concept drift detection from event streams. In: 2018 International Conference on Services Computing, SCC 2018, San Francisco, CA, USA, pp. 105–112. IEEE (2018)

    Google Scholar 

  15. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Fast and accurate business process drift detection. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 406–422. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_27

    Chapter  Google Scholar 

  16. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2018)

    Article  Google Scholar 

  17. Mehdiyev, N., Evermann, J., Fettke, P.: A multi-stage deep learning approach for business process event prediction. In: Loucopoulos, P., Manolopoulos, Y., Pastor, O., Theodoulidis, B., Zdravkovic, J. (eds.) 19th Conference on Business Informatics, CBI 2017, Thessaloniki, Greece, pp. 119–128. IEEE Computer Society (2017)

    Google Scholar 

  18. Metzger, A., Bohn, P.: Risk-based proactive process adaptation. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 351–366. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3_25

    Chapter  Google Scholar 

  19. Metzger, A., Föcker, F.: Predictive business process monitoring considering reliability estimates. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 445–460. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_28

    Chapter  Google Scholar 

  20. Metzger, A., Franke, J., Jansen, T.: Ensemble deep learning for proactive terminal process management at duisport. In: vom Brocke, J., Mendling, J., Rosemann, M. (eds.) Business Process Management Cases, vol. 2. Springer, Heidelberg (2020)

    Google Scholar 

  21. Metzger, A., Neubauer, A.: Considering non-sequential control flows for process prediction with recurrent neural networks. In: 44th Euromicro Conference on Software Engineering and Advanced Applications, SEAA, Prague, Czech Republic, pp. 268–272. IEEE Computer Society (2018)

    Google Scholar 

  22. Metzger, A., Neubauer, A., Bohn, P., Pohl, K.: Proactive process adaptation using deep learning ensembles. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 547–562. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_34

    Chapter  Google Scholar 

  23. Nachum, O., Norouzi, M., Xu, K., Schuurmans, D.: Bridging the gap between value and policy based reinforcement learning. In: Advances in Neural Information Processing Systems 12 (NIPS 2017), pp. 2772–2782 (2017)

    Google Scholar 

  24. Nunes, V.T., Santoro, F.M., Werner, C.M.L., Ralha, C.G.: Real-time process adaptation: a context-aware replanning approach. IEEE Trans. Syst. Man Cybern. Syst. 48(1), 99–118 (2018)

    Article  Google Scholar 

  25. Palm, A., Metzger, A., Pohl, K.: Online reinforcement learning for self-adaptive information systems. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 169–184. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_11

    Chapter  Google Scholar 

  26. Park, G., Song, M.: Prediction-based resource allocation using LSTM and minimum cost and maximum flow algorithm. In: International Conference on Process Mining (ICPM 2019), Aachen, Germany, pp. 121–128 (2019)

    Google Scholar 

  27. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006)

    Article  Google Scholar 

  28. Poll, R., Polyvyanyy, A., Rosemann, M., Röglinger, M., Rupprecht, L.: Process forecasting: towards proactive business process management. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 496–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_29

    Chapter  Google Scholar 

  29. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. CoRR abs/1707.06347 (2017)

    Google Scholar 

  30. Silvander, J.: Business process optimization with reinforcement learning. In: Shishkov, B. (ed.) BMSD 2019. LNBIP, vol. 356, pp. 203–212. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24854-3_13

    Chapter  Google Scholar 

  31. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  32. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Advances in Neural Information Processing Systems 12 (NIPS 1999), pp. 1057–1063 (2000)

    Google Scholar 

  33. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  34. Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business process monitoring with structured and unstructured data. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_23

    Chapter  Google Scholar 

  35. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. TKDD 13(2), 17:1–17:57 (2019)

    Google Scholar 

  36. Teinemaa, I., Tax, N., de Leoni, M., Dumas, M., Maggi, F.M.: Alarm-based prescriptive process monitoring. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNBIP, vol. 329, pp. 91–107. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98651-7_6

    Chapter  Google Scholar 

  37. Weber, B., Sadiq, S.W., Reichert, M.: Beyond rigidity - dynamic process lifecycle support. Comput. Sci. - R&D 23(2), 47–65 (2009)

    Google Scholar 

  38. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC, Boca Raton (2012)

    Book  Google Scholar 

Download references

Acknowledgments

We cordially thank the anonymous reviewers for their constructive comments. Our research received funding from the EU’s Horizon 2020 R&I programme under grants 871493 (DataPorts) and 780351 (ENACT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Metzger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Metzger, A., Kley, T., Palm, A. (2020). Triggering Proactive Business Process Adaptations via Online Reinforcement Learning. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds) Business Process Management. BPM 2020. Lecture Notes in Computer Science(), vol 12168. Springer, Cham. https://doi.org/10.1007/978-3-030-58666-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58666-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58665-2

  • Online ISBN: 978-3-030-58666-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics