Skip to main content

A Framework for Sustainable Land Planning in ICZM: Cellular Automata Simulation and Landscape Ecology Metrics

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12252))

Abstract

In the paper, we present a Planning Framework for Integrated Coastal Zone Management (ICZM). The points of strength of the framework are the following:

  • It is an iterative and participatory process;

  • It is scenario-based and model-based;

  • It uses a Spatial Decision Support System (SDSS) as enabling infrastructure;

  • The SDSS is “powered” by open data and data systematically updated by public bodies.

The theoretical starting point is ICZM requires decision support tools to cope with knowledge from multiple sources, interdisciplinarity and multiple scales (e.g., spatial, temporal or organizational) [1]. The 2007 Integrated Maritime Policy for the European Union [2] is a key document to understand the relationship between coastal and marine information and policy implementation. It shows that it is necessary to develop a marine-coastal Decision Support System [3, 4] based on indicators and indices (aggregations of indicators into a synthetic representation), use of Geographic Information Systems, models and multicriteria assessment of scenarios [5, 6]. The system of indices is used to describe the complexity of a coastal system: geo-ecological level, land processes, human society, economy, and coastal uses at multiple scales [5, 7]. Multicriteria assessment is a tool to support social and environmental decisions in the perspective of sustainability and strategic planning [8,9,10,11].

During the design phase of the SDSS components (basic data, indicators and models), it was performed a review of the Land Use/Land Cover change simulation models. The output of the review was the choice of SLEUTH model [12]. The framework was tested on a study area (Veneto Region - Italy). In the test we coupled SLEUTH with Fragstats [13] for the analysis of landscape ecology metrics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Marotta, L.: ICZM Technologies for integrating data and support decision making, Instrumentation Viewpoint, n. 8 (2010)

    Google Scholar 

  2. EU: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - An Integrated Maritime Policy for the European Union {COM(2007) 574 final)} {SEC(2007) 1278} {SEC(2007) 1279} {SEC(2007) 1280} {SEC(2007) 1283}(2007)

    Google Scholar 

  3. Van Kouwen, F., Dieperink, C., Schot, P., Wassen, M.: Applicability of decision support systems for integrated coastal zone management. Coast. Manage. 36, 19–34 (2008)

    Article  Google Scholar 

  4. Fabbri, K.P.: A strategic decision support framework for integrated coastal zone management. Int. J. Environ. Technol. Manage. 6, 206–217 (2006)

    Article  Google Scholar 

  5. Vallega, A.: Fundamental of Coastal Zone Management, p. 263. Kluwer, Dordrecht (1999)

    Google Scholar 

  6. Soncini Sessa, R.: MODSS Per Decisioni Integrate e Partecipate, p. 512. Mc Graw-Hill, Milano (2004)

    Google Scholar 

  7. Pearce, D.: Blueprint 3. Measuring Sustainable Development, p. 224. Earthscan, London (1993)

    Google Scholar 

  8. Munda, G.: Multicriteria assessment, international society for ecological economics. Internet Encyclopaedia Ecological Economics, p. 10 (2003). http://www.ecoeco.org/education_encyclopedia.php. Accessed 29 June 2008

  9. Munda, G.: Social multi-criteria evaluation: methodological foundations and operational consequences. Eur. J. Oper. Res. 158, 662–677 (2004)

    Article  MathSciNet  Google Scholar 

  10. Ceccaroni, L., Cortés, U., Sànchez-Marrè, M.: OntoWEDSS: augmenting environmental decision-support systems with ontologies. Environ. Model Softw. 19, 785–797 (2004)

    Article  Google Scholar 

  11. Ortolano, L.: Environmental Regulation and Impact Assessment, p. 620. Wiley, New York (1997)

    Google Scholar 

  12. Clarke, K.C., Hoppen, S., Gaydos, L.J.: A self modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ. Planning B 24, 247–261 (1997)

    Google Scholar 

  13. McGarigal, K., Cushman, S.A., Neel, M.C., Ene, E.: FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. University of Massachusetts, Amherst (2002)

    Google Scholar 

  14. Marotta, L.: Indices and indicators for Integrated Coastal Zone Management with a Landscape Approach. Application to the Adriatic Sea, Ph.D. thesis, Universitat Politecnica de Catalunya (Doctorado de Ciencias del Mar - Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos), supervised by Prof. Joan Pau Sierra (2012)

    Google Scholar 

  15. Cattozzo, L.: Dalla linearità alla circolarità. Un modello rigenerativo applicato ad un paesaggio costiero, Tesi di Dottoato, Scuola di Dottorato in Architettura, Città e Design dell’Università IUAV di Venezia (Relatore: Prof. Domenico Patassini; Co-relatori: Prof. Leonardo Filesi, Dott. Leonardo Marotta PhD) (2019)

    Google Scholar 

  16. EU: Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE) (2007)

    Google Scholar 

  17. EEA (European Environment Agency): Land systems at European level – analytical assessment framework. EEA Briefing no. 10/2018 (2018). https://doi.org/10.2800/141532. ISBN 978-92-9213-988-9, ISSN 2467-3196

  18. Marotta, L., Ceccaroni, L., Matteucci, G., Rossini, P., Guerzoni, S.: A decision-support system in ICZM for protecting the ecosystems: integration with the habitat directive. J. Coastal Conserv 15, 393–415 (2010)

    Article  Google Scholar 

  19. Bastiani, M.: Pianificazione territoriale. Pianificazione partecipata in AA.VV, Atelier del Futuro, CUEN, Napoli (1999)

    Google Scholar 

  20. Romano, B., Zullo, F.: The urban transformation of Italy’s adriatic coastal strip: fifty years of unsustainability. Land Use Policy 38, 26–36 (2014)

    Article  Google Scholar 

  21. Romano, B., Zullo, Ciabò, S., Fiorini, L., Marucci, A.: Geografie e modelli di 50 anni di consumo di suolo in Italia. Sci. Ric 5, 17–28 (2015)

    Google Scholar 

  22. Romano, B., Zullo, F., Fiorini, L., Ciabò, S., Marucci, A.: Sprinkling: an approach to describe urbanization dynamics in Italy. Sustainability 9, 97 (2017)

    Google Scholar 

  23. Romano, B., Zullo, F., Fiorini, L., Marucci, A., Ciabò, S.: Land transformation of Italy due to half a century of urbanization. Land Use Policy 67, 387–400 (2017)

    Article  Google Scholar 

  24. Saganeiti, L., Favale, A., Pilogallo, A., Scorza, F., Murgante, B.: Assessing urban fragmentation at regional scale using sprinkling indexes. Sustainability 10, 3274 (2018)

    Article  Google Scholar 

  25. SDI of Veneto Region (Regione del Veneto - Infrastruttura dei Dati Territoriali), https://idt2.regione.veneto.it/en/. Accessed 09 May 2019

  26. Istat (Italian National Institute of Statistics), Main geographical statistical information about Municipalities. https://www.istat.it/it/archivio/156224. Accessed 10 June 2019

  27. APAT: Gestione delle aree di collegamento ecologico funzionale. Manuali e linee guida 26/2003 (2003)

    Google Scholar 

  28. Romano, B., Paolinelli, G.: L’interferenza insediativa nelle infrastrutture ecosistemiche – Modelli per la rete ecologica del Veneto. Gangemi, Roma (2007)

    Google Scholar 

  29. CISIS – CPSG: Progetto DBPrior10K. http://www.centrointerregionale-gis.it/DBPrior/DBPrior1.html. Accessed 10 Jan 2019

  30. OpenStreetMap. https://www.openstreetmap.org. Accessed 09 July 2019

  31. Veneto Region Statistic Department. http://statistica.regione.veneto.it/. Accessed 09 May 2019

  32. Istat (Italian National Institute of Statistics), GIS datasets of Administrative Units. https://www.istat.it/it/archivio/222527. Accessed 09 Aug 2019

  33. Romano, B., Zullo, F.: Models of urban land use in Europe. Assessment tools and criticalities. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 4(3), July 2013. ISSN 1947-3192 (2013)

    Google Scholar 

  34. Fiduccia, A., Cattozzo, L., Marotta, L., Filesi, L., Gugliermetti, L.: Ecosystem indicators and landscape ecology metrics as a tool to evaluate sustainable land planning in ICZM. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11621, pp. 561–576. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24302-9_40

    Chapter  Google Scholar 

  35. ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale): TERRITORIO. Processi e trasformazioni in Italia. ISPRA. Rapporti 296/2018 (2018)

    Google Scholar 

  36. Copernicus Land Monitoring Service. https://land.copernicus.eu/. Accessed 10 Jan 2019

  37. Lee Jr., D.B.: Requiem for Large-scale models. J. Am. Inst. Planners 30, 163–178 (1973)

    Google Scholar 

  38. Santé, I., Garcıa, A.M., Miranda, D., et al.: Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc. Urban Plan. 96, 108–122 (2010)

    Article  Google Scholar 

  39. Clarke, K.C., Gaydos, L.: Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. Int. J. Geo. Inf. Sci. 12, 699–714 (1998)

    Article  Google Scholar 

  40. Chaudhuri, G., Clarke, K.C.: The SLEUTH land use change model: a review. Int. J. Environ. Resour. Res. 1(1) (2013)

    Google Scholar 

  41. Martellozzo, F., Amato, F., Murgante, B., Clarke, K.C.: Modelling the impact of urban growth on agriculture and natural land in Italy to 2030. Appl. Geogr. 91, 156–167 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Fiduccia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fiduccia, A., Cattozzo, L., Filesi, L., Marotta, L., Gugliermetti, L. (2020). A Framework for Sustainable Land Planning in ICZM: Cellular Automata Simulation and Landscape Ecology Metrics. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12252. Springer, Cham. https://doi.org/10.1007/978-3-030-58811-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58811-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58810-6

  • Online ISBN: 978-3-030-58811-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics