A Framework for Estimating Simplicity of
Automatically Discovered Process Models Based on
Structural and Behavioral Characteristics

Anna Kalenkova ‘=, Artem Polyvyanyy ‘=, and Marcello La Rosa

School of Computing and Information Systems
The University of Melbourne, Parkville, VIC, 3010, Australia
{anna.kalenkova;artem.polyvyanyy;marcello.larosa } @unimelb.edu.au

Abstract. A plethora of algorithms for automatically discovering process mod-
els from event logs has emerged. The discovered models are used for analysis and
come with a graphical flowchart-like representation that supports their compre-
hension by analysts. According to the Occam’s Razor principle, a model should
encode the process behavior with as few constructs as possible, that is, it should
not be overcomplicated without necessity. The simpler the graphical representa-
tion, the easier the described behavior can be understood by a stakeholder. Con-
versely, and intuitively, a complex representation should be harder to understand.
Although various conformance checking techniques that relate the behavior of
discovered models to the behavior recorded in event logs have been proposed,
there are no methods for evaluating whether this behavior is represented in the
simplest possible way. Existing techniques for measuring the simplicity of dis-
covered models focus on their structural characteristics such as size or density,
and ignore the behavior these models encoded. In this paper, we present a con-
ceptual framework that can be instantiated into a concrete approach for estimating
the simplicity of a model, considering the behavior the model describes, thus al-
lowing a more holistic analysis. The reported evaluation over real-life event logs
for several instantiations of the framework demonstrates its feasibility in practice.

1 Introduction

Information systems keep records of the business processes they support in the form of
event logs. An event log is a collection of traces encoding timestamped actions under-
took to execute the corresponding process. Thus, such logs contain valuable information
on how business processes are carried out in the real world. Process mining [1] aims
to exploit this historical information to understand, analyze, and ultimately improve
business processes. A core problem in process mining is that of automatically discov-
ering a process model from an event log. Such a model should faithfully encode the
process behavior captured in the log and, hence, meet a range of criteria. Specifically,
a discovered model should describe the traces recorded in the log (have good fitness),
not encode traces not present in the log (have good precision), capture possible traces
that may stem from the same process but are not present in the log (have good gener-
alization), and be “simple”. These quality measures for discovered process models are
studied within the conformance checking area of process mining. A good discovered
model is thus supposed to achieve a good balance between these criteria [3].

https://orcid.org/0000-0002-5088-7602
https://orcid.org/0000-0002-7672-1643
https://orcid.org/0000-0001-9568-4035
mailto:anna.kalenkova@unimelb.edu.au;artem.polyvyanyy@unimelb.edu.au;marcello.larosa@unimelb.edu.au

2 Anna Kalenkova, Artem Polyvyanyy, and Marcello La Rosa

In [1], Van der Aalst suggests that process discovery should be guided by the Oc-
cam’s Razor principle [10.8], a problem-solving principle attributed to William of Ock-
ham. Accordingly, “one should not increase, beyond what is necessary, the number
of entities required to explain anything” [1]. Specifically to process mining, a discov-
ered process model should only contain the necessary constructs. Various measures
for assessing whether a discovered model is simple have been proposed in the liter-
ature [9.15], such as the number of nodes and arcs, density, and diameter. However,
these measures address the number of constructs, i.e., the structure of the discovered
models, while ignoring what these constructs describe, i.e., the process behavior.

In this paper, we present a framework that considers the model’s structure and be-
havior to operationalize Occam’s Razor principle for measuring the simplicity of a pro-
cess model discovered from an event log. The framework comprises three components
that can selectively be configured: (i) a notion for measuring the structural complexity
of a process model, e.g., size or diameter; (ii) a notion for assessing the behavioral sim-
ilarity, or equivalence, of process models, e.g., trace equivalence, bisimulation, or en-
tropy; and (iii) the representation bias, i.e., a modeling language for describing models.
A configured framework results in an approach for estimating the simplicity of process
models. The obtained simplicity score establishes whether the behavior captured by the
model can be encoded in a structurally simpler model. To this end, the structure of the
model is related to the structures of other behaviorally similar process models.

To demonstrate these ideas, we instantiate the framework with the number of nodes
[9] and control flow complexity (cfc) [4] measures of structural complexity, topological
entropy [20] measure of behavioral similarity, and uniquely labeled block-structured
[19] process models captured in the Business Process Model and Notation (BPMN)
[18] as the representation bias. We then apply these framework instantiations to assess
the simplicity of the process models automatically discovered from event logs by the
Inductive miner algorithm [16]. This algorithm constructs process trees, which can then
be converted into uniquely labeled block-structured BPMN models [14].

Once the framework is configured, the next challenge is to obtain models of various
structures that specify behaviors similar to that captured by the given model, as these
are then used to establish and quantify the amount of unnecessary structural information
in the given model. To achieve completeness, one should aim to obtain all the similar
models, including the simplest ones. As an exhaustive approach for synthesizing all
such models is often unfeasible in practice, in this paper, we take an empirical approach
and synthesize random models that approximate those models with similar behavior. To
implement such approximations, we developed a tool that generates uniquely labeled
block-structured BPMN models randomly, or exhaustively for some restricted cases,
and measures their structural complexity and behavioral similarity.

The remainder of this paper is organized as follows. Section 2|discusses an example
that motivates the problem of ignoring the behavior when measuring the simplicity of
process models. presents our framework for estimating the simplicity of the
discovered models. In we instantiate the framework with concrete compo-
nents. presents the results of an analysis of process models discovered from
real-life event logs using our framework instantiations. Section 6 concludes the paper.

A Framework for Estimating Simplicity of Process Models 3

2 Motivating Example

In this section, we show that the existing simplicity measures do not always follow the
Occam’s Razor principle. Consider event log L = {(load page, fill name, fill passport,
fill expire date), (load page, fill name, fill expire date, fill passport), (load page,
fill passport, fill expire date), (load page, fill name, fill expire date), (load page,
fill name, fill passport),(load page, fill name, fill passport, fill expire date,load page),
(load page, fill name, fill expire date, fill passport, load page), (load page, fill name,
load page), (fill name, fill expire date, fill passport), (fill passport, fill expire date)}
generated by a passport renewal information system The log contains ten traces, each
encoded as a sequence of events, or steps, taken by the users of the system. Usually, the
user loads the Web page and fills out relevant forms with details such as name, previous
passport number, and expiry date. Some steps in the traces may be skipped or repeated,
as this is common for the real world event data [13], and |Fig. 2 present BPMN
models discovered from L using, respectively, the Split miner [2] and Inductive miner
(with the noise threshold set to 0.2) [16] process discovery algorithm.

fill
passport

fill expire
date

load page

Fig. 1: A BPMN model discovered by Split miner from event log L.

It is evident from the figures that the models are different. First, they have differ-
ent structures. [Fig. 1 shows an acyclic model with exclusive and parallel branches. In
contrast, the model in only contains exclusive branches enclosed in a loop and
allowing to skip any of the steps. Second, the models describe different collections of
traces. While the model in describes three traces (viz. (load page), (load page,
fill name, fill passport, fill expire date), and (load page, fill name, fill expire date,
fill passport)), the model in Fig. 2|describes all the possible traces over the given steps,
i.e., all the possible sequences of the steps, including repetitions.

fill
passport

fill expire
date

fill name

Fig.2: A BPMN model discovered by Inductive miner from event log L.

The latter fact is also evident in the precision and recall values between the models
and log. The precision and recall values of the model in are 0.852 and 0.672,

! This simple example is inspired by a real world event log analyzed in [13].

4 Anna Kalenkova, Artem Polyvyanyy, and Marcello La Rosa

respectively, while the precision and recall values of the model in [Fig. 2 are 0.342 and
1.0, respectively; the values were obtained using the entropy-based measures presented
in [20]. The values indicate, for instance, that the model in is more permissive
(has lower precision), i.e., encodes more behavior not seen in the log than the model in
Fig. 1, and describes all the traces in the log (has perfect fitness of 1.0); the measures
take values on the interval [0, 1] with larger values showing better precision and fitness.

To assess the simplicity of discovered pro-
cess models, measures of their structural complex-
ity [419.15117], such as the number of nodes and/or
edges, density, depth, coefficients of network con-
nectivity, and control flow complexity, can be em-
ployed. If one relies on the number of nodes to es- Q.<X
tablish the simplicity of the two example models,
then they will derive at the conclusion that they are
equally simple, as both contain ten nodes. This con-

~—>»| load page

fill name

fill
passport

| i . - fill expire
clusion is, however, naive for at least two reasons: date
(i) the two models use ten nodes to encode different
behaviors, and (ii) it may be unnecessary to use ten Fig.3: A “flower” model.

nodes to encode the corresponding behaviors.

The model in Fig. 3|describes the same behavior as the model in|Fig. 2 using eight
nodes. One can use different notions to establish similarity of the behaviors, including
exact (e.g., trace equivalence) or approximate (e.g., topological entropy). The models in
Figs. 2 and 3|are trace equivalent and specify the behaviors that have the (short-circuit)
topological entropy of 1.0 [20]. Intuitively, the entropy measures the “variety” of traces
of different lengths specified by the model. The more distinct traces of different lengths
the model describes, the closer the entropy is to 1.0. The entropy of the model in|Fig. 1]is
0.185. There is no block-structured BPMN model with unique task labels that describes
the behavior with the entropy of 0.185 and uses less than ten nodes. Thus, we argue that
the model in Fig. 1 should be accepted as such that is simpler than the model in [Fig. 2|

3 A Framework for Estimating Simplicity of Process Models

In this section, we present our framework for estimating the simplicity of process mod-
els. The framework describes standard components that can be configured to result in
a concrete measure of simplicity. The simplicity framework is a tuple F = (M, C, B),
where M is a collection of process models, C : M — Rar is a measure of structural
complexity, and B C (M x M) is a behavioral equivalence relation over M.

The process models are captured using some process modeling language (represen-
tation bias), e.g., finite state machines [11], Petri nets [21], or BPMN [18]. The mea-
sure of structural complexity is a function that maps the models onto non-negative real
numbers, with smaller assigned numbers indicating simpler models. For graph-based
models, this can be the number of nodes and edges, density, diameter, or some other
existing measure of simplicity used in process mining [17]. The behavioral equivalence
relation B must define an equivalence relation over M, i.e., be reflexive, symmetric,
and transitive. For instance, B can be given by (weak or strong) bisimulation [12] or
trace equivalence [11] relation over models. Alternatively, equivalence classes of B can

A Framework for Estimating Simplicity of Process Models 5

(a) An equivalence class. (b) Similar equivalence classes.

Fig. 4: Behavioral classes of model equivalence.

be defined by models with the same or similar measure of behavioral complexity, e.g.,
(short-circuit) topological entropy [20].

Given a model m; € M, its behavioral equivalence class per relation B is the set
M = {m € M| (m,my) € B}, cf. Fig. 4a| If one knows a model m. € M with the
lowest structural complexity in M, i.e., Vm € M : C(m,) < C(m), then they can put
the simplicity of models in M into the perspective of the simplicity of m,. For instance,
one can use function sim(m) = (C(m=)+1)/(c(m)+1) to establish such a perspective.

Suppose that M is the set of all block-structured BPMN models with four uniquely
labeled tasks, B3 is the trace equivalence relation, and C is the measure of the number of
nodes in the models. Then, it holds that sim(m) = 1.0 and sim(mz) = 9/11 = 0.818,
where m4 and my are the models from|Fig. 1]and[Fig. 2| respectively, indicating that m4
is simpler than ms. To obtain these simplicity values, we used our tool and generated
all the block-structured BPMN models over four uniquely labeled tasks, computed all
the behavioral equivalence classes over the generated models, and collected statistics
on the numbers of nodes in the models.

For some configurations of the framework, however, such exhaustive analysis may
yield intractable. For instance, the collection of models of interest may be infinite, or
finite but immense. Note that the number of block-structured BPMN models with four
uniquely labeled tasks is 2,211,840, and is 297,271,296 if one considers models with
five uniquely labeled tasks (the number of models grows exponentially with the number
of allowed labels). In such cases, we suggest grounding the analysis in a representative
subset M’ C M of the models.

Suppose that one analyzes model m € M that has no other (or only a few) models in
its equivalence class M, refer to Fig. 4b| Then, model m can be compared to models of
lowest structural complexities m/, and m!’ from some other equivalence classes M’ and
M which contain models that describe the behaviors “similar” to the one captured by
m. To this end, one needs to establish a measure of “similarity”” between the behavioral
equivalence classes of models.

In the next section, we exemplify the discussed concepts by presenting example
instantiations of the framework.

4 Framework Instantiations

In this section, we instantiate our framework F = (M, C, B) for assessing the simplic-
ity of process models discovered from event logs and define the set of models (M),
structural complexity (C), and the behavioral equivalence relation (B3) as follows:

6 Anna Kalenkova, Artem Polyvyanyy, and Marcello La Rosa

— M is a set of block-structured BPMN models with a fixed number of uniquely
labeled tasks. BPMN is one of the most popular process modeling languages. Be-
sides, block-structured uniquely labeled process models are discovered by Induc-
tive miner — a widely used process discovery algorithm;

— C is either the number of nodes or the control flow complexity measure. These mea-
sures were selected among other simplicity measures, because, as shown empiri-
cally in[Section 5, there is a relation between these measures and the behavioral
characteristics of process models; and

— B is the behavioral equivalence relation induced by the notion of (short-circuit)
topological entropy [20]. The entropy measure is selected because it maps process
models onto non-negative real numbers that reflect the complexity of the behaviors
they describe; the greater the entropy, the more variability is present in the un-
derlying behavior. Consequently, models from an equivalence class of B describe
behaviors with the same (or very similar) entropy values.

For BPMN models the problem of minimization is still open and only some rules for lo-
cal BPMN models simplification exist [14.22]. Although, NP-complete techniques [5]
synthesizing Petri nets with minimal regions (corresponding to BPMN models [14] with
minimal number of routing contracts) from the sets traces can be applied, there is no
general algorithm for finding a block-structured BPMN model that contains a minimal
possible number of nodes or has a minimal control flow complexity for a given process
behavior. In this case, it may be feasible to generate the set of all possible process mod-
els for the given behavioral class (see the general description of this approach within our
framework Section 3, [Fig. 4a). However, due to the combinatorial explosion, the possi-
ble number of block-structured BPMN models grows exponentially with the number of
tasks. While it is still possible to generate all block-structured BPMN models contain-
ing 4 or less tasks, for larger number of tasks this problem is computationally expensive
and cannot be solved in any reasonable amount of time. In this work, we propose an ap-
proach that approximates the exact solutions by comparing analyzed models with only
some randomly generated models that behave similarly. This approach implements a
general approximation idea proposed within our framework (Section 3| Fig. 4b). Sec-
tion 4.1/introduces basic notions used to describe this approach. [Section 4.2|describes
the proposed approach, discusses its parameters and analyzes dependencies between
structural and behavioral characteristics of block-structured BPMN models.

4.1 Basic Notions

In this subsection, we define basic notions that are used later in this section.

Let X be a finite set of elements. By (x1,xo, ..., x), where x1, z2,..., 2, € X,
k € Ny, we denote a finite sequence of elements over X of length k. X™* stands for the
set of all finite sequences over X including the empty sequence of zero length.

Given two sequences x = (1,2, ...,2k) and y = (y1,Y2,- .., Ym), By T - y we
denote concatenation of x and y, i.e., the sequence obtained by appending y to the end
ofx,ie,x-y=(T1,Ta, . ., ThyY1,Y2s - Ym)-

An alphabet is a nonempty finite set. The elements of an alphabet are its labels. A
(formal) language L over an alphabet Y is a (not necessarily finite) set of sequences,

A Framework for Estimating Simplicity of Process Models 7

o@o“‘

(a) Initial pattern. (b) Sequence pattern. (c) Choice pattern.
(d) Parallel pattern. (e) Loop pattern. (f) Skip pattern.

Fig. 5: Patterns of block-structured BPMN models.

over X, ie., L C X*. Let Ly and Ly be two languages. Then, L o Lo is their con-
catenation defined by {l; - l2|l1 € L1 Als € Lo}. The language L* is defined as
L* = UZO:O L™, where L° = {0}, L™ = L 1to L.

Structural Representation. The class of process models considered in this work are
block-structured BPMN models that are often used for the representation of processes
discovered from event logs, e.g., these models are discovered by the Inductive mining
algorithm [16].

Block-structured BPMN models are constructed from the following basic set of el-
ements: start and end events represented by circles with thin and thick borders respec-
tively and denoting beginning and termination of the process; fasks modeling atomic
process steps and depicted by rounded rectangles with labels; routing exclusive and par-
allel gateways modeling exclusive and parallel executions and presented by diamonds;
and control flow arcs that define the order in which elements are executed.

The investigated class of block-structured BPMN models consists of all and only
BPMN models that:

1) can be constructed starting from the initial model presented in [Fig. 5a and induc-
tively replacing tasks with the patterns presented in|Figs. 5b/to

2) have uniquely labeled tasks, i.e., any two tasks have different labels;

3) only patterns other than loop can be applied to the nested task of the loop; only pat-
terns other than skip and loop can be applied to the nested task of the skip pattern;

When constructing a model, the number of tasks increases if the patterns from
Figs. 5b to|5d are applied, the patterns Figs. 5S¢ and [5f can be applied no more than
twice in a row, and the pattern Fig. 5a is applied only once. Hence, if we fix the number
tasks (labels) in the investigated models, the the overall set of these models is finite.

After constructing the collection of models, local minimization rules are applied [14].
These rules merge gateways without changing the model semantics. An example of lo-
cal reduction of gateways is presented in|Fig. 6a, Fig. 6b|illustrates merging of loop and
skip constructs. For the detailed description of local minimization rules refer to [14].

8 Anna Kalenkova, Artem Polyvyanyy, and Marcello La Rosa

(a) Merging parallel gateways. (b) Merging loop and skip constructs.

Fig. 6: Examples of applying local minimization rules.

We focus on the following complexity measures of block-structured BPMN mod-
els: (1) C,, — the number of nodes (including start and end events, tasks, and gateways);
(2) C¢fc - the control flow complexity measure, which is defined as a sum of two num-
bers: the number of all splitting parallel gateways and the total number of all outgoing
control flows of all splitting exclusive (choice) gateways [4].

Sequences of labels are used to encode executions of business processes. The or-
dering of tasks being executed defines the ordering of labels in a sequence. We say
that a process model encodes or accepts a formal language if and only if this lan-
guage contains all possible sequences of labels corresponding to the orderings of tasks
being executed within the model and only them. presents an example of a
block-structured model m; that accepts language L1 = {{a,b,c), (a,c,b),(b,a,c),
(b,c,a),{c,a,b),(c,b,a)}. A block-structured BPMN model mg accepting an infinite
language of all sequences starting with a in alphabet {a, b, c} is presented in Fig. 7b|

(a) Block-structured BPMN model m;. (b) Block-structured BPMN model ms.
Fig. 7: Examples of block-structured BPMN models.

Behavioral Representation. Next, we recall the notion of entropy which is used for
the behavioral analysis of process models and event logs [20]. Let X’ be an alphabet
and let L C X'* be a language over this alphabet. We say that language L is irreducible
regular language if and only if it is accepted by a strongly-connected automata model
(for details refer to [6]). Let C,, (L), n € Ny, be the set of all sequences in L of length n.
Then, the fopological entropy that estimates the cardinality of L by measuring the ratio
of the number of distinct sequences in the language to the length of these sequences is

defined as [6]:
ent(L) = lim sup w. ()
n

n—oo

A Framework for Estimating Simplicity of Process Models 9

The languages accepted by block-structured BPMN models are regular, because
they are also accepted by corresponding automata models [11]. But not all of them
are irreducible, so the standard topological entropy cannot be always cal-
culated. To that end, in [20], it was proposed to construct an irreducible language
(Lo{{x)})* o L, where x ¢ X, for each language L, and use so-called short-circuit
entropy ente(L) = ent((L o {{x)})* o L). Monotonicity of the short-circuit measure
follows immediately from the definition of the short-circuit topological entropy and
Lemma 4.7 in [20]:

Corollary 4.1 (Topological entropy). Let L1 and Lo be two regular languages.
1. If L1 = Lo, then ente(Lq1) = ente(Ls);
2. If Ly C Lo, then ente(Ly) < ente(Ly).

Note that the opposite is not always true, i.e., different languages can be represented
by the same entropy value. Although the language (trace) equivalence is stricter than
the entropy-based equivalence, in the next section, we show that entropy is still useful
for classifying the process behavior.

In this paper, we use the notion of normalized entropy. Suppose that L is a language
over alphabet X, then the normalized entropy of L is defined as: ent(L) = ;Zt.?(EL)) s
where Y* is the language containing all words over alphabet X'. The normalized en-
tropy value is bounded, because, for any language L it holds that L C 3™, and hence, by
Corollary 4.1 ente(L) < ente(X*), consequently ent(L) € [0, 1]. Obviously, Corol-
lary 4.1 can be formulated and applied to the normalized entropy measure, i.e., for two
languages L; and Lo over alphabet X, if Ly = Lo, then ent(L1) = ent(Ls), and if
L1 C Lo, itholds that ent(Lq) < ent(Ls).

We define the relation of behavioral equivalence B using the normalized entropy.
Let X' be an alphabet and let L1, Lo C X* be languages accepted by models m; and
meg respectively, (my,mso) € B if and only if ent(L1) = ent(Lz).

Normalized entropy not only allows to define the notion of behavioral equivalence,
but also to formalize the notion of behavioral similarity. For a given parameter A, we
say that two models my and my are behaviorally similar if and only if |ent(Lq) —
ent(La)| < A, where Ly and Ly are the languages these models accept.

4.2 Estimating Simplicity of Block-Structured BPMN Models

In this subsection, we devise a method for assessing the simplicity of uniquely labeled
block-structured BPMN models. As no analytical method for synthetizing a “minimal”
block-structured BPMN model in terms of number of nodes or control flow complexity
for a given behavior is known, and no computationally feasible approach for generating
all possible models with a given behavior exists, we propose an approach that inves-
tigates the dependencies between the structural and behavioral model characteristics
empirically, and reuse these dependencies to measure the simplicity of models.

As the set of all models M cannot be exhaustively constructed, we generate its sub-
set M’ C M and relate analyzed models from M with behaviorally similar models
from M’, producing an approximate solution. We then estimate the simplicity of the

10 Anna Kalenkova, Artem Polyvyanyy, and Marcello La Rosa

12 ° e ooccoor o
10 ° ° ® ®ounes e
o 8 o e@meoes ® o 00 o
. ° o o °
6) o oo () o e
4@
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
& &
(@) (b)

Fig. 8: Structural (C) and behavioral (£) characteristics of process models: (a) for all
models in M’ and (b) filtered models with upper and lower envelops for A = 0.05.

given model by comparing its structural complexity with that of the simplest behav-
iorally similar models, with the complexity of these models being in a certain interval
from “the best case” to “the worst case” complexity. In order to define this interval and
relate it to entropy values, we construct envelope functions f~ and f* that approxi-
mate “the best case” and “the worst case” structural complexity of the simplest process
models for a given entropy value. Below we give an approach for constructing these
envelope functions and define the simplicity measure that relates the model complexity
to an interval defined by these functions.

Let £ : M’ — [0,1] be a function that maps process models in M’ onto the
corresponding normalized entropy values. presents an example plot relating
structural characteristics C(m) and entropy £(m) values for each process model m €
M/’; the example is artificial and does not correspond to any concrete structural and
behavioral measures of process models. Once such data points are obtained, we filter
out all the models m € M’ such that Im’ € M’ : E(m) = E(m') and C(m) > C(m’).
In other words, we filter out a model, if its underlying behavior can be described in
a structurally simpler model. This means that only the structurally “simplest” models
remain. The process models that were filtered out are presented by gray dots in Fig. 8al

Once the set M" of the models remaining after filtering the models in M’ is ob-
tained, it defines the partial function f : [0,1] 4 R{, such that f(e) = c if and only
if exists a model m € M”, where e = £(m) and ¢ = C(m) (Fig. 8b). This function
relates the behavioral and structural characteristics of the remaining models. Then, we
construct envelop functions that define intervals of the structural complexities of the
remaining “simplest” models. The upper envelop f* : [0,1] — R is a function going
through the set of data points DT = {(e, f(e)) |Ve' € dom(f) : (le—¢€'| < A =
f(e) > f(e'))}, where A is a parameter that defines classes of behaviorally similar
models. Less formally, f* goes through all the data points that are maximum in a A-
size window. Similarly, the lower envelop is defined as a function f~ : [0,1] — R{
going through D~ = {(e, f(e)) | Ve’ € dom(f): (le—¢€'| < A= f(e) < f(e'))}. In

A Framework for Estimating Simplicity of Process Models 11

general, the envelope can be any smooth polynomial interpolation or a piecewise linear
function, the only restriction is that it goes through D+ and D~ data points.

Parameter A defines the measure of similarity between classes of behaviorally
equivalent models. In each case, A should be selected empirically, for instance, too
small A will lead to local evaluations, that may not be reliable because they do not take
into account global trends, while setting too large A results in a situation when we do
not take into account entropy, relating our model with all other models from the set. In
the upper and lower envelops were constructed for A = 0.05.

Using the upper and lower envelope functions we can estimate simplicity of process
models from M. The simplicity measure is defined in where sim(m) is the
simplicity of model m € M with an entropy value e = £(m); « and [are parameters,
such that o, 8 € [0,1] and a« + B < 1.

sitm(m) =< « —a— M (e m e
R o f) Flo -7 f@stm<fie @
1.0-08- IS0 C(m) < f~(e)

According to stm(m) is in the interval between zero and one. Parameters
« and f3 are used to adjust the measure. Parameter o shows the level of confidence that
some complexity values can be above the upper envelope. If the complexity C(m) of
model m is above the upper envelope fT (e), m is more complex than “the worst case”
model, then sim(m) is less than or equal to « and tends to zero as C(m) grows. If the
model complexity C(m) is between the envelopes f~(e) and f*(e), then sim(m) €
(a1 — B] and the higher C(m) is (the closer the model is to “the worst case”), the
closer the simplicity value to «.. Parameter 5 shows the level of confidence that some
data points may be below the lower envelope. If it is guaranteed that there are no models
in M with data points below the lower envelope it is feasible to set 3 to zero. Otherwise,
if C(m) is lower than the lower envelope f~ (e), then sim(m) belongs to the interval
(1 — B,1] and tends to one as C(m) approaches zero.

Next, we apply the proposed approach to construct upper and lower envelope func-
tions for the number of nodes and control flow complexity measures of block-structured
BPMN models with a fixed number of uniquely labeled tasks. To analyze the relations
between the structural and behavioral characteristics, we generated all block-structured
BPMN models with three tasks. Fig. 9/contains plots with data points representing the
behavioral and structural characteristics of these process models. These data points,
as well as the upper and lower envelopes, are constructed using the general technique
described above with window parameter A = 0.01. Additionally, to make the enve-
lope functions less detailed and reflect the main trends, we construct them only through
some of the data points from D and D~ sets in such a way that the second derivative
of each envelope function is either non-negative or non-positive, i.e., envelope functions
are either convex or concave.

In both cases, the upper envelope functions f," and fjfc grow monotonically, start-
ing at the sequential model (a sequence of three tasks) with the entropy of zero, reach the
maximum, and then drop to the “flower” model (see an example of a “flower” model

12 Anna Kalenkova, Artem Polyvyanyy, and Marcello La Rosa

20

10 o@e ® ® eneoe ‘
commmes wwe @s smes o o | @0 cmemem» o
000 00 o o oo me | © commmmese ¢ ©

(a) (b)

Fig.9: Dependencies between entropy and structural complexity of block-structured
BPMN models containing three tasks for the (a) number of nodes and (b) control flow
complexity structural complexity measures.

in with the entropy of one. These results show that, as the number of nodes
and complexity of the control flow increase, the minimum possi-
ble entropy values also increase. As the model structure becomes more complex, more
behavior is allowed and the lower bound of the entropy increases.

While the lower envelope for the number of nodes measure f, is flat and
does not reveal any explicit dependency, the lower envelope for the control flow com-
plexity fc_fc grows. This can be explained by the fact that the number of nodes
is reduced during the local model minimization [14], while the control flow complexity
measure takes into account the number of outgoing arcs of exclusive splitting gateways
and is not affected by the local minimization.

The empirical results and observations presented in this section reveal the main de-
pendencies between the structural complexity and the behavioral complexity of block-
structured BPMN models and can be generalized for an arbitrary number of tasks. They
also show that this approach relies on the quality of the model generator, i.e., the set
of generated models should be dense enough to reveal these dependencies. In the next
section, we apply the proposed approach to assess the simplicity of process models
discovered from real world event logs.

5 Evaluation

In this section, we use the approach from|Section 4 to evaluate the simplicity of process
models discovered by Inductive miner (with noise threshold 0.2) from industrial Busi-
ness Process Intelligence Challenge (BPIC) event log and an event log of a booking
flight system (BFS). Before the analysis, we filtered out infrequent events that appear
less than in 80% of traces using the “Filter Log Using Simple Heuristics” Process Min-
ing Framework (ProM) plug-in [7]mThe Inductive miner algorithm discovers uniquely

2 BPIC logs: https://data.4tu.nl/repository/collection:event_logs_real,
3 The filtered logs are available here: https://github.com/jbpt/codebase/tree/master/jbpt-pm/logs,

https://data.4tu.nl/repository/collection:event_logs_real
https://github.com/jbpt/codebase/tree/master/jbpt-pm/logs

A Framework for Estimating Simplicity of Process Models 13

labeled block-structured BPMN models. As structural complexity measures, we used
the number of nodes and the control flow complexity (cfc).

To estimate the upper and lower bounds of the structural complexity of the models,
for each number of tasks (each size of the log alphabet), we generated 5,000 random
uniquely labeled block-structured BPMN models. For all the models, data points rep-
resenting the entropy and structural complexity of the models were constructed. We
then constructed the upper and lower envelopes using the window of size 0.01, refer to
'Section 4|for the details. The envelopes were constructed as piecewise linear functions
going through all the selected data points.

For both structural complexity measures, parameter c, cf. was set to 0.5,
i.e., models represented by the data points above the upper envelope are presumed to
have simplicity characteristic lower than 0.5. In turn, parameter 5 was set to 0.0 and
0.1 for the number of nodes and cfc measure, respectively. In contrast to cfc, the lower
envelope for the number of nodes measure is defined as the minimal possible number of
nodes in any model, and this guarantees that there are no data points below it. The final
equations for the number of nodes and cfc simplicity measures, where ¢ = £(m) is the
topological entropy of model m, C,,(m) is the number of nodes in m, Cs.(m) is the cfc
complexity of m, f;F and fj,]lc are the upper envelopes for the number of nodes and cfc
measures, and f, and fc}c are the corresponding lower envelopes, are given below.

0.5- éf;((;))) Cn(m) > fi(e)
sim, (m) = (S (e) = Cu(m)) - 3)
0.540.5 GOIHO) fn(€) <Cu(m) < fif(e)
1.0 Cu(m) < fr (€)
()
cfe
0)) e
simefe(m) =< 0.5+ 0.4 - % fere(€) < Cepe(m) < fj}c(e) “
c Lf((,m) cfe\™
1.0-0.1- Cfci(Cee(m) < fop.(€)
cfc e

Table 1 presents the original and adjusted (proposed in this paper) simplicity mea-
sures, induced by the number of nodes and cfc structural complexity measures, for the
process models discovered from the evaluated event logs. Models were discovered from
the filtered event logs and their sublogs that contain only traces appearing in the filtered
event logs at least two or four times. Model mg (refer to is an automatically
discovered process model with redundant nodes. The value of sim., (msg) is less than 0.5
because the corresponding data point is above the upper envelope (Fig. 10a). Note that
the manually constructed “flower” model mj (Fig. 11) that accepts the same traces as
mg has better structural complexity and, consequently, the corresponding adjusted sim-
plicity measurements relate as follows: sim.,,(mg) = 1.0 > sim,(ms) = 0.485, and
simcfe(mg) = 0.890 > sim p.(mg) = 0.723. The difference between sim 5. (ms) and
sim fc(myg) simplicity values is not as significant as the difference between sim., (ms)
and sim,(mj), as despite mg has only two gateways the total number of outgoing
sequence flows from these gateways is rather high.

14 Anna Kalenkova, Artem Polyvyanyy, and Marcello La Rosa

’Model‘ Event log ‘#Tmces‘#Labels‘Entropy‘ Cn ‘sim" Cefe ‘simcfc
m1 |BPIC’2019| 3,365 6 0.484 12 10.923 5 0.767

ma |BPIC’2019| 614 6 0.333 12 10887 | 5 0.697
ma |BPIC’2019| 302 6 0.377 12 10901 | 6 0.714
my |BPIC’2018| 15,536 8 0.800 25 10.684 | 20 | 0.690
ms |BPIC’2018| 1,570 7 0.432 16 |0.802| 10 | 0.680
me |BPIC’2018| 618 7 0.638 18 | 0813 | 15 | 0.676
mr BFS 279 6 0.378 14 10.754| 5 0.723
ms BFS 70 6 0.847 20 |0485] 13 | 0.723
mo BFS 29 6 0.258 15 |0.630| 7 0.516

Table 1: Simplicity of uniquely labeled block-structured BPMN models discovered from indus-
trial event logs and their sublogs; the number of unique traces (# Traces), number of distinct
labels in the discovered models (# Labels) and their entropy values (Entropy) are specified.

Models m1, ms, and mg have the same number of nodes, but different entropy val-
ues. Model m is considered the simplest in terms of the number of nodes among the
three models because it is located further from the upper envelope than the other two
models. Hence, its sim,, value is the highest. Models m; and ms, which in addition
have the same control flow complexity values, are shown in|Fig. 12a and Fig. 12b| re-
spectively. Model m; is considered more simple than model ms because it merely runs
all the tasks in parallel (allowing “Record Service Entry Sheet” task to be skipped or
executed several times). In contrast, model my adds additional constraints on the order
of tasks (leading to lower entropy) and, thus, should be easier to test. Note that m;
models a more diverse behavior which in the worst case, according to the upper enve-
lope, can be modeled with more nodes. These results demonstrate that when analyzing
the simplicity of a discovered process model, it is feasible and beneficial to consider
both phenomena of the structural complexity of the model’s diagrammatic representa-
tion and the variability/complexity of the behavior the model describes. This way, one
can adhere to the Occam’s Razor problem-solving principle.

25
20 \

% < k 15 \\f;fc

Cefe(m)

Cn(m)

\ \
t 10 A :
\\ fa e % mg

fege

m;:

om__ my

0 0.2 04 06 08 1 0 0.2 04 06 0.8 1
E(m) E(m)
(a) Number of nodes. (b) Control flow complexity (cfc).

Fig. 10: Structural complexity of block-structured BPMN models over six labels.

A Framework for Estimating Simplicity of Process Models 15

birthday-
fill

docnum-
fill

birthday-

surname- .
docexpire

fill
c_phone
_num-fill

(a) Model ms. (b) Model myg.
Fig. 11: Models mg and mj discovered from the BFS event log.

surname-
fil name-fill

&

uuuuuu

Create
Purchase
Order Item

@ sence 0

Vendor
creates
invoice

(a) Model m. (b) Model ma.
Fig. 12: Models m1 and ms discovered from the BPIC 2019 event log.

6 Conclusion

This paper presents a framework that can be configured to result in a concrete approach
for measuring the simplicity of process models discovered from event logs. In con-
trast to the existing simplicity measures, our framework accounts for both a model’s
structure and behavior. In this paper, the framework was implemented for the class of
uniquely-labeled block-structured BPMN models using topological entropy as a mea-
sure of process model behavior. The experimental evaluation of process models dis-
covered from real-life event logs shows the approach’s ability to evaluate the quality
of discovered process models by relating their structural complexity to the structural
complexity of other process models that describe similar behaviors. Such analysis can
complement existing simplicity measurement techniques showing the relative aspects
of the structural complexity of the model.

We identify several research directions arising from this work. First, we acknowl-
edge that the proposed instantiation of the framework is approximate and depends on
the quality of the randomly generated models. The analysis of other structural com-
plexity measures as well as more sophisticated random model generation algorithms
can lead to a more precise approach. Second, the framework described in this paper
can be instantiated with other classes of process models to extend its applicability to
models discovered by a broader range of process discovery algorithms. Finally, we be-
lieve that this work can give valuable insights into the improvement of existing, and the
development of new process discovery algorithms.

16

Anna Kalenkova, Artem Polyvyanyy, and Marcello La Rosa

Acknowledgments. This work was supported by the Australian Research Council Dis-
covery Project DP180102839. We sincerely thank the anonymous reviewers whose sug-
gestions helped us to improve this paper.

References
1. van der Aalst, W.: Data Science in Action, pp. 3—-23. Springer Berlin Heidelberg (2016)
2. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated

11.

12.

13.

14.

15.

16.

17.

18.

19.

discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst.
59(2), 251-284 (2019). https://doi.org/10.1007/s10115-018-1214-x

. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision,

generalization and simplicity in process discovery. In: On the Move to Meaningful Internet
Systems: OTM 2012. pp. 305-322. Springer, Berlin (2012)

. Cardoso, J.: How to Measure the Control-flow Complexity of Web processes and Workflows,

pp. 199-212 (01 2005)

. Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discovering petri

nets from event logs. In: Dumas, M., Reichert, M., Shan, M.C. (eds.) Business Process Man-
agement. pp. 358-373. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

. Ceccherini-Silberstein, T., Machi, A., Scarabotti, F.: On the entropy of regular languages.

Theor. Comp. Sci. 307, 93-102 (2003)

. van Dongen, B.F,, de Medeiros, A.K.A., Verbeek, HM.W., Weijters, A.J.M.M., van der

Aalst, W.M.P.: The ProM Framework: A New Era in Process Mining Tool Support. In: Ap-
plications and Theory of Petri Nets 2005. pp. 444-454. Springer Berlin Heidelberg (2005)

. Garrett, A.J.M.: Ockham’s Razor, pp. 357-364. Springer Netherlands (1991)
. Gruhn, V., Laue, R.: Complexity metrics for business process models. In: 9th International

Conference on Business Information Systems (BIS 2006). pp. 1-12 (2006)

. Griinwald, P.D.: The Minimum Description Length Principle (Adaptive Computation and

Machine Learning). The MIT Press (2007)

Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., USA (2006)
Jancar, P., Kucera, A., Mayr, R.: Deciding bisimulation-like equivalences with finite-state
processes. In: Automata, Languages and Programming. pp. 200-211. Springer (1998)
Kalenkova, A.A., Ageev, A.A., Lomazova, l.A., van der Aalst, W.M.P.: E-government ser-
vices: Comparing real and expected user behavior. In: Business Process Management Work-
shops. pp. 484-496. Springer, Cham (2018)

Kalenkova, A., Aalst, W., Lomazova, 1., Rubin, V.: Process mining using BPMN: Relating
event logs and process models process mining using BPMN. Relating event logs and process
models. Software and Systems Modeling 16, 1019-1048 (01 2017)

Kluza, K., Nalepa, G.J., Lisiecki, J.: Square Complexity Metrics for Business Process Mod-
els, pp. 89—107. Springer International Publishing, Cham (2014)

Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs - a constructive approach. In: Application and Theory of Petri Nets
and Concurrency. pp. 311-329. Springer Berlin Heidelberg (2013)

Lieben, J., Jouck, T., Depaire, B., Jans, M.: An improved way for measuring simplicity dur-
ing process discovery. In: EOMAS. pp. 49-62. Springer (2018)

OMG: Business Process Model and Notation (BPMN), Version 2.0.2 (Dec 2013), http://
www.omg.org/spec/BPMN/2.0.2

Polyvyanyy, A.: Structuring Process Models. Ph.D. thesis, University of Potsdam (2012),
http://opus.kobv.de/ubp/volltexte/2012/5902/

https://doi.org/10.1007/s10115-018-1214-x
http://www.omg.org/spec/BPMN/2.0.2
http://www.omg.org/spec/BPMN/2.0.2
http://opus.kobv.de/ubp/volltexte/2012/5902/

A Framework for Estimating Simplicity of Process Models 17

20. Polyvyanyy, A., Solti, A., Weidlich, M., Ciccio, C.D., Mendling, J.: Monotone precision
and recall measures for comparing executions and specifications of dynamic systems. ACM
Trans. Softw. Eng. Methodol. 29(3) (Jun 2020). https://doi.org/10.1145/3387909

21. Reisig, W.: Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Stud-
ies. Springer Publishing Company, Incorporated (2013)

22. Wynn, M.T., Verbeek, HM.W., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.:
Reduction rules for yawl workflows with cancellation regions and or-joins. Inf. Softw. Tech-
nol. 51(6), 1010-1020 (Jun 2009)

https://doi.org/10.1145/3387909

University Library

* o A gateway to Melbourne's research publications

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Kalenkova, A;Polyvyanyy, A;La Rosa, M

Title:

A Framework for Estimating Simplicity of Automatically Discovered Process Models Based
on Structural and Behavioral Characteristics

Date:
2020

Citation:

Kalenkova, A., Polyvyanyy, A. & La Rosa, M. (2020). A Framework for Estimating Simplicity
of Automatically Discovered Process Models Based on Structural and Behavioral
Characteristics. Fahland, D (Ed.) Ghidini, C (Ed.) Becker, J (Ed.) Dumas, M (Ed.)
Proceedings of the 18th International Conference on Business Process Management (BPM
2020), 12168 LNCS, pp.129-146. Springer. https://doi.org/10.1007/978-3-030-58666-9_8.

Persistent Link:
http://hdl.handle.net/11343/241636

http://hdl.handle.net/11343/241636

	A Framework for Estimating Simplicity of Automatically Discovered Process Models Based on Structural and Behavioral Characteristics
	Introduction
	Motivating Example
	A Framework for Estimating Simplicity of Process Models
	Framework Instantiations
	Basic Notions
	Structural Representation.
	Behavioral Representation.

	Estimating Simplicity of Block-Structured BPMN Models

	Evaluation
	Conclusion

