Skip to main content

Conditionality Analysis of the Radial Basis Function Matrix

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12250))

Abstract

The global Radial Basis Functions (RBFs) may lead to ill-conditioned system of linear equations. This contribution analyzes conditionality of the Gauss and the Thin Plate Spline (TPS) functions. Experiments made proved dependency between the shape parameter and number of RBF center points where the matrix is ill-conditioned. The dependency can be further described as an analytical function.

The research was supported by projects Czech Science Foundation (GACR) No. 17-05534S and partially by SGS 2019-016.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Delaunay triangulation has time complexity of \(O\left( n^{\lceil d/2\rceil +1}\right) \), where d is number of tesselated dimensions.

References

  1. Oliver, M.A., Webster, R.: Kriging: a method of interpolation for geographical information systems. Int. J. Geograph. Inf. Syst. 4(3), 313–332 (1990). https://doi.org/10.1080/02693799008941549

    Article  Google Scholar 

  2. Kaymaz, I.: Application of kriging method to structural reliability problems. Struct. Saf. 27(2), 133–151 (2005). https://doi.org/10.1016/j.strusafe.2004.09.001

    Article  Google Scholar 

  3. Sakata, S., Ashida, F., Zako, M.: An efficient algorithm for kriging approximation and optimization with large-scale sampling data. Comput. Meth. Appl. Mech. Eng. 193(3–5), 385–404 (2004). https://doi.org/10.1016/j.cma.2003.10.006

    Article  MATH  Google Scholar 

  4. Joseph, V.R., Hung, Y., Sudjianto, A.: Blind kriging: a new method for developing metamodels. J. Mech. Des. 130(3), 031102 (2008). https://doi.org/10.1115/1.2829873

    Article  Google Scholar 

  5. Lee, D.T., Schachter, B.J.: Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci. 9(3), 219–242 (1980). https://doi.org/10.1007/BF00977785

    Article  MathSciNet  MATH  Google Scholar 

  6. Smolik, M., Skala, V.: Fast parallel triangulation algorithm of large data sets in E2 and E3 for in-core and out-core memory processing. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8580, pp. 301–314. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09129-7_23

    Chapter  Google Scholar 

  7. Zeu, Y., Youngseok, S., Joongmoo, B., Soon-Jee, S., Ki-Young, K.: Regularisation of multidimensional sparse seismic data using Delaunay tessellation. J. Appl. Geophys. (2019). https://doi.org/10.1016/j.jappgeo.2019.103877

    Article  Google Scholar 

  8. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76, 1905–1915 (1971). https://doi.org/10.1029/JB076i008p01905

    Article  Google Scholar 

  9. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB, vol 6. World Scientific (2007). https://doi.org/10.1142/6437

  10. Franke, R.: A critical comparison of some methods for interpolation of scattered data. Technical report, Naval Postgraduate School Monterey CA (1979)

    Google Scholar 

  11. Majdisova, Z., Skala, V.: Big geo data surface approximation using radial basis functions: a comparative study. Comput. Geosci. 109, 51–58 (2017). https://doi.org/j.cageo.2017.08.007

  12. Smolik, M., Skala, V., Majdisova, Z.: Vector field radial basis function approximation. Adv. Eng. Softw. 123, 117–129 (2018). https://doi.org/10.1016/j.advengsoft.2018.06.013

    Article  Google Scholar 

  13. Skala, V.: RBF interpolation with CSRBF of large data sets, ICCS. Procedia Comput. Sci. 108, 2433–2437 (2017). https://doi.org/10.1016/j.procs.2017.05.081

    Article  Google Scholar 

  14. Skala, V.: Conditionality of linear systems of equations and matrices using projective geometric algebra. In: Murgante, B., et al. (eds.) ICCSA 2020, LNCS, vol. 12250, pp. 3–17. Springer, Heidelberg (2020)

    Google Scholar 

  15. Skala, V., Karim, S.A.A., Zabran, M.: Radial basis function approximation optimal shape parameters estimation. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12142, pp. 309–317. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_24

    Chapter  Google Scholar 

  16. Hardy, R.L.: Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988. Comput. Math. Appl. 19(8–9), 163–208 (1990). https://doi.org/10.1016/0898-1221(90)90272-L

    Article  MathSciNet  MATH  Google Scholar 

  17. Majdisova, Z., Skala, V.: Radial basis function approximations: comparison and applications. Appl. Math. Model. 51, 728–743 (2017). https://doi.org/10.1016/j.apm.2017.07.033

    Article  MathSciNet  MATH  Google Scholar 

  18. Cervenka, M., Smolik, M., Skala, V.: A new strategy for scattered data approximation using radial basis functions respecting points of inflection. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 322–336. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_24

    Chapter  Google Scholar 

  19. Liu, G., Wang, J.: On the optimal shape parameters of radial basis functions used for 2-d meshless methods. Comput. Meth. Appl. Mech. Eng. 191(23–24), 2611–2630 (2002). https://doi.org/10.1016/S0045-7825(01)00419-4

    Article  MathSciNet  MATH  Google Scholar 

  20. Afiatdoust, F., Esmaeilbeigi, M.: Optimal variable shape parameters using genetic algorithm for radial basis function approximation. Shams Eng. J. 6(2), 639–647 (2015). https://doi.org/10.1016/j.asej.2014.10.019

    Article  Google Scholar 

  21. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. (ToG) 23(3), 905–914 (2004). https://doi.org/10.1145/1015706.1015817

    Article  Google Scholar 

  22. Sarra, S.A., Sturgill, D.: A random variable shape parameter strategy for radial basis function approximation methods. Eng. Anal. Boundary Elem. 33(11), 1239–1245 (2009). https://doi.org/10.1016/j.enganabound.2009.07.003

    Article  MathSciNet  MATH  Google Scholar 

  23. Skala, V.: Fast interpolation and approximation of scattered multidimensional and dynamic data using radial basis functions. WSEAS Trans. Math. 12(5), 501–511 (2013). E-ISSN 2224–2880

    Google Scholar 

  24. Menandro, F.C.M.: Two new classes of compactly supported radial basis functions for approximation of discrete and continuous data. Eng. Rep. (2019). https://doi.org/10.1002/eng2.12028

  25. Lin, J., Chen, W., Sze, K.Y.: A new radial basis function for Helmholtz problems. Eng. Anal. Bound. Elem. 36, 1923–1930 (2012). https://doi.org/10.1016/j.enganabound.2012.07.010

    Article  MathSciNet  MATH  Google Scholar 

  26. Smolik, M., Skala, V.: Large scattered data interpolation with radial basis functions and space subdivision. Integr. Comput. Aided Eng. 25(1), 49–62 (2018). https://doi.org/10.3233/ICA-170556

    Article  Google Scholar 

  27. Ikramov, K.D.: Conditionality of the intermediate matrices of the Gauss, Jordan and optimal elimination methods. USSR Comput. Math. Math. Phys. 18, 1–16 (1978). https://doi.org/10.1016/0041-5553(78)90159-3

    Article  MATH  Google Scholar 

  28. Skala, V.: High dimensional and large span data least square error: numerical stability and conditionality. Int. J. Appl. Phys. Math. 7(3), 148–156 (2017). https://doi.org/10.17706/ijapm.2017.7.3.148-156

    Article  Google Scholar 

  29. Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Schempp, W., Zeller, K. (eds.) Constructive Theory of Functions of Several Variables, vol. 571, pp. 85–100. Springer, Heidelberg (1977). https://doi.org/10.1007/BFb0086566

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors would like to thank their colleagues and students at the University of West Bohemia for their discussions and suggestions, and especially to Michal Smolik for valuable discussion and notes he provided. The research was supported by projects Czech Science Foundation (GACR) No. 17-05534S and partially by SGS 2019-016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Červenka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Červenka, M., Skala, V. (2020). Conditionality Analysis of the Radial Basis Function Matrix. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12250. Springer, Cham. https://doi.org/10.1007/978-3-030-58802-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58802-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58801-4

  • Online ISBN: 978-3-030-58802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics