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Abstract. Detecting anomalies in streaming data is an important issue
in a variety of real-word applications as it provides some critical infor-
mation, e.g., Cyber security attacks, Fraud detection or others real-time
applications. Different approaches have been designed in order to detect
anomalies: statistics-based, isolation-based, clustering-based. In this pa-
per, we present a quick survey of the existing anomaly detection methods
for data streams. We focus on Isolation Forest (iForest), a state-of-the-
art method for anomaly detection. We provide the implementation of
IForestASD, a variant of iForest for data streams.
This implementation is built on top of scikit-multiflow, an open source
machine learning framework for data streams. In fact, few anomalies
detection methods are provided in the well-known data streams min-
ing frameworks such as MOA or StreamDM. Hence, we extend scikit-
multiflow providing an additional tool. We performed experiments on
3 real-world data sets to evaluate predictive performance and resource
consumption (memory and time) of IForestASD and compare it with a
well known and state-of-the-art anomaly detection algorithm for data
streams called Half-Space Trees.

Keywords: Anomaly detection · Streaming · Scikit-multiflow · Survey

1 Introduction

Data streams mining is the era that deals with extracting relevant and mean-
ingful patterns from data arriving in a continuous way. It is a challenging prob-
lem especially when applied to evolving data streams or is subject to big data
constraints where optimized storage and fast processing are required. When it
comes to some streaming applications, such as network attacks, frauds, or fail-
ures warning from vital maintenance predictive tools, abnormal patterns (aka
outliers) need to be detected as fast as possible to get insights for decision-
making. Therefore, anomaly detection in data streams is a major task for some
business applications which activities depend on continuous streams from real
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time events. Anomaly detection algorithms for data streams refer to methods
able to handle a continuous and possibly infinite streams and at the same time,
extract enough knowledge from the streams to compute anomaly score.

Many frameworks for Data stream mining have been proposed in the litera-
ture. Scikit-Multiflow [20] is the main open source machine learning framework
for multi-output, multi-label and data streaming. Implemented in Python lan-
guage, it includes various algorithms and methods for streams mining and in
particular the popular Half-space Trees algorithm [24], a fast Anomaly Detec-
tion for Streaming Data. One of its motivations is to encourage researchers and
industrials on data streams mining field to easily integrate and share their meth-
ods inside the framework and make their work easily accessible by the growing
Python community.

Our contributions is two-fold: first, we provide a structured overview and
categorization of anomaly detection methods for data streams along with a dis-
cussion about the main advantages and disadvantages of the approaches. Sec-
ond, we implement in Scikit-MultiFlow framework an algorithm proposed by
[11] (Ding & Fei, 2013), an isolation based anomaly detection (IForestASD) and
highlight the simplicity of the framework to accelerate contributions. We per-
formed experiments with 3 real data sets to evaluate predictive performance and
resource consumption (memory and time) of IForestASD and compare it with a
well known and state of art anomaly detection algorithm for data streams called
Half-Space Trees. To our best knowledge there is no open source implementation
of IForestASD, neither in Github neither in a streaming framework.

1.1 MOA : Massive Online Analysis

MOA [8] is the most popular open source framework for data stream mining in
Java. It includes a collection of machine learning algorithms (classification, re-
gression, clustering, outlier detection, concept drift detection and recommender
systems) including data generators, tools for evaluation and an interface to vi-
sualize experiments results. MOA is related to Waikato Environment for Knowl-
edge Analysis (WEKA) [28]. In the recent book [7], the authors covered the field
of Online Learning from Sketches and Drift detection approaches to supervised
and non supervised algorithms for Data Streams. Some practical examples with
MOA are also provided. More information can be found in the MOA Manual 6.

The authors of [5] provided a comparative study of distributed tools for
analyzing streaming Data, with a qualitative comparison between Apache Spark,
Storm, Samza and Apache S4.

Others software libraries and frameworks Multiple open-source software
libraries use MOA to perform data stream analytics in their systems [7], including
ADAMS, MEKA, and OpenML.

Others big data streams frameworks are SAMOA [6] and StreamDM. Apache
SAMOA is an open source platform for mining big data streams. It is a frame-
work that contains a programming abstraction for distributed streaming ML

6 https://moa.cms.waikato.ac.nz/documentation/

https://moa.cms.waikato.ac.nz/documentation/
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algorithms. StreamDM [9] is an open source data mining and machine learning
library, designed on top of Spark Streaming, an extension of the core Spark API
that enables scalable data streams processing.

1.2 Scikit-Multiflow : A machine learning framework for
multi-output/multi-label and streaming data

Scikit-multiflow [20] is an open-source framework in Python to implement al-
gorithms and perform experiments in the field of machine learning on evolving
data streams. Scikit-multiflow is inspired by the popular frameworks Scikit-learn
7, MOA and MEKA. One advantage of scikit-multiflow compared to the other
frameworks is that it serves as a bridge between research communities that have
flourished around the aforementioned popular frameworks, providing a common
ground for researchers and practitioners.

Scikit-multiflow includes a collection of various algorithms and learning meth-
ods : From Rule and Trees based methods such as Hoeffding Anytime Tree or
Extremely Fast Decision Tree [19] to ensemble methods such as Adaptive Ran-
dom Forest classifier [13]. The list of existing algorithms can be found in the
package map on the official webpage https://scikit-multiflow.github.io/scikit-
multiflow/package map.html

Half-Space Trees is the only method for anomaly detection in the current
scikit-multiflow release.

Half-Space Trees - Fast Anomaly Detection for Data Streams

Half-Spaces-Trees [24] - Fast Anomaly Detection for Data Streams - is the only
anomaly detection algorithm currently implemented in scikit-multiflow. The au-
thors of the algorithm shown that the training phase has constant amortized time
complexity and constant memory requirement. When compared with a state-of-
the-art method (Hoeffding Trees) its performs favorably in terms of detection
accuracy and run-time performance. Thus, we expect HS-Trees to perform better
than Isolation Forest ASD as well in term of speed, we will discuss the exper-
iments results in section 4. Compared to Isolation Tree, Half-Space Tree has a
fixed depth for each tree in the ensemble and update policy consists of updating
the mass profile using the nodes of trees.

1.3 Motivation of the work

From the review of Big Data Streams Mining Frameworks, scikit-multiflow seems
to be the most promising one as it implements the majority of well known stream
learning methods using the very well known programming language Python with
a growing community. And since it contains only one anomaly detection method,
which is Half-Spaces-Trees [24], we thus decided to extend the framework by im-
plementing an anomaly detection approach based on Isolation Forest algorithm
proposed by Ding & Fei [11].

7 https://scikit-learn.org/stable/scikit-learn

https://scikit-multiflow.github.io/scikit-multiflow/package_map.html 
https://scikit-multiflow.github.io/scikit-multiflow/package_map.html 


4 M. Togbe et al.

Hence, the motivations behind our implementation providing an isolation-
based algorithm in Scikit-multiflow are the follow:

– Isolation Forest is a state-of-the-art algorithm for anomaly detection and
the only ensemble method in scikit-learn’s and widely used by the commu-
nity. Also, it is a tree-based model easily suitable for online and incremental
learning.

– Scikit-multiflow is the main streaming framework in Python which in-
cludes a variety of learning algorithms and streaming methods.

The paper is organized as follows : section 1 introduces our work and its
motivations. In section 2, we provide a survey and classification of anomaly
detection adapted to data streams. In section 3, we focus on algorithms de-
scription : first batch Isolation Forest and its variant implemented for streaming
setting (IForestASD). In Section 4 we present experimental evaluations, com-
paring IForestASD to Half-Space Trees and discuss the results. Finally, section
5 concludes the work by providing future research directions.

2 Anomaly Detection in Data Streams : Survey

2.1 Survey

Anomaly Detection in Data Stream (ADiDS) presents many challenges due to
the characteristics of this type of data. One important challenge is that data
stream treatment has to be performed in a single pass to deal with memory lim-
its and methods have to be applied in an online way. Thus, the several existing
offline anomaly detection approaches such as statistical approach, clustering ap-
proach, etc. ([16], [10], [1]) are not adapted for data stream because they require
many passes over dataset. They also need to have the entire dataset to be able
to detect anomalies. We find in the literature some approaches that have been
adapted or new designed methods for ADiDS. In [14], authors give a survey on
outlier detection methods that can be applied to temporal data with a focus
on data streams. They presented evolving prediction models, distance based ap-
proach and outlier detection in high dimensional data streams. [26], [25] and [22]
are all surveys about outlier detection in data stream context. In [26] authors
present the issues of outlier detection in data stream like concept drift, uncer-
tainty and arrival rate. A detailed study on time series and multidimensional
streaming outlier detection methods is proposed in the book [1, Chap. 9]. It
presents different approaches such as probabilistic-based, prediction-based and
distance-based methods.

2.2 Approaches and methods classification

Generally, anomaly detection methods are based on the facts that anomalies are
rare and have a different behavior compared to normal data. These characteris-
tics are true for static datasets and also data streams. The most used anomalies
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detection approaches are statistics, clustering, nearest-neighbors that we will
present below. We will focus on an approach based on isolation: Isolation Forest,
proposed in 2008 by Liu et al. in [17].

Statistics-based : Statistics-based approaches generally establish a model that
characterizes the normal behavior based on the dataset. The new incoming data
which don’t fit the model or have very low probability to fit the model are con-
sidered as abnormal. Some methods give a score for the data based on the devia-
tion degree from the model ([29]). Statistics-based methods can be parametric in
which case they need to have a prior knowledge about the dataset distribution.
They can be non parametric where they learn from the given dataset to deduce
the underlying distribution. In the context of data stream, such prior knowledge
is not always available.

Clustering-based and Nearest-neighbors-based : Clustering and nearest
neighbors approaches are based on the proximity between observations. The
methods in this category are based either on the distance (distance-based) or
the density (density-based). Clustering methods divide the dataset in different
clusters according to the similarity between the observations. The most distant
cluster or the cluster which has the smallest density can be considered as an
anomaly cluster ([2,4]). Nearest-neighbors methods determine the neighbors of
one observation by computing the distance between all the observations in the
dataset. The observation which is far from its k nearest-neighbors can be con-
sidered as an anomaly [3]. It is also characterized as the observation which has
the most less neighbors in a radius r (a fixed parameter) [21]. These approaches
need to compute the distance or the density between all the observations in the
dataset or they need to have some prior knowledge about the dataset. So they
can suffer of a high CPU, time and memory consumption or a lack of information.

Isolation-based : Introduced by [17], the principle of the isolation-based ap-
proach is to isolate abnormal observations from the dataset. Anomalies data
are supposed to be very different from normal ones. They are also supposed to
represent a very small proportion of the whole dataset. Thus, they are likely
to be quickly isolated. Some isolation-based methods are presented in section 3.
Isolation based methods are different from others statistics, clustering or nearest-
neighbors approaches because they don’t compute a distance or a density from
the dataset. Therefore, they have a lower complexity and are more scalable. They
don’t suffer from the problem of CPU, memory or time consumption. Thus, iso-
lation based methods are adapted to the data stream context.

The table 1 summarizes advantages and disadvantages of the existing ap-
proaches for ADiDS.

There are many methods adapted or designed for ADiDS in the literature.
They usually use the data stream concept of window to compute anomaly ([22]).
The Figure 1 presents a classification of some anomaly detection methods for
each category that exist in the literature and applicable to data stream.
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Table 1. Comparison of ADiDS approaches.

Approaches Advantages Disadvantages

Statistics-based Non-parametric methods are
adapted to data stream context

– Parametric methods are
difficult to apply to data
stream

– Non-parametric methods
can only be used for low
dimensional data stream

Nearest-
neighbors

Distance-based methods
– adapted for global anomalies

detection

Distance-based methods
– are not adapted for

non-homogeneous densities
– have high computational

cost for high dimensional
data stream

Density-based methods
– adapted for local anomalies

detection
– more efficient than distance-

based methods

Density-based methods
– have high complexity
– are not effective for high

dimensional data stream

Clustering-based Adapted for clusters identifica-
tion

Not optimized for individual
anomaly identification

Isolation-based – have less CPU, time and
memory consumption

– are efficient for anomaly de-
tection

– performance depend a lot on
the window and model
update policy choices

– hard to adapt for categorical
data

A recent work [27] on anomaly detection approaches has shown that isolation
forest algorithm has good performance compared to other methods. Thus we
decided to implement an adaptation of isolation forest in a data streams mining
framework that will be detailed in the next sections.

3 Isolation Forest and IForestASD for Streaming

The first method proposed in isolation-based category is Isolation forest (IForest)
([17], [18]). One of IForest’s limits is that it was designed for static dataset and
not for data stream. In [11], authors propose an improvement of IForest to adapt
it to data stream context using sliding windows. The proposed method is named
Isolation Forest Algorithm for Stream Data (IForestASD).

There exists other improvements and adaptations of Isolation Forest such as
Extended Isolation Forest [15] or Functional Isolation Forest [23] but they are
designed for batch settings and not adapted for data streaming.

In this section we will present the IForest algorithm then we will explained
the implemented algorithm IForestASD.
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Fig. 1. Classification of data stream anomaly detection methods

3.1 Isolation Forest method

Isolation forest (IForest) is an isolation-based method which isolates observa-
tions by splitting dataset. Anomaly data have two properties which have been
exploited by isolation-based methods: They have a behavior which is different
from normal data and they are rare in the dataset. With those properties, a
relatively small number of partitions is needed to isolate anomalies as shown in
figure 2. IForest is based on a forest of random distinct itrees. Every tree has
to decide if a considered observation is an anomaly or not. If a random forest
of itrees globally consider an observation as an anomaly, then it is very likely
to represent an anomaly. IForest is composed of two phases: the first one is the
training phase which is the construction of the forest of random itrees and the
second one is the scoring phase where IForest gives an anomaly score for every
observation in the dataset.

In the training phase, all the t random and independents itrees of the forest
are built. Using the sample of ψ randomly selected data, every internal node
of the binary itree is split in two other nodes (left and right). To split one
node, IForest randomly chooses one attribute: d from the m data attributes.
Then it randomly chooses a split value v between the min and the max value
of d in the considered node. IForest splits internal nodes until a complete data
isolation or reaching a maximal tree depth called max depth which is equal to
ceilling(log2(ψ)). After the forest training phase, the scoring phase can begin.
In this phase, every new observation x has to pass through all the t itrees to get
its path length h(x) [17]. The anomaly score of x is computed with this formula:

s(x, n) = 2−
E(h(x))

c(n) where E(h(x)) =

∑t
i=1 hi(x)

t
is the average path length of x

over t itrees and c(n) is the average path length of unsuccessful search in Binary
Search Tree (BST). c(n) = 2H(n− 1)− (2(n− 1)/n) with H(i) = ln(i) + γ (γ is
Euler’s constant). Finally, if s(x, n) is close to 1, x is considered as an anomaly.
If s(x, n) is less than 0.5, x is considered as a normal data.
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Fig. 2. Normal data Xi needs 11 split steps to be isolated. X0 has been isolated very
quickly in 3 steps.

3.2 IForestASD : Isolation Forest Algorithm for Stream Data
method

Isolation Forest is an efficient method for anomaly detection with relatively low
complexity, CPU and time consumption. It requires all the data in the beginning
to build t random samples. It also needs many passes over the dataset to build
all the random forest. So, it is not adapted to data stream context. In [11], au-
thors have proposed the so called IForestASD method which is an improvement
of IForest for ADiDS. IForestASD uses sliding window to deal with streaming
data. On the current complete window, IForestASD executes the standard IFor-
est method to get the random forest. This is the IForest detector model for
IForestASD. IForestASD method can also deal with concept drift in the data
stream by maintaining one input desired anomaly rate (u). If the anomaly rate
in the considered window is upper than u, then a concept drift occurred so
IForestASD deletes its current IForest detector and builts another one using all
the data in the considered window. Figure 3 represents the workflow used in
IForestASD to update the model. In section 4 we present our experiments re-
sults of this algorithm in scikit-multiflow framework using incremental fit and
prediction methods.

4 Experimental evaluation

In this section, we present the methodology followed in our tests and discuss the
results. We compare and discuss the impact of the data window size and the num-
ber of estimators in the performance of both Half-Space Tree and IForestASD
in terms of F1 score, training and testing time, and model size.

Performance is measured following the prequential (test-then-train method)
evaluation strategy designed specifically for stream settings, in the sense that
each sample serves two purposes (test then train), and that samples are analyzed
sequentially, in the order of arrival, and become immediately inaccessible. This
approach assures that the model is tested on new samples that have not been
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Fig. 3. Isolation Forest ASD algorithm workflow for Drift Detection implemented in
Scikit-multiflow. Image extracted from the original paper by [Ding & Fei, 2013] [11] -

used in the training yet. All the results and performance metrics reported in this
paper correspond to the output of scikit-multiflow from prequential evaluator8.

4.1 Search space, Data sets and Metrics

Data Sets Description
To prove the effectiveness of our implementation of IForestASD, we bench-

mark it against the Half-Space Trees method on a variety of configurations (12
for each dataset). We used some well known public datasets [12] which have been
used in the IForestASD paper. Their characteristics are resumed in table 2.
Experimental setup

The hyper-parameters setting we used to perform various experiments to
compare the two models HSTrees and IForestASD is the following :

Table 2. Datasets and hyper-parameters set up

Shuttle Forest-cover SMTP

Attributes, Number of features 9 10 3
u - Drift Rate = Anomlay rate 7.15% 0.96% 0.03%
Number of samples 49,097 286,048 95,156

W - Window size range tested [50 , 100, 500 , 1000]
T - Number of Trees in Ensemble [30, 50, 100 ]

The anomaly threshold was set to 0.5 and number of observations (samples)
was limited to 10 000 for both Datasets for each experiment. For the parameter
u, we set the value to the anomalies rate in the datasets as did the authors

8 https://scikit-multiflow.github.io/scikit-multiflow/documentation.html
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of IForestASD algorithm [11]. This value is used to detect drift and reset the
anomaly detection model as described in Figure 3.

The source code to replicate experiments can be found in the Github at
https://github.com/MariamBARRY/skmultiflow_IForestASD.

Evaluation Metrics
In the results table, we reported 3 metrics: F1, Running Time (training

+ testing) ratio (IForestASD / HSTrees) and Model Size ratio (HSTrees /
IForestASD).

F1 metric It corresponds to the harmonic mean of precision and recall and is
computed as follows : f1 = 2 × (precision × recall)/(precision + recall). F1 is
a popular metric if there is an imbalanced class distribution and we search for
a balance between precision and recall. This is the case of abnormal data which
is less represented than normal data.

Running Time Ratio (IForestASD coefficient ratio) - IRa Since Half-
Space Trees (HST) is always faster than IForestASD (IFA),for both training
and testing time, by an order of 400 for the worst case, we reported the ratio
between running time (training and testing) of the two models : IFA over HST.
For example for the Forest-Cover data, IFA is 3 times slower than HST for
W = 50, T ∈ {30, 50, 100}, and for W = 1000, T = 100 the running time ratio is
391 in the table 3 meaning that IFA is 391 slower than HST. Absolute values of
running time (in seconds) and their evolution over hyper-parameters variation
in reported in Figure 5.

Model Size Ratio (HSTrees coefficient ratio) - HRa In the opposite of
the running time, when we consider the model size, we observe that IFA always
used less memory then HST. So, to compare these two methods, we compute
the ratio of the higher value (HST) over the smaller value (IFA) to get the HST
coefficient. Figure 4. reports the impact of parameters choice on resources used
(model size absolute value in Kilo-bytes) for both HSTrees and the evolution of
resources used for the 3 datasets when window size and number of trees varies.
Interpretation are provided below.

4.2 Results Discussion

Table 3 reports the results obtained for each hyper-parameter combination (win-
dow size and number of trees) for both datasets.

We observed that, based on the F1 score, IForestASD performs better than
HS-Trees for both Shuttle and SMTP datasets, no matter the windows size or
the number of trees. Three further points are observed :

First, we noticed that the number of trees has not a significant impact on
the prediction performance for all the datasets. However, when the window size
increases (varying from 50, 100, 500 to 1000), the score is better as F1 score
increases for all data sets. Second, while for HS-Trees, F1 improves for window

https://github.com/MariamBARRY/skmultiflow_IForestASD
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Table 3. Comparison between HS-Trees(HST) and IForestASD (IFA) - We fixed the
window size w (50, 100, 50, 1000) and varied the number of trees T for each dataset
Forest Cover, Shuttle and SMTP (36 configurations) - HRa and IRa represent HSTRees
ratio and IFA ratio described in Section 4.1

Forest cover Shuttle SMTP

F1 Time Size F1 Time Size F1 Time Size

W T HST IFA IRa HRa HST IFA IRa HRa HST IFA IRa HRa

50 30 0.36 0.22 3 702 0.13 0.64 3 817 0 0.34 3 926
50 50 0.36 0.23 3 694 0.13 0.64 3 854 0 0.34 3 940
50 100 0.36 0.22 3 737 0.13 0.64 3 950 0 0.34 3 986

100 30 0.39 0.30 12 367 0.14 0.71 12 461 0 0.36 9 596
100 50 0.39 0.29 12 404 0.13 0.72 14 505 0 0.36 9 734
100 100 0.39 0.30 12 416 0.13 0.71 16 551 0 0.36 9 808

500 30 0.39 0.49 158 108 0.14 0.80 519 28 0 0.39 106 288
500 50 0.39 0.47 152 129 0.13 0.80 393 36 0 0.40 111 372
500 100 0.39 0.47 156 140 0.15 0.80 363 92 0 0.40 111 434

1000 30 0.54 0.40 372 63 0.17 0.78 1757 21 0 0.39 264 127
1000 50 0.54 0.40 387 74 0.14 0.78 1175 28 0 0.39 272 155
1000 100 0.55 0.40 391 86 0.14 0.77 1678 23 0 0.39 272 176

size >= 500, it decreases for IForestASD. This can be explained by the fact that
unlike HS-Trees, IForestASD deletes its current anomaly detector model (iso-
lation forest) and builds another one using all the data in the current window
when the anomaly rate in the window is upper than u. Thirdly, there is a large
difference between the performance of the two models depending on the dataset,
especially for Shuttle which has a larger anomaly rate of 7%, IForestASD out-
performs HSTrees with 80% F1. Therefore we assume that IForestASD performs
better on data set with relatively high anomaly rate.

In complement with predictive performance, two important notions in data
streaming applications are time and memory usage of models. Here we analyze
the impact of hyper-parameters (windows size W and number of trees T ) on the
amount of resources used by each model and compare them.

Models memory consumption comparison
Regarding the model size evolution from figure 4, where model size of both

models are represented in 2 Y axis (IForestASD in right), we can highlight 3
points :

– IForestASD used less memory than HSTrees (≈ 20 times less), this is ex-
plained by the fact that with IForestASD, update policy consists on discard-
ing completely old model when drift anomaly rate in sliding window > u
(updates by replacement) while HSTrees continuously updates the model at
each observations

– For HSTrees, Window size W has no impact on the model size, only the
number of trees T increases the memory used (barplots). This is consistent
with the HSTrees update policy which consists on updating statistics in Tree
nodes with a fixed ensemble size.
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Fig. 4. Model-Size Metric (Kilo-bytes) : We fixed the window size (50, 100, 500, 100)
and varied the number of Trees (30, 50, 100). For each setting we run HSTrees (barplot
- Left Y axis) with Shuttle and IForestASD (lines - Right Y axis) for each dataset - 36
measures - and plot lines (right Y axis). HST is 20x bigger than IFA

– For IForestASD, both window size w and number of trees T have a positive
impact on model size, for both 3 datasets (in 3 linesplot). This is due to the
fact that IForestASD uses all the instances in the window (W ) to build the
ensemble with T trees.

When it comes to some critical streaming applications, such as a predictive
model for Network security intrusion, a fast model but less accurate is often
preferred over a slow and more accurate model. Indeed, having a high rate of
false positive anomalies to investigate is preferred than missing critical true
positive anomalies (attack). Therefore, we aim to analyze below the behavior of
the models in terms of training and testing time.

We can observe from Figure 5 that IForestASD is faster with a small window
size while Half-Space Trees is faster with bigger window size. The number of
estimators increases the running time of both of them. This is consistent with
the time complexity of the two base estimators: isolation Tree and Half-Space
Tree. Indeed, the worse-case time complexity for training an iForest isO(tψ2

1) [18]
while for the streaming HS-Trees, the (average-case) amortized time complexity
for n streaming points is O(t(h + ψ2)) in the worst-case [11], where t is the
number of trees in the ensemble, ψ1 is the subsampling size of the iForest, ψ2

the window size in HS-Trees and h the maximum depth (level) of a tree.

Furthermore, the testing time of IForestASD – in the right axis in red line –
can be 100x longer than HSTrees testing time (40, 000 vs 400) which is a con-
straint for critical applications that need anomalies scoring quickly. The differ-
ence is significant between the two models because in IForestASD, each instance
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Fig. 5. Running Time Metric (secondes) : Forest-Cover Dataset - we fixed the window
size (50, 100, 500, 100) and vary the number of Trees (30, 50, 100) to compare HST
and IForestASD running time. IForestASD testing time is represented in another scale
on the right Y axis and plot in red line.

in the window is tested across each of the isolation trees to compute the anomaly
score, thus the exponential increase regarding hyper-parameters.

Our results highlight that a trade-off must be made between resources con-
sumption, processing time and predictive performance (F1 for anomalies) to get
acceptable results. In the context of anomaly detection (predictive performance),
we can conclude that in terms of F1 score, IForestASD is better than HS-Trees.
However, in the context of data streaming applications running time is an im-
portant factor and faster models are preferred. In this sense, Half-Space Trees
is a good option due to its lower processing time in the opposite to IForestASD
which is exponential with respect to the windows size.

4.3 Guidelines for setup depending on application requirements

The number of experiments (36 configurations - 3 nb-estimators x 4 window-
size x 3 datasets) used to obtain previous findings and discussions provides some
insights about good grids of parameters and which model to use in which context.

Since models performance can vary a lot from one choice to another, depend-
ing on the characteristics of the data and hyper-parameters setting, we provide
some guidelines for deciding between these anomaly detection methods. Thus,
based on our experiments, depending on specific application requirements and
resources constraints (running time and model size), one can note :
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– Window w for F1 : If the priority is F1 performance for anomaly detection,
then setting W close to 500 gives better results with IForestASD.

– Time & Memory : If a fast model and especially a fast scoring time is
needed, HSTrees should be the privileged option as it is still the state-of-
the-art among fast streaming models.

– IForestASD set up : When fast model is not a prioritized requirement,
IFA gives better results with low running time when using a smaller windows
(lower than 100) and low model size with number of estimators T between
30 and 50.

– HSTrees set up : When a fast model is required, HSTress with w = 1000
and number of T = 30 lead to the best results with optimal resources cost.

We have seen that the best model can be either HSTrees or IForestASD
depending on the dataset and application requirements, thus we recommend
testing models with dataset sample using scikit-multiflow framework to identify
the best parameters for a each application.

5 Conclusion & Future work

We presented a structured and comprehensive overview of anomaly detection al-
gorithms for streaming data and categorized them by anomaly based approaches
: statistical, nearest-neighbors, clustering and isolation based. For each category,
we highlighted the advantages and disadvantages of the different approaches.
From this study, Isolation forest seems to be an accurate method but not adapted
to data streams [27]. We thus proposed an implementation of an anomaly de-
tection approach based on isolation forest for streaming data using sliding win-
dow (IForestASD algorithm) in Scikit-multiflow, a machine learning framework
for multi-output/multi-label and stream data. The motivation behind this work
is that there exist very few anomalies detection methods in streaming frame-
works reviewed, and the contribution on scikit-multiflow can help companies,
researchers and the growing python community exploit methods and collaborate
for the challenging area of Anomaly Detection in Streaming context.

Future Research Direction

This work is the first step of research project about streaming methods in scikit-
multiflow which involves multiple stakeholders (co-authors).

The IForestASD approach requires a parameter for drift detection that is
manually fixed. As a perspective, one can focus on optimizing the approach to
be more efficient for drift detection in streaming data or use existing methods
in scikit-multiflow such as ADWIN to automatically adapt the sliding window
size. One major improvement of this work would be to update properly the
anomaly detection model by taking into account previous anomaly detectors
and observations instead of discarding them completely. This can be done using
adaptive learning approaches.
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Another future work is to implement in scikit-multiflow a novel anomaly or
isolation based methods to reduce the running time complexity of original Isola-
tion Forest approach. Implementing a method to justify and interpret anomalies
for data streams using trees based algorithms is a promising work as well as in
many industries models recommendations need to be justified or understood by
the final users to be implemented in production environments. These improve-
ments could then be implemented on top of scikit-multiflow framework in order
to provide new open source methods for anomaly detection in streaming data.
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de détection d’anomalies. Revue des Nouvelles Technologies de l’Information Ex-
traction et Gestion des Connaissances , RNTI-E-36, 109–120 (2020)

28. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, Amsterdam, 4 edn. (2017)

29. Yamanishi, K., Takeuchi, J.I., Williams, G., Milne, P.: On-line unsupervised outlier
detection using finite mixtures with discounting learning algorithms. Data Mining
and Knowledge Discovery 8(3), 275–300 (2004)

https://doi.org/https://doi.org/10.3182/20130902-3-CN-3020.00044
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1145/3219819.3220005
http://jmlr.org/papers/v19/18-251.html

	Anomaly Detection for Data Streams Based on Isolation Forest using Scikit-multiflow

