Skip to main content

Review of Several Address Assignment Mechanisms for Distributed Smart Meter Deployment in Smart Grid

  • Conference paper
  • First Online:
Book cover Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020 (AISI 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1261))

Abstract

Deploying wireless objects or devices is a fundamental basis for many network-based applications. The objects could be smart meters in a smart gird, sensors or actuators in a WSN, or IoT things. After the physical deployment of those devices, a network address allocation becomes another essential procedure to enable network communications among the devices for device controls or message delivery purposes. This paper gives a review on several notable address assignment mechanisms by describing the key technique of each of these proposed approaches. The advantages as well as weaknesses are also introduced and a brief comparison is also given in this paper. The review provides a valuable reference in making further improvement of distributed address allocations and a meaningful reference for the relevant applications in the topics of smart grid, sensor networks, and Internet of things.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan, J., Ip, R., Cheng, K.W., Chan, K.S.P.: Advanced metering infrastructure deployment and challenges. In: Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 19–23 March 2019, pp. 435–439 (2019)

    Google Scholar 

  2. Abdulla, G.: The deployment of advanced metering infrastructure. In: Proceedings of the 2015 First Workshop on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 22–23 March 2015, pp. 1–3 (2015)

    Google Scholar 

  3. Chren, S., Rossi, B., Pitner, T.: Smart grids deployments within EU projects: the role of smart meters. In: Proceedings of the 2016 Smart Cities Symposium Prague (SCSP), Prague, Czech Republic, 26–27 May 2016, pp. 1–5 (2016)

    Google Scholar 

  4. Aboelmaged, M., Abdelghani, Y., Abd El Ghany, M.A.: Wireless IoT based metering system for energy efficient smart cites. In: Proceedings of the 2017 29th International Conference on Microelectronics (ICM), Beirut, Lebanon, 10–13 December 2017, pp. 1–4 (2017)

    Google Scholar 

  5. Dhivya, M., Valarmathi, K.: IoT based smart electric meter. In: Hemanth, D., Kumar, V., Malathi, S., Castillo, O., Patrut, B. (eds.) Emerging Trends in Computing and Expert Technology, COMET 2019. Lecture Notes on Data Engineering and Communications Technologies, vol. 35, pp. 1260–1269. Springer, Cham (2019)

    Google Scholar 

  6. Hlaing, W., Thepphaeng, S., Nontaboot, V., Tangsunantham, N., Sangsuwan, T., Pira, C.: Implementation of WiFi-based single phase smart meter for internet of things (IoT). In: Proceedings of the 2017 International Electrical Engineering Congress (iEECON), Pattaya, Thailand, 8–10 March 2017, pp. 1–4 (2017)

    Google Scholar 

  7. Burunkaya, M., Pars, T.: A smart meter design and implementation using ZigBee based wireless sensor network in smart grid. In: Proceedings of the 2017 4th International Conference on Electrical and Electronic Engineering (ICEEE), Ankara, Turkey, 8–10 April 2017, pp. 158–162 (2017)

    Google Scholar 

  8. Wang, G., Zhao, Y., Ying, Y., Huang, J., Winter, R.M.: Data aggregation point placement problem in neighborhood area networks of smart grid. Mob. Netw. Appl. 23(4), 696–708 (2018)

    Article  Google Scholar 

  9. Alliance, Z.: ZigBee Specification (Document 053474r13), 1 December 2006

    Google Scholar 

  10. Sung, T.W., Yang, C.S.: An adaptive joining mechanism for improving the connection ratio of ZigBee wireless sensor networks. Int. J. Commun Syst 23(2), 231–251 (2010)

    Article  MathSciNet  Google Scholar 

  11. Hwang, H., Deng, Q., Jin, X., Kim, K.: An expanded distributed address assignment mechanism for large scale wireless sensor network. In: Proceedings of the 2012 8th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom), Shanghai, China, 21–23 September 2012, pp. 1–3 (2012)

    Google Scholar 

  12. Kim, H.S., Yoon, J.: Hybrid distributed stochastic addressing scheme for ZigBee/IEEE 802.15.4 wireless sensor networks. ETRI J. 33(5), 704–711 (2011)

    Article  Google Scholar 

  13. Kim, H.S., Bang, J.S., Lee, Y.H.: Distributed network configuration in large-scale low power wireless networks. Comput. Netw. 70, 288–301 (2014)

    Article  Google Scholar 

  14. Chang, H.-Y.: A connectivity-increasing mechanism of ZigBee-based IoT devices for wireless multimedia sensor networks. Multimed. Tools Appl. 78(5), 5137–5154 (2017). https://doi.org/10.1007/s11042-017-4584-2

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the Fujian Provincial Natural Science Foundation in China (Project Number: 2017J01730), the Fujian University of Technology (Project Number: GY-Z18183), and the Education Department of Fujian Province (Project Number: JT180352).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sung, TW., Hu, X., Ou, H. (2021). Review of Several Address Assignment Mechanisms for Distributed Smart Meter Deployment in Smart Grid. In: Hassanien, A.E., Slowik, A., Snášel, V., El-Deeb, H., Tolba, F.M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020. AISI 2020. Advances in Intelligent Systems and Computing, vol 1261. Springer, Cham. https://doi.org/10.1007/978-3-030-58669-0_15

Download citation

Publish with us

Policies and ethics