Skip to main content

Deep Neural Networks for Landmines Images Classification

  • Conference paper
  • First Online:
  • 3014 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1261))

Abstract

This paper presents an efficient solution for automatic classification between the Anti-Tank (AT) landmines signatures and standard hyperbolic signatures obtained from other objects, including the Anti-personnel (AP) landmines based on pretrained deep Convolutional Neural Network (CNN). Specifically, two deep learning techniques have been tested and compared with another published landmine classification method. The first technique is based on VGG-16 pertained network for both features extraction and classification from the dataset of landmines images. While the second technique use Resnet-18 pretrained network for features extraction and Support Vector Machine (SVM) used for classification. The proposed algorithm has been tested using dataset of landmines images taken by the Laser Doppler Vibrometer based Acoustic to Seismic (LDV-A/S) landmine detection system. The results show that, the deep learning-based technique give higher classification accuracy than published landmine classification method. The Resnet-18 pretrained network-based and SVM classification gives better average accuracy than VGG-16 pertained network-based classification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kasban, H.: Detection of buried objects using acoustic waves, M.Sc. thesis, Faculty of Electronic Engineering, Department of Electronics and Electrical Communications Engineering, Menoufia University (2008)

    Google Scholar 

  2. Paik, J., Lee, C., Abidi, M.: Image processing-based mine detection techniques: a review. Subsurf. Sens. Technol. Appl. 3, 153–202 (2002)

    Article  Google Scholar 

  3. El-Qady, G., Al-Sayed, A.S., Sato, M., Elawadi, E., Ushijima, K.: Mine detection in Egypt: Evaluation of new technology. International Atomic Energy Agency (IAEA), IAEA (2007)

    Google Scholar 

  4. Kasban, H., Zahran, O., El-Kordy, M., Elaraby, S., Abd El-Samie, F.: Automatic object detection from acoustic to seismic landmine images. Presented at the International Conference on Computer Engineering & Systems, Cairo - Egypt (2008)

    Google Scholar 

  5. Travassos, X.L., Avila, S.L., Ida, N.: Artificial neural networks and machine learning techniques applied to ground penetrating radar: a review. Appl. Comput. Inform. (2018)

    Google Scholar 

  6. Kasban, H., Zahran, O., Elaraby, S., El-Kordy, M., Abd El-Samie, F.: A comparative study of landmine detection techniques. Sens. Imaging Int. J. 11, 89–112 (2010)

    Article  Google Scholar 

  7. Kasban, H., Zahran, O., El-Kordy, M., Elaraby, S., El-Rabaie, E.S., Abd El-Samie, F.: Efficient detection of landmines from acoustic images. Prog. Electromagnet. Res. C 6, 79–92 (2009)

    Article  Google Scholar 

  8. Kasban, H., Zahran, O., El-Kordy, M., Elaraby, S., Abd El-Samie, F.: False alarm rate reduction in the interpretation of acoustic to seismic landmine data using mathematical morphology and the wavelet transform. Sens. Imaging 11(3), 113–130 (2010)

    Article  Google Scholar 

  9. Makki, I.: Hyperspectral imaging for landmine detection, Ph.D. thesis, Electricaland Electronics Engineering Department, Lebanese University and Politecnico Di Torino (2017)

    Google Scholar 

  10. Kasban, H., Zahran, O., El-Kordy, M., Elaraby, S., El-Rabaie, E.S., Abd El-Samie, F.: Optimizing automatic object detection from images in laser doppler vibrometer based acoustic to seismic landmine detection system. In: National Radio Science Conference, NRSC, Proceedings (2009)

    Google Scholar 

  11. Lameri, S., Lombardi, F., Bestagini, P., Lualdi, M., Tubaro, S.: Landmine detection from GPR data using convolutional neural networks. Presented at the 25th European Signal Processing Conference (EUSIPCO), Kos, Greece (2017)

    Google Scholar 

  12. Bestagini, P., Lombardi, F., Lualdi, M., Picetti, F., Tubaro, S.: Landmine detection using autoencoders on multi-polarization GPR volumetric data, arXiv, vol. abs/1810.01316 (2018)

    Google Scholar 

  13. Silva, J.S., Guerra, I.F.L., Bioucas-Dias, J., Gasche, T.: Landmine detection using multispectral images. IEEE Sens. J. 19, 9341–9351 (2019)

    Article  Google Scholar 

  14. Elshazly, E., Elaraby, S., Zahran, O., El-Kordy, M., Abd El-Samie, F.: Cepstral detection of buried landmines from acoustic images with a spiral scan. Presented at the ICENCO’2010 - 2010 International Computer Engineering Conference: Expanding Information Society Frontiers (2010)

    Google Scholar 

  15. Elshazly, E., Zahran, O., Elaraby, S., El-Kordy, M., Abd El-Samie, F.: Cepstral identification techniques of buried landmines from degraded images using ANNs and SVMs based on spiral scan. CIIT Int. J. Digit. Image Process. 5(12), 529–539 (2013)

    Google Scholar 

  16. Elshazly, E., Elaraby, S., Zahran, O., El-Kordy, M., El-Rabaie, E.S., Abd El-Samie, F.: Identification of buried landmines using Mel frequency cepstral coefficients and support vector machines (2012)

    Google Scholar 

  17. Almaimani, M.: Classifying GPR images using convolutional neural networks, M.Sc. thesis, Computer Science Department, University of Tennessee at Chattanooga, Chattanooga, Tennessee (2018)

    Google Scholar 

  18. Zhang, L., Liu, J., Zhang, B., Zhang, D., Zhu, C.: Deep cascade model-based face recognition: when deep-layered learning meets small data. IEEE Trans. Image Process. 29, 1016–1029 (2020)

    Article  MathSciNet  Google Scholar 

  19. Yayeh Munaye, Y., Lin, H.P., Adege, A.B., Tarekegn, G.B.: UAV positioning for throughput maximization using deep learning approaches. Sensors 19(12), 2775 (2019)

    Article  Google Scholar 

  20. Vishal, V., Ramya, R., Srinivas, P.V., Samsingh, R.V.: A review of implementation of artificial intelligence systems for weld defect classification. Mater. Today Proc. 16, 579–583 (2019)

    Article  Google Scholar 

  21. Verma, A., Singh, P., Alex, J.S.R.: Modified convolutional neural network architecture analysis for facial emotion recognition. In: 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 169–173 (2019)

    Google Scholar 

  22. Treebupachatsakul, T., Poomrittigul, S.: Bacteria classification using image processing and deep learning. In: 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), pp. 1–3 (2019)

    Google Scholar 

  23. Talo, M., Baloglu, U.B., Yıldırım, Ö., Rajendra Acharya, U.: Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn. Syst. Res. 54, 176–188 (2019)

    Article  Google Scholar 

  24. Stephen, O., Maduh, U.J., Ibrokhimov, S., Hui, K.L., Al-Absi, A.A., Sain, M.: A multiple-loss dual-output convolutional neural network for fashion class classification. In: 2019 21st International Conference on Advanced Communication Technology (ICACT), pp. 408–412 (2019)

    Google Scholar 

  25. Deng, C., Xue, Y., Liu, X., Li, C., Tao, D.: Active transfer learning network: a unified deep joint spectral-spatial feature learning model for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 57, 1741–1754 (2019)

    Article  Google Scholar 

  26. Côté-Allard, U., Fall, C.L., Drouin, A., Campeau-Lecours, A., Gosselin, C., Glette, K., et al.: Deep learning for electromyographic hand gesture signal classification using transfer learning. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 760–771 (2019)

    Article  Google Scholar 

  27. Ahn, E., Kumar, A., Feng, D., Fulham, M., Kim, J.: Unsupervised deep transfer feature learning for medical image classification. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1915–1918 (2019)

    Google Scholar 

  28. Harkat, H., Ruano, A.E., Ruano, M.G., Bennani, S.D.: GPR target detection using a neural network classifier designed by a multi-objective genetic algorithm. Appl. Soft Comput. 79, 310–325 (2019)

    Article  Google Scholar 

  29. Giovanneschi, F., Mishra, K.V., Gonzalez-Huici, M.A., Eldar, Y.C., Ender, J.H.G.: Dictionary learning for adaptive GPR landmine classification. IEEE Trans. Geosci. Remote Sens. 57, 10036–10055 (2019)

    Article  Google Scholar 

  30. Dumin, O., Plakhtii, V., Shyrokorad, D., Prishchenko, O., Pochanin, G.: UWB subsurface radiolocation for object location classification by artificial neural networks based on discrete tomography approach. In: 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), pp. 182–187 (2019)

    Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kasban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fikry, R.M., Kasban, H. (2021). Deep Neural Networks for Landmines Images Classification. In: Hassanien, A.E., Slowik, A., Snášel, V., El-Deeb, H., Tolba, F.M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020. AISI 2020. Advances in Intelligent Systems and Computing, vol 1261. Springer, Cham. https://doi.org/10.1007/978-3-030-58669-0_11

Download citation

Publish with us

Policies and ethics