Skip to main content

On Temperature Variation of the Diabetic Foot

  • Conference paper
  • First Online:
Book cover Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

This work aims to give an additional contribute to the development of an alternative diagnostic method to be applied to early detection of foot pathology in Diabetes Mellitus individuals. In this work, the main concepts related to the topic under study are introduced and a framework concerning the use of thermography to evaluate the temperature distribution in the feet is presented. Additionally, in this work, a mathematical model to characterise the plantar temperature distribution variation is presented and an optimization programming problem based on the nonlinear least squares approach is proposed. Some considerations about the two global non-linear optimization metaheuristic methods used to solve this model, namely a Hybrid Genetic Algorithm and a Hybrid Simulated Annealing, are also described. Thermal plantar images of non diabetic and diabetic individuals are used to test the approach. The numerical results obtained with both methods for the different regions of each foot are presented and analysed; the best results were obtained with the Hybrid Genetic Algorithm. Some preliminary conclusions were made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilman, S.: Neurobiology of Disease. Academic Press, Cambridge (2011)

    Google Scholar 

  2. Jones, B.F.: A reappraisal of the use of infrared thermal image analysis in medicine. IEEE Trans. Med. Imaging 17(6), 1019–1027 (1998)

    Google Scholar 

  3. Lahiri, B.B., Bagavathiappan, S., Jayakumar, T., Philip, J.: Medical applications of infrared thermography: a review. Infrared Phys. Technol. 55(4), 221–235 (2012)

    Google Scholar 

  4. Riddle, M.C., Herman, W.H.: The cost of diabetes care-an elephant in the room. Diabetes Care 41(5), 929–932 (2018)

    Google Scholar 

  5. Sinwar, P.D.: The diabetic foot management-recent advance. Int. J. Surg. 15, 27–30 (2015)

    Google Scholar 

  6. International Working Group on the Diabetic Foot, et al.: International consensus on the diabetic foot: Amsterdam 1999. Technical report. Amsterdam, The Netherlands (1999). ISBN 90-9012716-X

    Google Scholar 

  7. Apelqvist, J., Larsson, J.: What is the most effective way to reduce incidence of amputation in the diabetic foot? Diab. Metab. Res. Rev. 16(S1), S75–S83 (2000)

    Google Scholar 

  8. Armstrong, D.G., Holtz-Neiderer, K., Wendel, C., Mohler, M.J., Kimbriel, H.R., Lavery, L.A.: Skin temperature monitoring reduces the risk for diabetic foot ulceration in high-risk patients. Am. J. Med. 120(12), 1042–1046 (2007)

    Google Scholar 

  9. Lavery, L.A., et al.: Home monitoring of foot skin temperatures to prevent ulceration. Diabetes Care 27(11), 2642–2647 (2004)

    Google Scholar 

  10. Lavery, L.A., et al.: Preventing diabetic foot ulcer recurrence in high-risk patients. Diabetes Care 30(1), 14–20 (2007)

    MathSciNet  Google Scholar 

  11. Hernandez-Contreras, D., Peregrina-Barreto, H., Rangel-Magdaleno, J.: Similarity measures to identify changes in plantar temperature distribution in diabetic subjects. In: 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), pp. 1–6. IEEE (2018)

    Google Scholar 

  12. Hernandez-Contreras, D., Peregrina-Barreto, H., Rangel-Magdaleno, J., Gonzalez-Bernal, J., Altamirano-Robles, L.: A quantitative index for classification of plantar thermal changes in the diabetic foot. Infrared Phys. Technol. 81, 242–249 (2017)

    Google Scholar 

  13. Hernandez-Contreras, D., Peregrina-Barreto, H., Rangel-Magdaleno, J., Orihuela-Espina, F., Ramirez-Cortes, J.: Measuring changes in the plantar temperature distribution in diabetic patients. In: 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6. IEEE (2017)

    Google Scholar 

  14. Peregrina-Barreto, H., Morales-Hernandez, L., Rangel-Magdaleno, J., Vazquez-Rodriguez, P.: Thermal image processing for quantitative determination of temperature variations in plantar angiosomes. In: 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 816–820. IEEE (2013)

    Google Scholar 

  15. Peregrina-Barreto, H., Morales-Hernandez, L.A., Rangel-Magdaleno, J., Avina-Cervantes, J.G., Ramirez-Cortes, J.M., Morales-Caporal, R.: Quantitative estimation of temperature variations in plantar angiosomes: a study case for diabetic foot. In: Computational and Mathematical Methods in Medicine, vol. 2014 (2014)

    Google Scholar 

  16. Bento, D.: Modelação matemática da variação da temperatura no pé. Master’s thesis. Instituto Politécnico de Bragança, Escola Superior de Tecnologia e Gestão (2011)

    Google Scholar 

  17. Bento, D., Pereira, A.I., Monteiro, F.: Mathematical model of feet temperature. In: AIP Conference Proceedings, vol. 1389, pp. 787–790. American Institute of Physics (2011)

    Google Scholar 

  18. Carvalho, S.: Caracterização da distribuição da temperatura na planta do pé. Master’s thesis. Instituto Politécnico de Bragança, Escola Superior de Tecnologia e Gestão (2014)

    Google Scholar 

  19. Carvalho, S., Pereira, A.: Characterization of feet temperature. In: Numerical Analysis and Applied Mathematics, Book Series: AIP Conference Proceedings, vol. I–III (1558), pp. 574–577 (2013)

    Google Scholar 

  20. Hernandez-Contreras, D.A., Peregrina-Barreto, H., Rangel-Magdaleno, J.D.J., Orihuela-Espina, F.: Statistical approximation of plantar temperature distribution on diabetic subjects based on beta mixture model. IEEE Access 7, 28383–28391 (2019)

    Google Scholar 

  21. Technical report

    Google Scholar 

  22. International Diabetes Federation: International diabetes federation: Brussels. Technical report, International Diabetes Federation (2015)

    Google Scholar 

  23. Noor, S., Zubair, M., Ahmad, J.: Diabetic foot ulcer-a review on pathophysiology, classification and microbial etiology. Diab. Metab. Syndr. Clin. Res. Rev. 9(3), 192–199 (2015)

    Google Scholar 

  24. Bakker, K., Apelqvist, J., Schaper, N.C.: Practical guidelines on the management and prevention of the diabetic foot 2011. Diab. Metab. Res. Rev. 28(S1), 225–231 (2012)

    Google Scholar 

  25. Lobmann, R., Rümenapf, G., Lawall, H., Kersken, J.: Der Diabetologe 13(1), 8–13 (2017). https://doi.org/10.1007/s11428-016-0173-7

  26. Glaudemans, A., Uçkay, I., Lipsky, B.A.: Challenges in diagnosing infection in the diabetic foot. Diabet. Med. 32(6), 748–759 (2015)

    Google Scholar 

  27. Alavi, A., et al.: Diabetic foot ulcers: Part I. Pathophysiology and prevention. J. Am. Acad. Dermatol. 70(1), 1–12 (2014)

    MathSciNet  Google Scholar 

  28. Clayton, W., Elasy, T.A.: A review of the pathophysiology, classification, and treatment of foot ulcers in diabetic patients. Clin. Diab. 27(2), 52–58 (2009)

    Google Scholar 

  29. Modest, M.F.: Radiative Heat Transfer. Academic Press, Cambridge (2013)

    Google Scholar 

  30. Bharara, M., Cobb, J.E., Claremont, D.J.: Thermography and thermometry in the assessment of diabetic neuropathic foot: a case for furthering the role of thermal techniques. Int. J. Lower Extremity Wounds 5(4), 250–260 (2006)

    Google Scholar 

  31. Bagavathiappan, S., et al.: Correlation between plantar foot temperature and diabetic neuropathy: a case study by using an infrared thermal imaging technique. J. Diab. Sci. Technol. 4(6), 1386–1392 (2010)

    Google Scholar 

  32. Bouzida, N., Bendada, A., Maldague, X.P.: Visualization of body thermoregulation by infrared imaging. J. Therm. Biol. 34(3), 120–126 (2009)

    Google Scholar 

  33. Ring, F.: Thermal imaging today and its relevance to diabetes. J. Diab. Sci. Technol. 4(4), 857–862 (2010)

    Google Scholar 

  34. Ring, F., Ammer, K.: The technique of infrared imaging in medicine. Thermol. Int. 10(1), 7–14 (2000)

    Google Scholar 

  35. Bagavathiappan, S., et al.: Infrared thermal imaging for detection of peripheral vascular disorders. J. Med. Phys. 34(1), 43 (2009)

    Google Scholar 

  36. Boquete, L., Ortega, S., Miguel-Jiménez, J.M., Rodríguez-Ascariz, J.M., Blanco, R.: Automated detection of breast cancer in thermal infrared images, based on independent component analysis. J. Med. Syst. 36(1), 103–111 (2012)

    Google Scholar 

  37. Dibai Filho, A.V., Packer, A.C., de Souza Costa, K.C., Berni-Schwarzenbeck, A.C., Rodrigues-Bigaton, D.: Assessment of the upper trapezius muscle temperature in women with and without neck pain. J. Manipulative Physiol. Ther. 35(5), 413–417 (2012)

    Google Scholar 

  38. Huang, C.-L., et al.: The application of infrared thermography in evaluation of patients at high risk for lower extremity peripheral arterial disease. J. Vasc. Surg. 54(4), 1074–1080 (2011)

    Google Scholar 

  39. Ng, E.Y.-K.: A review of thermography as promising non-invasive detection modality for breast tumor. Int. J. Therm. Sci. 48(5), 849–859 (2009)

    Google Scholar 

  40. Snekhalatha, U., Anburajan, M., Teena, T., Venkatraman, B., Menaka, M., Raj, B.: Thermal image analysis and segmentation of hand in evaluation of rheumatoid arthritis. In: Computer Communication and Informatics (ICCCI), pp. 1–6. IEEE (2012)

    Google Scholar 

  41. Anburajan, M., Sivanandam, S., Bidyarasmi, S., Venkatraman, B., Menaka, M., Raj, B.: Changes of skin temperature of parts of the body and serum asymmetric dimethylarginine (ADMA) in type-2 diabetes mellitus Indian patients. In: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, pp. 6254–6259. IEEE (2011)

    Google Scholar 

  42. Hernandez-Contreras, D., Peregrina-Barreto, H., Rangel-Magdaleno, J., Gonzalez-Bernal, J.: Narrative review: diabetic foot and infrared thermography. Infrared Phys. Technol. 78, 105–117 (2016)

    Google Scholar 

  43. Sejling, A.-S., Lange, K.H.W., Frandsen, C.S., Diemar, S.S., Tarnow, L., Faber, J., Holst, J.J., Hartmann, B., Hilsted, L., Kjaer, T.W., Juhl, C.B., Thorsteinsson, B., Pedersen-Bjergaard, U.: Infrared thermographic assessment of changes in skin temperature during hypoglycaemia in patients with type 1 diabetes. Diabetologia 58(8), 1898–1906 (2015). https://doi.org/10.1007/s00125-015-3616-6

    Article  Google Scholar 

  44. Sivanandam, S., Anburajan, M., Venkatraman, B., Menaka, M., Sharath, D.: Estimation of blood glucose by non-invasive infrared thermography for diagnosis of type 2 diabetes: an alternative for blood sample extraction. Mol. Cell. Endocrinol. 367(1), 57–63 (2013)

    Google Scholar 

  45. Sivanandam, S., Anburajan, M., Venkatraman, B., Menaka, M., Sharath, D.: Medical thermography: a diagnostic approach for type 2 diabetes based on non-contact infrared thermal imaging. Endocrine 42(2), 343–351 (2012)

    Google Scholar 

  46. StessStess, R.M., et al.: Use of liquid crystal thermography in the evaluation of the diabetic foot. Diabetes Care 9(3), 267–272 (1986)

    Google Scholar 

  47. Adam, M., Ng, E.Y., Tan, J.H., Heng, M.L., Tong, J.W., Acharya, U.R.: Computer aided diagnosis of diabetic foot using infrared thermography: a review. Comput. Biol. Med. 91, 326–336 (2017)

    Google Scholar 

  48. Chambers, L.D.: Practical Handbook of Genetic Algorithms: Complex Coding Systems, vol. 3. CRC Press, Boca Raton (1998)

    Google Scholar 

  49. Van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated annealin. In: Simulated Annealing: Theory and Applications, pp. 7–15, Springer, Dordrecht (1987). https://doi.org/10.1007/978-94-015-7744-1_2

Download references

Acknowledgments

The authors thank University of Trás-os-Montes and Alto Douro, Polytechnic Institute of Bragança and Centro de Saúde de Santa Maria, Bragança, Portugal. This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Projects Scope UIDB/05757/2020 and UIDB/00013/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Teixeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Teixeira, A., Pereira, A.I. (2020). On Temperature Variation of the Diabetic Foot. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12251. Springer, Cham. https://doi.org/10.1007/978-3-030-58808-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58808-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58807-6

  • Online ISBN: 978-3-030-58808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics