Skip to main content

A Biased Random-Key Genetic Algorithm for Bandwidth Reduction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12249))

Abstract

The bandwidth minimization problem is a well-known \(\mathcal {NP}\)-hard problem. This paper describes our experience in implementing a biased random-key genetic algorithm for the bandwidth reduction problem. Specifically, this paper compares the results of the new algorithm with the results yielded by four approaches. The results obtained on a set of standard benchmark matrices taken from the SuiteSparse sparse matrix collection indicated that the novel approach did not compare favorably with the state-of-the-art metaheuristic algorithm for bandwidth reduction. The former seems to be faster than the latter. On the other hand, the design of heuristics for bandwidth reduction is a very consolidated research area. Thus, a paradigm shift seems necessary to design a heuristic with better results than the state-of-the-art meta-heuristic algorithm at shorter execution times.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.mathworks.com/help/matlab/ref/symrcm.html?requestedDomain= www.mathworks.com, https://octave.sourceforge.io/octave/function/symrcm.html.

  2. 2.

    http://www.boost.org/doc/libs/1_38_0/libs/graph/doc/cuthill_mckee_ordering.html.

References

  1. Papadimitriou, C.H.: The NP-completeness of bandwidth minimization problem. Comput. J. 16, 177–192 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Gonzaga de Oliveira, S.L., Chagas, G.O.: A systematic review of heuristics for symmetric-matrix bandwidth reduction: methods not based on metaheuristics. In: The XLVII Brazilian Symposium of Operational Research (SBPO), Ipojuca-PE, Brazil, Sobrapo, August 2015

    Google Scholar 

  3. George, A., Liu, J.W.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  4. Gonzaga de Oliveira, S.L., Bernardes, J.A.B., Chagas, G.O.: An evaluation of low-cost heuristics for matrix bandwidth and profile reductions. Comput. Appl. Math. 37(2), 1412–1471 (2016). https://doi.org/10.1007/s40314-016-0394-9

    Article  MathSciNet  MATH  Google Scholar 

  5. Gonzaga de Oliveira, S.L., Abreu, A.A.A.M.: An evaluation of pseudoperipheral vertex finders for the reverse Cuthill-Mckee method for bandwidth and profile reductions of symmetric matrices. In: Proceedings of the 37th International Conference of the Chilean Computer Science Society (SCCC), Santiago, Chile, November 2018, pp. 1–9. IEEE (2018). https://doi.org/10.1109/SCCC.2018.8705263

  6. Gonzaga de Oliveira, S. L., Silva, L.M.: Evolving reordering algorithms using an ant colony hyperheuristic approach for accelerating the convergence of the ICCG method. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00801-5)

  7. Gonzaga de Oliveira, S., Silva, L.: An ant colony hyperheuristic approach for matrix bandwidth reduction. Appl. Soft Comput. 94, 106434 (2020)

    Google Scholar 

  8. Gilbert, J.R., Moler, C., Schreiber, R.: Sparse matrices in MATLAB: design and implementation. SIAM J. Matrix Anal. 3(1), 333–356 (1992)

    Article  MathSciNet  Google Scholar 

  9. The MathWorks Inc.: MATLAB (1994–2018). http://www.mathworks.com/products/matlab/

  10. Eaton, J.W., Bateman, D., Hauberg, S., Wehbring, R.: GNU Octave version 4.0.0 manual: a high-level interactive language for numerical computations (2015)

    Google Scholar 

  11. Boost: Boost C++ libraries (2017). http://www.boost.org/. Accessed 28 Jun 2017

  12. Chagas, G.O., Gonzaga de Oliveira, S.L.: Metaheuristic-based heuristics for symmetric-matrix bandwidth reduction: a systematic review. Procedia Comput. Sci. 51, 211–220 (2015)

    Google Scholar 

  13. Martí, R., Laguna, M., Glover, F., Campos, V.: Reducing the bandwidth of a sparse matrix with tabu search. Eur. J. Oper. Res. 135(2), 450–459 (2001)

    Article  MathSciNet  Google Scholar 

  14. Campos, V., Piñana, E., Martí, R.: Adaptive memory programming for matrix bandwidth minimization. Ann. Oper. Res. 183, 7–23 (2011)

    Article  MathSciNet  Google Scholar 

  15. Piñana, E., Plana, I., Campos, V., Martí, R.: GRASP and path relinking for the matrix bandwidth minimization. Eur. J. Oper. Res. 153(1), 200–210 (2004)

    Article  MathSciNet  Google Scholar 

  16. Lim, A., Rodrigues, B., Xiao, F.: Heuristics for matrix bandwidth reduction. Eur. J. Oper. Res. 174(1), 69–91 (2006)

    Article  MathSciNet  Google Scholar 

  17. Czibula, G., Crişan, G.C., Pintea, C.M., Czibula, I.G.: Soft computing approaches on the bandwidth problem. Informatica 24(2), 169–180 (2013)

    Article  MathSciNet  Google Scholar 

  18. Lim, A., Lin, J., Rodrigues, B., Xiao, F.: Ant colony optimization with hill climbing for the bandwidth minimization problem. Appl. Soft Comput. 6(2), 180–188 (2006)

    Article  Google Scholar 

  19. Kaveh, A., Sharafi, P.: Nodal ordering for bandwidth reduction using ant system algorithm. Eng. Comput. 26, 313–323 (2009)

    Article  Google Scholar 

  20. Pintea, C.-M., Crişan, G.-C., Chira, C.: A hybrid ACO approach to the matrix bandwidth minimization problem. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS (LNAI), vol. 6076, pp. 405–412. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13769-3_49

    Chapter  Google Scholar 

  21. Pintea, C.M., Crişan, G.C., Shira, C.: Hybrid ant models with a transition policy for solving a complex problem. Logic J. IGPL 20(3), 560–569 (2012)

    Article  MathSciNet  Google Scholar 

  22. Lim, A., Lin, J., Xiao, F.: Particle swarm optimization and hill climbing for the bandwidth minimization problem. Appl. Intell. 3(26), 175–182 (2007)

    Article  Google Scholar 

  23. Rodriguez-Tello, E., Jin-Kao, H., Torres-Jimenez, J.: An improved simulated annealing algorithm for bandwidth minimization. Eur. J. Oper. Res. 185, 1319–1335 (2008)

    Article  Google Scholar 

  24. Torres-Jimenez, J., Izquierdo-Marquez, I., Garcia-Robledo, A., Gonzalez-Gomez, A., Bernal, J., Kacker, R.N.: A dual representation simulated annealing algorithm for the bandwidth minimization problem on graphs. Inf. Sci. 303, 33–49 (2015)

    Article  MathSciNet  Google Scholar 

  25. Mladenovic, N., Urosevic, D., Pérez-Brito, D., García-González, C.G.: Variable neighbourhood search for bandwidth reduction. Eur. J. Oper. Res. 1(200), 14–27 (2010)

    Article  MathSciNet  Google Scholar 

  26. Koohestani, B., Poli, R.: A hyper-heuristic approach to evolving algorithms for bandwidth reduction based on genetic programming. In: Bramer, M., Petridis, M., Nolle, L. (eds.) Research and Development in Intelligent Systems XXVIII, pp. 93–106. Springer, London (2011). https://doi.org/10.1007/978-1-4471-2318-7_7

  27. Pop, P.C., Matei, O.: An improved heuristic for the bandwidth minimization based on genetic programming. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011. LNCS (LNAI), vol. 6679, pp. 67–74. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21222-2_9

    Chapter  Google Scholar 

  28. Pop, P., Matei, O., Comes, C.A.: Reducing the bandwidth of a sparse matrix with a genetic algorithm. Optim. J. Math. Prog. Oper. Res. 63(12), 1851–1876 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Gonzaga de Oliveira, S.L., de Abreu, A.A.A.M., Robaina, D., Kischinhevsky, M.: A new heuristic for bandwidth and profile reductions of matrices using a self-organizing map. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 54–70. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_5

    Chapter  Google Scholar 

  30. Gonzaga de Oliveira, S.L., Abreu, A.A.A.M., Robaina, D.T., Kischnhevsky, M.: An evaluation of four reordering algorithms to reduce the computational cost of the Jacobi-preconditioned conjugate gradient method using high-precision arithmetic. Int. J. Bus. Intell. Data Min. 12(2), 190–209 (2017)

    Google Scholar 

  31. Ericsson, M., Resende, M.G.C., Pardalos, P.M.: A genetic algorithm for the weight setting problem in OSPF routing. J. Comb. Optim. 6, 299–333 (2002)

    Article  MathSciNet  Google Scholar 

  32. Gonçalves, J.F., Resende, M.G.C.: An evolutionary algorithm for manufacturing cell formation. Comput. Ind. Eng. 47, 247–273 (2004)

    Article  Google Scholar 

  33. Resende, M.G.C.: Biased random-key genetic algorithms with applications in telecommunications. TOP 20, 130–153 (2012)

    Article  MathSciNet  Google Scholar 

  34. Gonçalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17, 487–525 (2011)

    Article  Google Scholar 

  35. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6, 154–160 (1994)

    Article  Google Scholar 

  36. Toso, R.F., Resende, M.G.C.: A C++ application programming interface for biased random-key genetic algorithms. Optim. Methods Softw. 30, 81–93 (2015)

    Article  Google Scholar 

  37. Spears, W.M., De Jong, K.D.: On the virtues of parameterized uniform crossover. Technical report, DTIC Document (1995)

    Google Scholar 

  38. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1–25 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Morais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, P.H.G., Brandão, D.N., Morais, I.S., de Oliveira, S.L.G. (2020). A Biased Random-Key Genetic Algorithm for Bandwidth Reduction. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12249. Springer, Cham. https://doi.org/10.1007/978-3-030-58799-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58799-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58798-7

  • Online ISBN: 978-3-030-58799-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics