Design of Secure Coding Challenges for
Cybersecurity Education in the Industry

Tiago Gasibal’Q[0000_0003_1462_6701}, Ulrike Lechner2 [0000—0002—4286—3184]’

Maria Pinto-Albuquerque3[0000—0002-2725-7629]
Alae Zouitnit[0000—0002—8809—7657]

, and

! Siemens AG, Munich, Germany tiago.gasiba@siemens.com
2 Universitéit der Bundeswehr Miinchen, Munich, Germany
ulrike.lechner@unibw.de
3 Instituto Universitdrio de Lisboa (ISCTE-IUL), ISTAR-IUL, Lisboa, Portugal
maria.albuquerque@iscte-iul.pt
4 Universitat Passau, Passau, Germany zouitni.alae@gmail.com

Abstract. According to a recent survey with more than 4000 software
developers, “less than half of developers can spot security holes”. As a
result, software products present a low-security quality expressed by vul-
nerabilities that can be exploited by cyber-criminals. This lack of quality
and security is particularly dangerous if the software which contains the
vulnerabilities is deployed in critical infrastructures. Serious games, and
in particular, Capture-the-Flag(CTF) events, have shown promising re-
sults in improving secure coding awareness of software developers in the
industry. The challenges in the CTF event, to be useful, must be ade-
quately designed to address the target group. This paper presents novel
contributions by investigating which challenge types are adequate to im-
prove software developers’ ability to write secure code in an industrial
context. We propose 1) six challenge types usable in the industry context,
and 2) a structure for the CTF challenges. Our investigation also presents
results on 3) how to include hints and penalties into the cyber-security
challenges. We evaluated our work through a survey with security ex-
perts. While our results show that ”traditional” challenge types seem to
be adequate, they also reveal a new class of challenges based on code
entry and interaction with an automated coach.

Keywords: education - teaching - training - secure coding - industry -
cybersecurity - capture-the-flag - game analysis - game design - cyberse-
curity challenge

1 Introduction

To improve the quality (ISO250xx [16]) of software in terms of security, several
standards such as IEC-62443-4-1 [15] and ISO 27001 [17] mandate the imple-
mentation of a secure software development lifecycle (S-SDLC). Additionally, in
recognition of the importance of secure code and need to develop secure prod-
ucts [23, 26], several companies have joined together and formed the SAFE-
code [25] alliance to promote security best practices. Automatic tools such as

2 T. Gasiba et al.

Static Application Security Testing (SAST) [24] can be used to automate and aid
in improving code quality. These tools scan the code basis for existing vulnera-
bilities, which must be fixed by software developers. However, previous research
shows that this is not enough [22]: the reliability of such tools is still not good
enough, and they cannot automatically fix the code - this is done by software
developers who must also be trained in secure software development.

One of the methods currently being investigated and that is showing promis-
ing results are training methods based serious games of the type Capture-the-
Flag (CTF). The concept of these kinds of games was originally developed in
the pen-testing community. Several such games are continually being deployed
around the world [7] nowadays by universities, companies, and even groups of
individuals. However, most of the existing CTFs are not geared towards soft-
ware developers in the industry. Gasiba et al. [10] have recently shown that, in
order to raise awareness on secure coding in the industry, the game design must
address the specific requirements of its target audience.

Typically CTF's can be categorized as follows: 1) Attack-Only, 2) Attack-and-
Defend and 3) Defend Only. The participants of these CTF's are generally split
into two categories: Red Team (attackers) and Blue Team (defenders). In Attack-
Only Red team players try to exploit several systems to gain access and control.
In Attack-and-Defend competitions, the Red team players attack systems that
are being hardened and protected by blue team members. Finally, in Defend Only
CTFs, the players answer questions on cybersecurity for points or configure and
harden systems to be resilient to simulated attacks.

To address the needs of the industry and to better adapt to the players,
Gasiba et al. [10] have proposed a defensive CTF approach and also outlined
the requirements for the design of the defensive challenges. A proper design
of challenge types based on these requirements is especially important in an
industrial setting, as shown by an experiment by Barela et al. [3], where the
type of the challenge (based on comics) was seen to be inadequate for CTFs in
the industry.

Therefore, in this paper, we extend previous work by addressing the question
of which types of defensive challenges are suitable for software developers. In
particular, we are interested in the 1) structure of the said challenges and also
on 2) which types of challenges can be used in a CTF-like competition to raise
awareness of software developers in the industry. Our work is based on surveys
administered through interviews with expert security trainers from the industry.
The main contributions of this work are the following:

design of defensive challenges for CTF's in the industry which aim at raising
awareness on secure coding and secure coding guidelines

— definition of a challenge structure for industrial CTF's,
— definition of six different challenge types for industrial CTFs, and

— insight into different options on how to include hints and penalties in indus-
trial CTFs.

Design of Secure Coding Challenges for Education in the Industry 3

We hope that this work can be used by designers of serious game and quality
engineers as a guideline on how to design defensive challenges for CTFs aimed
at raising awareness on secure coding on software developers in the industry.

In section 2, we present previous work related to our research. Section 3
discusses our approach to the design of the defensive challenges. The results
of our study are presented in Section 4. This section also presents a critical
discussion on the obtained results, presents our main contribution to practical
scenarios for possible games, and briefly discusses the threats to the validity
of our findings. Finally, section 5 summarizes our work and briefly discusses
possible next steps.

2 Related Work

In [11], Graziotin et al. have shown that happy developers are better coders,
i.e., produce higher quality code and software. Davis et al. in [8] show that
CTF players experience fun during game play. Furthermore, Woody et al. [32]
argue that software vulnerabilities are quality defects. Since fun and happiness
are inter-related [30], these facts can be seen as a motivator to use Capture-the-
Flag (CTF)-base serious games [9] to raise awareness [14] on the topic of secure
coding for software developers in the industry, in order to improve code quality.

In [19] Mirkovic et al. introduced classroom CTF exercises as a form of cy-
bersecurity education in academia. Their results show that the students that
participated in this kind of event have enjoyed the training and have shown in-
creased interest, attention, and focus towards cybersecurity topics. Additionally,
in their study, Gonzalez et al. [13] shown similar results and state that cyber-
security training through serious games improves the students’ education and
skills, and has a positive impact on attracting students to cybersecurity field.
They conclude that this kind of training can reduce the shortage of profession-
als in the field of cybersecurity. Several additional studies [2,4, 8] also show the
positive benefits of CTF in students’ attention and performance.

However, using CTFs as a tool to raise cybersecurity awareness comes with
different obstacles. In [10], Gasiba et al. elicit requirements for designing CTF
challenges geared towards software developers in the industry and show that
these CTF challenges should focus on the defensive perspective. Chung et al. [6]
also evaluated different aspects related to CTFs and concluded two important
issues related to CTFs: the challenge difficulty level and suitability the target
audience.

In our work, we are interested in designing high-quality defensive CTF chal-
lenges for software developers in the industry that address the topic of secure
coding guidelines [5] (SCG) and secure software development best practices [21]
(SDBP). However, most of the currently existing work focuses on academia,
where the target group is composed of current or future security experts, or
pen-testers. Furthermore, most existing studies also focus on the offensive per-
spective and do not address the topic of SCG, and SDBP. As such, this study is
driven by both the need to raise awareness on secure coding [1,20,33], and by the

4 T. Gasiba et al.

lack of design of defensive CTF challenge geared towards software developers in
the industry. The research method used in this work is based on semi-structured
interviews [31] and survey best practices as described by Grooves et al. [12] and
Seaman et al. [28]. The design of the serious games is based on [9].

3 Approach to Challenge Design

In order to design defensive challenges for industrial CTFs, the authors have
decided to focus on two different aspects: the challenge structure (CS) and the
challenge type (CT). The content of the challenge (e.g. questions or example
of software vulnerability), which are not the focus of the current work, can be
derived from existing SCG [5] and SDBP [21]. The challenge structure reflects
the mechanics of the challenge, i.e., how it is supposed to be deployed and how
it should work. The challenge type specifies the different ways that the challenge
can be presented to a participant. Figure 1 shows the steps that we have followed
in our approach to design the defensive CTF challenges for an industrial context.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

! Interviews
Preliminary Design Survey Preparation % Pre-Survey
Final Design <— Adaptation K— Analysis @ Post-Survey

Fig. 1. Study Approach

In the first step, we have created a preliminary design, containing a proposed
CS and different CTs. For this, we conducted several informal discussions with
one security expert. Additionally, based on our experience with past Capture-
the-Flag events, we concluded the preliminary design of challenge structure and
challenge types. In the next step, we created a two-phase survey [12,28]. The goal
of the survey was to gather feedback and opinions, in a structured way, on the
preliminary challenge structure and challenge types. It was used to facilitate the
semi-structured interviews with several security experts. The interviews, carried
out in the following step, were realized in face-to-face meetings. The meetings
consisted of three parts: pre-survey, post-survey, and informal discussions. Af-
ter the interviews, the collected feedback was transferred to digital form and
was analyzed. The analysis step aims at understanding the joint agreement on
the different suggested improvements by the security experts. The commonly
suggested improvements were then used to adapt and change the preliminary
design, which resulted in the final challenge design.

In the following sub-sections, we present details on the different phases of our
approach. The results of the analysis, adaptation, and also the final challenge
design will be presented in section 4.

Design of Secure Coding Challenges for Education in the Industry 5

3.1 Preliminary Design

In the preliminary design, the authors conducted several informal discussions
with a security expert which is also a trainer of secure coding in the industry.
The security expert has more than 10 years of experience in the industry and
has also knowledge and had previously participated in Capture-the-Flag events.
Based on the experience of the security expert and also on the experience of the
authors, preliminary design was derived.

3.2 Survey Preparation

In order to prepare for the interviews with security experts, a two-part sur-
vey [18] was developed by the authors. The developed survey underwent three
reviews by three different cybersecurity experts: one holding a master of science
in computer science and two holding a Ph.D. in IT security, whereby one is ad-
ditionally a university lecturer in cybersecurity. The main goal of the pre-survey
was to understand what types of challenges do experienced industry security
experts find suitable for CTF-based awareness training. The post-survey’ pri-
mary goal is to understand the level of agreement with the different preliminary
challenges types. The pre-survey was conducted at the beginning of the meeting,
before presenting the preliminary design. The post-survey was conducted after
presenting the preliminary design. This split allowed the participants to think
and reflect on their answers from the pre-survey and be prepared and more open-
minded for the discussions on the post-survey. Splitting the survey into two parts
was done in order to guarantee unbiased feedback collection from the security
experts during the pre-survey. Both the pre-survey and post-survey asked the
participants - if they were to design a CTF challenge about secure coding for soft-
ware developers in the industry, what kind of challenge structure and type would
they use?. The post-survey additionally asked questions on the preliminary de-
sign, in particular on what would the participant change, add or remove to the
presented preliminary design, what other challenge types would they additionally
consider and also on the expert opinion on how to use penalties and hints in
the challenges. In total, the pre-survey consisted of 16 questions, of which 12
were multiple-choice, three were based on a Likert scale, and 1 was an open-
ended question [29]. The post-survey consisted of 11 questions, whereby 5 were
feedback questions based on a Likert scale, and 6 were open-ended questions.

3.3 Interviews

For the interview, the authors engaged 20 security experts with an average of
4 years of experience in the industry (minimum one year and maximum of 12
years). The experts were selected based on their experience, position, and back-
ground in the company - engaged in several consulting projects as a cyber-
security expert. A large part of the participants were also trainers themselves
of different topics on cybersecurity. The selected participants were all familiar

6 T. Gasiba et al.

with CTF competitions. Half of the experts hold a Ph.D. degree in computer sci-
ence or equivalent, and the remaining half holds a master of science in computer
science or equivalent. The face-to-face interviews lasted for one hour and were
carried out between the 15 of October 2019 and the 16**. During the interview,
the first 20 minutes were dedicated to the pre-survey. Afterward, the preliminary
design of CTF challenges was presented to the participants. The remaining 30
minutes were then spent on the post-survey, open-ended discussions and finished
with 10 minutes of informal discussions on the results.

3.4 Analysis

In this stage, we gathered all the collected data from the pre-surveys, post-
surveys, and informal discussions. The results using a Likert scale were analyzed
using standard statistical methods. Due to its nature, the open-ended questions
and the informal discussions need to be coded [28]. In order to guarantee the
quality of this step, the transcripts were given to three security experts who
were asked to perform the coding step manually. We have opted for a manual
procedure rather than automated to ensure high quality, as automated coding
has been previously shown not to achieve high accuracy [27]. The coding out-
come of each expert was then collected and discussed together. Similarities and
differences were then systematically addressed, and the final coding was derived
by mutual agreement between the three experts.

3.5 Adaptation and Final Design

The last step consisted of using the feedback from the previous step to adapt
and change the preliminary design accordingly. Only the proposed changes that
were agreed by the majority of the participants (i.e., more than 2/3 after coding
or 80% of participants) were considered for the final design. In section 4, the
final challenge design, including challenge structure and derived challenge types,
will be presented in more detail.

4 Analysis and Results

In this section, we describe the results from the two-part survey interview, as
outlined in the previous section. We present the final challenge structure and
types, which take into consideration the feedback provided by all the security
experts. Finally, we summarize the main contributions and briefly discuss the
threat to the validity of our work.

4.1 Preliminary Design

As a result of the informal discussions with the security expert, the challenge
structure was defined in two rounds: round I1: main challenge and round 2:
presentation of secure coding guideline related to the challenge. No further details

Design of Secure Coding Challenges for Education in the Industry 7

will be given for the initial design, as this was changed after the interview with
the security experts, as shown in the next sub-sections. Section 4.4 details the
final challenge structure. The derived initial challenge types were the following:
Single Choice Question (CSQ), Multiple Choice Question (MCQ), Text Entry
Challenge (TEC), Code Snippet Challenge (CSC), and Code Entry Challenge
(CEC). Table 3 shows a summary of the challenge types. Further details are
given in section 4.5, together with the final design.

4.2 Pre-Survey Results

Pre-survey results showed that the majority (55%) of the participants thought an
adequate type of challenge would be of type question and answer, without spec-
ifying what they mean. Additionally, 85% answered that some form of challenge
involving coding would be adequate, since the challenges should be based on
SCG. However, some participants replied that friendly hacking exercises would
also be a good exercise - this was discarded as these types of challenges are
not defensive. One participant mentioned that an appropriate challenge would
involve fizing a problem on a vulnerable code snippet.

Question Pre-survey Results
(30%)For all challenges

(50%) For difficult challenges
(20%) No opinion

(50%) Giving details on the answer
(75%)

(70%)

When would you add the hints?

75%) Disclosing important concept

70%) Include an external reference

(60%) Agree to introduce penalties
(35%) Retrying the same challenge

When would you add penalties? (65%) When using a hint

(30%) Disagree to introduce penalties

(30%) No opinion

Table 1. Coding Results On Hints and Penalties

How to design the hints?

Table 1 shows a summary of the agreement level of the participants towards
questions asked during the pre-survey related the hints and penalties. The usage
of hints was backed by 80% of the survey participants, for difficult challenges
(50%) or all questions (30%). The hints should include details on how to solve the
questions (50%) and point-out the secure coding concept behind the challenge
(75%). The majority of the participants agreed that adding an external reference
(e.g. link to an article on the web) is an appropriate way to design hints for
challenges. Half of the participants agree that hints should disclose the essential
concept behind the challenge, e.g., on which secure coding guideline the challenge
is based. Only 75% of the participants agree that giving targeted hints (e.g.,
disclosing an important concept) is a good idea. During the informal discussions,
several participants mentioned that the goal of the hints should be to make sure
that the CTF players are learning secure coding concepts during the game. The
hints should also be designed in order to lower player frustration and maximize

8 T. Gasiba et al.

the learn-effect. In particular, the types of hint should be precise and to the
point, as industry players have a limited time to play the game.

In terms of penalty-points, 60% agreed to introduce them, 30% disagreed,
and 10% had no opinion. The ones that agreed to introduce penalty points, 65%
agreed that using hints should be penalized, and the remaining 35% agreed that
retrying a challenge should be penalized. During the informal discussions, the
survey participants mentioned that the intention to add penalties should be to
motivate the player to find solutions by him/herself and not to rely on hints.
Furthermore, the penalties should be small to lower the frustration level while
maximizing the learning effect of the CTF players.

4.3 Post-Survey Results

In the post-survey, the participants were shown all the derived challenge types
and were asked to rate their agreement on the suitability for a CTF-like event
with software developers in an industrial setting on a Likert scale. Table 2 shows
the results of the post-survey for the five different challenge types. We use the
standard mapping of the Likert scale as follows: from 1-strongly disagree to 5-
strongly agree.

SCQMCQ[TEC]CSC|CEC

Average 3.95 [3.80 [3.15 [4.30 [4.30

Std. Devialion]|0.76 [1.00 [1.04 [1.26 [0.92
Table 2. Average Agreement Level

The derived ranks of the preferred challenge types are the following (from
highest agreement to lowest agreement): 1) Code-Entry-Challenge, 2) Code-
Snippet Challenge, 3) Single-Choice Question, 4) Multiple-Choice Question and
5) Text-Entry Challenge. Although CSC and CEC have the same average agree-
ment level, CSC has a higher standard deviation (i.e., higher uncertainty) than
CEC; therefore, we have placed CEC in first place in the rank.

When the participants were asked about ideas for additional challenge types,
80% had no new idea, 15% answered yes, they had an additional idea and 5%
had no opinion. The additional collected ideas were the following: a) “something
dynamic and fun”, b) 7associating left and right lists” (ASL) and ¢) "modify code
that has one vulnerability”. The contribution (a) and (c) could not be mapped
into an existing challenge type, nor could a new challenge type be discerned.
However, (b) resulted in a new challenge type.

The participants were also asked what could be added to the existing chal-
lenges. The following additional points were collected with this question:

Provide explanation at the end of the challenge, together with the flag
Add explanations on multi-stage challenges

— Ask which coding guideline is not being followed in a code snippet
Randomize the answers and randomize of the solutions

Do not forget about the fun aspect when designing the challenge

Design of Secure Coding Challenges for Education in the Industry 9

These additional points were also used to improve the final challenge struc-
ture, as shown in the next sub-section.

4.4 Final Challenge Structure

The final challenge structure (CS) contains three phases consisting of four stages:
introduction (phase 1), challenge and logic (phase 2) and conclusion (phase 3),
as shown in Figure 2. In the introduction stage (phase 1), a topic related to
secure coding is introduced, which is helpful to solve and frame the challenge
(e.g., secure coding guideline or previously related cybersecurity incident). This
optional stage and can include a single-choice or multiple-choice question before
proceeding to the next phase. In the second phase, the challenge stage contains
the main CT according to a given challenge type, as presented in section 4.5. In
this stage, several hints can be given to the player depending on several factors,
e.g., time taken by the player to solve the challenge or the previous number of
attempts to solve the challenge. The logic stage is responsible for evaluating the
solution to the challenge provided by the player and determining if it is correct
(acceptable) or wrong (not acceptable). According to the analysis of the answer
provided by the player, points or penalties might be awarded.

Phase 1 Phase 2 Phase 3

Wrong

Introduction —> Challenge > Logic

|

Correct

J L Conclusion —

-_— -_—t

-— -—

Hints Points
Penalties

Fig. 2. Challenge Structure

The third phase depends on the result of the logic stage. In case the player’s
answer was wrong, the following four options can occur: return to the chal-
lenge stage, give some explanation why the solution is wrong and return to the
challenge stage, proceed to the finish or give an explanation why the solution
is wrong and proceed to the finish. In case the player’s solution was correct,
the following two options can occur: give some concluding remarks (with an
optional additional question) and then proceed to the finish or proceed to the
finish. If a correct solution is achieved at the finish state, then a flag is presented
to the player (according to the CTF rules). In the conclusion stage, additional
useful information can be given to the player, e.g., an explanation of secure cod-
ing guidelines related to the challenge, the importance of the challenge in the

10 T. Gasiba et al.

industry context, for example, through lessons learned from past incidents or
vulnerabilities.

4.5 Final Challenge Types

Table 3 shows the final six derived challenge types. In single-choice questions
(SCQ), the participant is asked a question, and only one of the possible answers
is the correct solution. In multiple-choice questions (MCQ), the correct solution
must include more than one different answers. In text-entry questions (TEQ),
the participant needs to type in the solution as text - this can be achieved, for
example, by completing or writing a full sentence as the answer to the challenge.
Code-snippet challenge (CSC) presents a piece of code to the participant and lets
the participant select lines of code containing vulnerabilities or select changes
to the code that would avoid vulnerabilities (i.e., respect SCG and SDBP). In
code-entry challenges (CEC), the participant is given vulnerable code that needs
to be changed or rewritten to eliminate the vulnerability by complying with SCG
and SDBP. In associate left-right challenges, the participant needs to associate
items in a list on the left to items in a list on the right.

Figures 3-8 show mock-up sketches of possible implementations on how to
create a defensive CTF challenge based on the six challenge types. Each challenge
contains a guiding question, an area where the player can interact with the
challenge and a submit button to submit the results to the backend and trigger
the logic stage.

Challenge Type Description
Single Choice Question Select a single correct answer
Multiple Choice Question [Select multiple correct answers
Text Entry Challenge Type the answer to the question
Code Snippet Challenge Identify lines or expressions in a code snippet
Code Entry Challenge Write or adapt code to eliminate vulnerabilities
Associate Left-Right Associate elements in left-list to those in right Iist

Table 3. Description of the derived challenge types

4.6 Observations

In this work, we designed defensive challenges for CTF events, which aim to
raise secure coding awareness of software developers in the industry. Code-Entry
Challenges were found to be among the most popular choice, while Text-Entry
Questions among the least popular. Both the initial CS and the CT were updated
as a result of the interviews with security experts. Interestingly, the informal dis-
cussions with the security experts did not result in CTs based on comics [3]. An-
other interesting observation is that all the security experts considered ”simple”
game types, i.e., no discussions took place on advanced challenge types based
e.g., on Virtual Reality or Role-Playing-Games. This fact is likely related to the
particular nature of the topic and deployment environment (industry). As such,

Design of Secure Coding Challenges for Education in the Industry 11

challenge types that are more simple and traditional have been selected (e.g.,
Single-Choice Questions and Multiple-Choice Questions). One unexpected chal-
lenge type was the Code-Entry Challenge. Due to its complex nature, this type
of challenge requires more investigation to understand how to create a challenge
based on this type effectively.

| (- |
| (- |
| (- |
| N |
} & oOption 1 } } M Option 1 }
I O Option2 ! | [option2 !
| |
I O option3 i ! O option3 i
i O Option 4 | i O Option4 !
| |
| =i e
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I]
Fig. 3. Single-Choice Question Fig. 4. Multiple-Choice Question

| [|
| (- |
| (- |
I [|
| . . [1 - |
! Lorem ipsum[___]sit amet, ! ! : — & oOption 1 !
! consetetut sadipscing e//.tr, fed diam ! ! (- O Option 2 !
! [leirmod tempor invidunt ut P S coesnpnet) |
! labore et dolore[_____laliquyam } ! s w= | O Option 3 |
! erat, sed diam voluptua. | ! 1 O Option 4 |

| |
| Fe | e
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I]

Fig. 5. Text-Entry Question Fig. 6. Code-Snippet Question

Code Editor

‘ Associate Left-Right ‘

#include <stdio.h>

int checkPass(char *userPass) {
char localPass[20];
char truePass[] = “hello”;

[
|
|
1

Left Elem. 1 &N © Right Elem. 1| |

Left Elem. 2 @&.@ Right Elem. 2| !

strcpy(localPass,userPass); |
if (O==strcpy(truePass,localPass)) return 1; |
return 9; |
|

i

i

i

i

Left Elem. 3 (@ N© Right Elem. 3
Left Elem. 4 & © Right Elem. 4

Fig. 7. Code-Entry Challenge Fig. 8. Associate Left-Right

4.7 Threats to Validity

The work hereby presented is based on the knowledge and know-how obtained
through interactive discussions and surveys from a group of 20 security experts
from the industry. A possible threat to our conclusions is the limited number of
participants and their company background.

Although the authors found previous work on defensive challenges for Capture-
the-Flag events, they were not focused on secure coding, software developers, and
the industry. Nevertheless, since the authors did not perform a systematic litera-

12 T. Gasiba et al.

ture review, it might be that some challenge types present in scientific literature
might also apply to our situation and constraints.

Another limitation of our work is that it was based only on feedback from
security experts and not from players, i.e., real CTF participants. As such, no
direct feedback from the target group was used in our evaluation, especially in
the preferred challenge type ranking. The authors will address these issues in a
subsequent publication.

Although the present work follows survey methodology and semi-structured
interviews best practices, it lacks a systematic and academic approach. The rea-
son for this is that the study was conducted in an industrial setting. However,
extensive searches were conducted in scientific publication search engines to iden-
tify previous relevant work. These findings constituted part of the initial CT and
CS design.

5 Conclusions

Nowadays, there is an increasing demand for awareness training of software de-
velopers in the industry on secure coding. This demand is motivated by require-
ments from quality standards and security security standards. One promising
new method to raise security awareness is the usage of Capture-the-Flag events.
However, these events need to be specially designed in order to address the target
audience and its requirements - software developers in the industry.

Recently the requirements that are needed for designing these games in an
industrial setting have been investigated [10]. However, the authors of this previ-
ous work did not provide details on the challenge types but rather requirements
on the overall game. The design of challenge types is not a trivial task, and poor
quality challenges may result in inefficiencies (e.g., loss of productivity) that
industrial companies are not willing to accept. Barela [3] et al. gives one such
example, which has shown that challenge types based on comics, when deployed
in CTF, might not be adequate for the event and its goals. Furthermore, the ma-
jority of the existing literature not only focuses on defensive challenges but also
mostly addresses a target audience of security professionals, e.g., pen-testers.

In this work, we have addressed the design of defensive challenges for CTF's
for the industry. We have derived a challenge structure and six different chal-
lenge types. Our work is based on semi-structured interviews with security ex-
perts and comprises a two-part survey and additional informal discussions. Our
results show that security experts prefer ”traditional” challenge types, based
e.g., on Single-Choice and Multiple-Choice Questions. We have seen that the
least preferred challenge type by security experts is the Text-Entry Challenges.
Three additional challenge types have been discussed: Association Left-Right,
Code-Entry Challenge, and Code-Snippet Challenge. The two latter types are
well adapted to secure coding challenges since they use software code.

However, the unexpected new challenge type was the Code-Entry Challenge,
where the player submits code to the backend, which decides if the challenge
is correctly solved. A topic that needs additional investigation is the details on

Design of Secure Coding Challenges for Education in the Industry 13

how to create such a challenge type. The results presented in this publication
have been derived solely based on feedback from interviews with security experts.
Further work is required to validate the derived challenge structure and challenge
types in real CTF events in an industrial setting. In particular, the authors intend
to give concrete examples of the implementation of the different derived challenge
types in an upcoming publication. This further work will allow to refine further
the challenge structure and challenge types based on the feedback from the CTF
players themselves.

Acknowledgement

This work is financed by portuguese national funds through FCT - Fundagao
para a Ciéncia e Tecnologia, I.P., under the project FCT UIDB/04466/2020.
Furthermore, the third author thanks the Instituto Universitario de Lisboa and
ISTAR-IUL, for their support.

References

1. Acar, Y., Stransky, C., Wermke, D., Weir, C., Mazurek, M.L., Fahl, S.: Developers
need support, too: A survey of security advice for software developers. In: 2017
IEEE Cybersecurity Development (SecDev). pp. 22-26. IEEE (09 2017)

2. Aoyama, T., Nakano, T., Koshijima, I., Hashimoto, Y., Watanabe, K.: On the
Complexity of Cybersecurity Exercises Proportional to Preparedness. Journal of
Disaster Research 12(5), 1081-1090 (2017)

3. Barela, J., Espinha Gasiba, T., Suppan, S., Berges, M., Beckers, K.: When inter-
active graphic storytelling fails. In: 2019 IEEE 27th International Requirements
Engineering Conference Workshops (REW). pp. 164-169. IEEE (Sep 2019)

4. Beuran, R., Chinen, K.i., Tan, Y., Shinoda, Y.: Towards Effective Cybersecurity
Education and Training. Research report (School of Information Science, Graduate
School of Advanced Science and Technology, Japan Advanced Institute of Science
and Technology) IS-RR-2016(April), 1-16 (2016)

5. Carnegie Mellon University: SEI-CERT Coding Standards, https://wiki.sei.
cmu. edu/confluence/display/seccode, [Online]

6. Chung, K., Cohen, J.: Learning Obstacles in the Capture The Flag Model. In: 2014
USENIX Summit on Gaming, Games, and Gamification in Security Education
(3GSE 14). USENIX Association, San Diego, CA (2014)

7. CTFtime team: CTFTime - All about CTF, https://ctftime.org, [Online]

8. Davis, A., Leek, T., Zhivich, M., Gwinnup, K., Leonard, W.: The fun and future of
CTF. In: 2014 USENIX Summit on Gaming, Games, and Gamification in Security
Education (3GSE 14). USENIX Association, San Diego, CA (2014)

9. Dorner, R., Gobel, S., Effelsberg, W., Wiemeyer, J.: Serious Games: Foundations,
Concepts and Practice. Springer International Publishing, 1 edn. (2016)

10. Gasiba, T., Beckers, K., Suppan, S., Rezabek, F.: On the requirements for serious
games geared towards software developers in the industry. In: Damian, D.E., Perini,
A., Lee, S. (eds.) 27th IEEE International Requirements Engineering Conference,
RE 2019, Jeju Island, Korea (South), September 23-27, 2019. IEEE (2019)

11. Gragziotin, D., Fagerholm, F., Wang, X., Abrahamsson, P.: What happens when
software developers are (un)happy. Journal of Systems and Software 140, 32-47
(2018)

12. Groves, R.M., Fowler, F., Couper, M., Lepkowski, J., Singer, E.: Survey Method-
ology. John Wiley & Sons, 2 edn. (2009)

14

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

T. Gasiba et al.

Hugo Gonzalez, Rafael Llamas, F.O.: Cybersecurity Teaching through Gamifica-
tion: Aligning Training Resources to our Syllabus. Research in Computing Science
146, 35-43 (12 2017). https://doi.org/10.13053 /rcs-146-1-4

Hansch, N., Zinaida, B.: Specifying it security awareness. In: 25th International
Workshop on Database and Expert Systems Applications, Munich, Germany. pp.
326-330 (09 2014)

TEC 62443-4-1: Security for industrial automation and control systems - part 4-1:
Secure product development lifecycle requirements. Standard, International Elec-
trotechnical Commission (Jan 2018)

ISO: ISO 250xx Series. Standard, International Organization for Standardization,
Geneva, CH (2005), http://is025000.com/index.php/en/iso-25000-standards
ISO 27002: Information technology - Security techniques - Code of practice for
information security controls. Standard, International Organization for Standard-
ization, Geneva, CH (Oct 2013)

Krosnick, J.A.: Questionnaire Design. In: The Palgrave handbook of survey re-
search, pp. 439-455. Springer (2018)

Mirkovic, J., Peterson, P.: Class capture-the-flag exercises. In: 2014 {USENIX}
Summit on Gaming, Games, and Gamification in Security Education (3GSE 14)
2014

l(\Tancg, K., Hay, B., Bishop, M.: Secure coding education: Are we making progress?
In: 16th Colloquium for Information Systems Security Education. pp. 83-88 (06
2012

OWKSP Top 10, https://www.owasp.org/images/7/72/0WASP_Top_10-2017_
(en) .pdf, Online, accessed June 2019

Oyetoyan, T.D., Milosheska, B., Grini, M., Cruzes, D.S.: Myths and facts about
static application security testing tools: an action research at telenor digital. In:
International Conference on Agile Software Development. pp. 86—103. Springer,
Cham (2018)

Patel, S.: 2019 Global Developer Report: DevSecOps finds security road-
blocks divide teams (July 2020), https://about.gitlab.com/blog/2019/07/15/
global-developer-report/, [Online; posted on July 15, 2019]

Rodriguez, M., Piattini, M., Ebert, C.: Software verification and validation tech-
nologies and tools. IEEE Software 36(2), 13-24 (2019)

SAFECode Charter Members: SAFECode - Software Assurance Forum for Excel-
lence in Code, https://safecode.org, [Online]

Schneier, B.: Software Developers and Security (July 2020), https://www.
schneier.com/blog/archives/2019/07/software_develo.html, [Online; posted
on July 25, 2019]

Schonlau, M., Couper, M.: Semi-automated categorization of open-ended ques-
tions. Survey Research Methods 10(2), 143-152 (Aug 2016), https://ojs.ub.
uni-konstanz.de/srm/article/view/6213

Seaman, C.: Qualitative methods in empirical studies of software engineering. IEEE
Transactions on software engineering 25(4), 557-572 (07 1999)

Smith, C.: Content analysis and narrative analysis. Handbook of Research Methods
in Social and Personality Psychology pp. 313-335 (2000)

Tews, M.J., Noe, R.A.: Does training have to be fun? A review and conceptual
model of the role of fun in workplace training. Human Resource Management
Review 29(2), 226-238 (2019)

Whiting, L.: Semi-structured interviews: guidance for novice researchers. Nursing
Standard 22, 35-40 (03 2008)

Woody, C., Ellison, R., Nichols, W.: Predicting Cybersecurity Using Quality Data.
In: 2015 IEEE International Symposium on Technologies for Homeland Security
(HST). pp. 1-5. IEEE (2015)

Yang, X.L., Lo, D., Xja, X., Wan, Z.Y., Sun, J.L.: What security questions do
developers ask? a large-scale study of stack overflow posts. Journal of Computer
Science and Technology 31(5), 910-924 (09 2016)

