Skip to main content

A General Model for Electroencephalography-Controlled Brain-Computer Interface Games

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

The rapid expansion of Brain-Computer Interface (BCI) technology allowed for the recent development of applications outside of clinical environments, such as education, arts and games. Games controlled by electroencephalography (EEG), a specific case of BCI technology, benefit from both areas, since they can be played by virtually any person regardless of physical condition, can be applied in numerous serious and entertainment contexts, and are ludic by nature. However, they also share the same challenges of design and development from both fields, especially since they demand numerous specific and specialized knowledge for their development. In this sense, this work presents a model for games using EEG-based BCI controls. The proposed model is intended to help researchers describe, compare and develop new EEG-controlled games by instantiating its abstract and functional components using concepts from the fields of BCI and games. A group of EEG-controlled games from the literature was selected to demonstrate the usefulness and representativeness of the model. The demonstration showed that an overview classification and the details of the selected games were able to be described using the model and its components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is also the reason that the game component is referred as “EEG-controlled” rather than “EEG-based” in this work, as the first term is a generalization of the latter, i.e., it can represent any game that is controlled by EEG, including those that are based solely on this kind of control.

References

  1. Bonnet, L., Lotte, F., Lecuyer, A.: Two brains, one game: design and evaluation of a multiuser BCI video game based on motor imagery. IEEE Trans. Comput. Intell. AI Games 5(2), 185–198 (2013). https://doi.org/10.1109/tciaig.2012.2237173

    Article  Google Scholar 

  2. Djaouti, D., Alvarez, J., Jessel, J.P.: Classifying serious games: the G/P/S model. In: Handbook of Research on Improving Learning and Motivation through Educational Games: Multidisciplinary Approaches (2011). https://doi.org/10.4018/978-1-60960-495-0.ch006

  3. Ferreira, A.L.S., Marciano, J.N., de Miranda, L.C., de Miranda, E.E.C.: Understanding and proposing a design rationale of digital games based on brain-computer interface: results of the Admiralmind Battleship study. SBC J. Interact. Syst. 5(1), 3–15 (2014)

    Google Scholar 

  4. Ferreira, A.L.S., de Miranda, L.C., de Miranda, E.E.C., Sakamoto, S.G.: A survey of interactive systems based on brain-computer interfaces. SBC J. 3D Interact. Syst. 4(1), 3–13 (2013)

    Google Scholar 

  5. Finke, A., Lenhardt, A., Ritter, H.: The MindGame: a P300-based brain-computer interface game. Neural Netw. 22(9), 1329–1333 (2009). https://doi.org/10.1016/j.neunet.2009.07.003

    Article  Google Scholar 

  6. Friedrich, E.V.C., Suttie, N., Sivanathan, A., Lim, T., Louchart, S., Pineda, J.A.: Brain-computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum. Front. Neuroeng. 7, 21 (2014). https://doi.org/10.3389/fneng.2014.00021

    Article  Google Scholar 

  7. Hasan, B.A.S., Gan, J.Q.: Hangman BCI: an unsupervised adaptive self-paced brain-computer interface for playing games. Comput. Biol. Med. 42(5), 598–606 (2012). https://doi.org/10.1016/j.compbiomed.2012.02.004

    Article  Google Scholar 

  8. Henrik, C., Olle, H., Craig, L., Charlotte, S., Jeanette, E.: The aiming game: using a game with biofeedback for training in emotion regulation. In: Proceedings of the DiGRA International Conference: Think Design Play (DiGRA 2011), p. 18 (2011)

    Google Scholar 

  9. Kerous, B., Skola, F., Liarokapis, F.: EEG-based BCI and video games: a progress report. Virtual Reality 22(2), 119–135 (2017). https://doi.org/10.1007/s10055-017-0328-x

    Article  Google Scholar 

  10. Koo, B., Lee, H.G., Nam, Y., Choi, S.: Immersive BCI with SSVEP in VR head-mounted display. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2015). https://doi.org/10.1109/embc.2015.7318558

  11. Kosmyna, N., Lécuyer, A.: A conceptual space for EEG-based brain-computer interfaces. PLoS ONE 14(1), 1–30 (2019). https://doi.org/10.1371/journal.pone.0210145

    Article  Google Scholar 

  12. Laamarti, F., Eid, M., Saddik, A.E.: An overview of serious games. Int. J. Comput. Games Technol. 2014(1), 15 (2014). https://doi.org/10.1155/2014/358152

    Article  Google Scholar 

  13. van de Laar, B., Gürkök, H., Bos, D.P.O., Poel, M., Nijholt, A.: Experiencing BCI control in a popular computer game. IEEE Trans. Comput. Intell. AI Games 5(2), 176–184 (2013). https://doi.org/10.1109/TCIAIG.2013.2253778

    Article  Google Scholar 

  14. Lalor, E.C., et al.: Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment. EURASIP J. Adv. Signal Process. 2005(19) (2005). https://doi.org/10.1155/asp.2005.3156

  15. Lazarou, I., Nikolopoulos, S., Petrantonakis, P.C., Kompatsiaris, I., Tsolaki, M.: EEG-based brain-computer interfaces for communication and rehabilitation of people with motor impairment: a novel approach of the 21st century. Front. Hum. Neurosci. 12, 14 (2018). https://doi.org/10.3389/fnhum.2018.00014

    Article  Google Scholar 

  16. Leeb, R., Lancelle, M., Kaiser, V., Fellner, D.W., Pfurtscheller, G.: Thinking Penguin: multimodal brain-computer interface control of a VR game. IEEE Trans. Comput. Intell. AI Games 5(2), 117–128 (2013). https://doi.org/10.1109/TCIAIG.2013.2242072

    Article  Google Scholar 

  17. Lope, R.P.D., Medina-Medina, N.: A comprehensive taxonomy for serious games. J. Educ. Comput. Res. 55(5), 629–672 (2017). https://doi.org/10.1177/0735633116681301

    Article  Google Scholar 

  18. Maby, E., Perrin, M., Bertrand, O., Sanchez, G., Mattout, J.: BCI could make old two-player games even more fun: a proof of concept with “Connect Four”. In: Advances in Human-Computer Interaction, vol. 2012, pp. 1–8 (2012). https://doi.org/10.1155/2012/124728

  19. Mason, S.G., Birch, G.E.: A general framework for brain-computer interface design. IEEE Trans. Neural Syst. Rehabil. Eng. 11(1), 70–85 (2003). https://doi.org/10.1109/TNSRE.2003.810426

    Article  Google Scholar 

  20. Mason, S.G., Jackson, M.M.M., Birch, G.E.: A general framework for characterizing studies of brain interface technology. Ann. Biomed. Eng. 33(11), 1653–1670 (2005). https://doi.org/10.1007/s10439-005-7706-3

    Article  Google Scholar 

  21. McCallum, S., Boletsis, C.: A taxonomy of serious games for dementia. In: Games for Health, pp. 219–232 (2013). https://doi.org/10.1007/978-3-658-02897-8_17

  22. Muñoz, J.E., Gonçalves, A., Vieira, T., Cró, D., Chisik, Y., Bermúdez i Badia, S.: Space Connection - a multiplayer collaborative biofeedback game to promote empathy in teenagers: a feasibility study. In: Proceedings of the 3rd International Conference on Physiological Computing Systems, pp. 88–97 (2016). https://doi.org/10.5220/0005948400880097

  23. Obbink, M., Gürkök, H., Plass-Oude Bos, D., Hakvoort, G., Poel, M., Nijholt, A.: Social interaction in a cooperative brain-computer interface game. In: Camurri, A., Costa, C. (eds.) INTETAIN 2011. LNICST, vol. 78, pp. 183–192. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30214-5_20

    Chapter  Google Scholar 

  24. Sung, Y., Cho, K., Um, K.: A development architecture for serious games using BCI (brain computer interface) sensors. Sensors 12(11), 15671–15688 (2012). https://doi.org/10.3390/s121115671

    Article  Google Scholar 

  25. Tangermann, M., et al.: Playing pinball with non-invasive BCI. In: Advances in Neural Information Processing Systems 21, pp. 1641–1648 (2008)

    Google Scholar 

  26. Vasiljevic, G.A.M., de Miranda, L.C., de Menezes, B.C.: Mental war: an attention-based single/multiplayer brain-computer interface game. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10960, pp. 450–465. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95162-1_31

    Chapter  Google Scholar 

  27. Vasiljevic, G.A.M., de Miranda, L.C.: Brain-computer interface games based on consumer-grade EEG devices: a systematic literature review. Int. J. Hum.-Comput. Interact. 1–38 (2019). https://doi.org/10.1080/10447318.2019.1612213

  28. Vasiljevic, G.A.M., de Miranda, L.C.: The effect of auditory stimuli on user’s meditation and workload in a brain–computer interface game. Interact. Comput. 31(3), 250–262 (2019). https://doi.org/10.1093/iwc/iwz014

    Article  Google Scholar 

  29. Vasiljevic, G.A.M., de Miranda, L.C.: The influence of graphical elements on user’s attention and control on a neurofeedback-based game. Entertain. Comput. 29, 10–19 (2019). https://doi.org/10.1016/j.entcom.2018.10.003

    Article  Google Scholar 

  30. Vasiljevic, G.A.M., de Miranda, L.C., de Menezes, B.C.: Zen cat: a meditation-based brain-computer interface game. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10960, pp. 294–309. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95162-1_20

    Chapter  Google Scholar 

  31. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002). https://doi.org/10.1016/s1388-2457(02)00057-3

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Physical Artifacts of Interaction Research Group (PAIRG) at the Federal University of Rio Grande do Norte (UFRN), and partially funded by the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES). We also thank the resources of the PAIRG’s Laboratory of Physical and Physiological Computing (PAIRG L2PC) at UFRN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Alves Mendes Vasiljevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vasiljevic, G.A.M., de Miranda, L.C. (2020). A General Model for Electroencephalography-Controlled Brain-Computer Interface Games. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12250. Springer, Cham. https://doi.org/10.1007/978-3-030-58802-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58802-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58801-4

  • Online ISBN: 978-3-030-58802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics