Skip to main content

A Multidisciplinary Approach for Multi-risk Analysis and Monitoring of Influence of SODs and RODs on Historic Centres: The ResCUDE Project

  • Conference paper
  • First Online:
Book cover Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12252))

Included in the following conference series:

Abstract

The presented paper describes the ReSCUDE project, developed by the Department of Civil, Environmental, Land, Construction and Chemistry (DICATECh) of the Polytechnic University of Bari under the grant Attraction and International Mobility, of the Italian Ministry of Education, University and Research. The project focuses on the evaluation of the effects of Slow-Onset Disasters (SODs), and Rapid Onset Disasters (RODs) on historic town centres. To this end, an integrated approach based on innovative geomatics, building techniques and advanced behavioural models, is being applied to the old town built area of Ascoli Satriano (FG) and Molfetta (BA) in the Apulia Region (Italy). Over the next three years, the ResCUDE project will allow to perform in-depth analyses on the historic built environment of the identified case studies, fostering the processes of its knowledge, assessment, control, management and design, in connection to the risks deriving from ROD and SOD events. The expected outputs will be useful to define possible scenarios for civil defence purposes and undertake actions aimed at risk mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assembly UNG: Report of the open-ended intergovernmental expert working group on indicators and terminology relating to disaster risk reduction (2016)

    Google Scholar 

  2. ICOMOS: The Valletta Principles for the Safeguarding and Management of Historic Cities, Towns and Urban Areas (2011). http://www.icomos.org.tr/Dosyalar/ICOMOSTR_0209751001353671440.pdf

  3. De Tommasi, G., Fatiguso, F., De Fino, M.: Riqualificazione energetica del patrimonio edilizio storico. Studi per il geocluster dei borghi antichi in area mediterranea. EdicomEdizioni, Monfalcone (2019)

    Google Scholar 

  4. Hillier, B., Hanson, J.: The Social Logic of Space. Cambridge University Press, Cambridge (1984)

    Book  Google Scholar 

  5. León, J., Mokrani, C., Catalán, P., Cienfuegos, R., Femenías, C.: Examining the role of urban form in supporting rapid and safe tsunami evacuations: a multi-scalar analysis in Viña del Mar. Chile. Procedia Eng. 212, 629–636 (2018)

    Article  Google Scholar 

  6. Srinurak, N., Mishima, N., Fuchikami, T., Duangthima, W.: Analysis of urban morphology and accessibility character to provide evacuation route in historic area. Procedia-Soc. Behav. Sci. 216, 460–469 (2016)

    Article  Google Scholar 

  7. Stokols, D.: A social-psychological model of human crowding phenomena. J. Am. Plan. Assoc. 38, 72–83 (1972)

    Google Scholar 

  8. Esposito, D., Mastrodonato, G., Camarda, D.: The cognitive visualization of space in city walking: spacescape experimentation in Italy. In: Luo, Y. (ed.) CDVE 2017. LNCS, vol. 10451, pp. 160–167. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66805-5_20

    Chapter  Google Scholar 

  9. Drdácký, M., Binda, L., Herle, I., Lanza, L.: Protecting the cultural heritage from natural disasters. Adv. Res. Cent. Cult. Herit. 100, 1–106 (2007)

    Google Scholar 

  10. Shimura, K., Ohtsuka, K., Vizzari, G., Nishinari, K., Bandini, S.: Mobility analysis of the aged pedestrians by experiment and simulation. Pattern Recogn. Lett. 44, 58–63 (2014)

    Article  Google Scholar 

  11. Scifoni, S., et al.: On the joint exploitation of long-term DInSAR time series and geological information for the investigation of ground settlements in the town of Roma (Italy). Remote Sens. Environ. 182, 113–127 (2016)

    Article  Google Scholar 

  12. Cantatore, E., Fatiguso, F.: Riabitare il patrimonio edilizio dei centri storici come strategia di retrofit energetico – un caso studio. In: D’Andria, P.F.E. (ed.) Small Towns… From Problem to Resource Sustainable Strategies for the Valorization of Building, Landscape and Cultural Heritage in Inland Areas, pp. 1193–1201. FrancoAngeli, Milano (2019)

    Google Scholar 

  13. Santamouris, M., Kolokotsa, D.: Urban Climate Mitigation Techniques. Routledge, London (2016)

    Book  Google Scholar 

  14. Tiernan, A., Drennan, L., Nalau, J., Onyango, E., Morrissey, L., Mackey, B.: A review of themes in disaster resilience literature and international practice since 2012. Policy Des. Pract. 2, 53–74 (2019)

    Google Scholar 

  15. Margottini, C., et al.: Landslide hazard, monitoring and conservation strategy for the safeguard of Vardzia Byzantine monastery complex, Georgia. Landslides 12, 193–204 (2015). https://doi.org/10.1007/s10346-014-0548-z

    Article  Google Scholar 

  16. D’Aranno, P.J.V., et al.: High-resolution geomatic and geophysical techniques integrated with chemical analyses for the characterization of a Roman wall. J. Cult. Heritage 17, 141–150 (2016)

    Article  Google Scholar 

  17. Nex, F., Remondino, F.: UAV for 3D mapping applications: a review. Appl Geomatics 6(1), 1–15 (2013). https://doi.org/10.1007/s12518-013-0120-x

    Article  Google Scholar 

  18. Baiocchi, V., et al.: First geomatic restitution of the sinkhole known as ‘Pozzo del Merro’ (Italy), with the integration and comparison of ‘classic’ and innovative geomatic techniques. Environ. Earth Sci. 77(3), 1–14 (2018). https://doi.org/10.1007/s12665-018-7244-6

    Article  Google Scholar 

  19. Lastilla, L., Ravanelli, R., Fratarcangeli, F., Di Rita, M., Nascetti, A., Crespi, M.: Foss4g date for DSM generation: sensitivity analysis of the semi-global block matching parameters. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2/W13 (2019)

    Google Scholar 

  20. Bonano, M., Manunta, M., Pepe, A., Paglia, L., Lanari, R.: From previous C-band to new X-band SAR systems: assessment of the DInSAR mapping improvement for deformation time-series retrieval in urban areas. IEEE Trans. Geosci. Remote Sens. 51(4), 1973–1984 (2013)

    Article  Google Scholar 

  21. Ermida, S.L., Soares, P., Mantas, V., Göttsche, F.M., Trigo, I.F.: Google earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sens. 12(9), 1471 (2020)

    Article  Google Scholar 

  22. Li, Z., et al.: Preliminary assessment of 20-m surface albedo retrievals from sentinel-2A surface reflectance and MODIS/VIIRS surface anisotropy measures. Remote Sens. Environ. 217, 352–365 (2018)

    Article  Google Scholar 

  23. Castellari, S., et al.: Elementi per una Strategia Nazionale di Adattamento ai Cambiamenti Climatici. Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Roma (2014)

    Google Scholar 

  24. Fatiguso, F., De Fino, M., Cantatore, E., Caponio, V.: Resilience of historic built environments: inherent qualities and potential strategies. Procedia Eng. 180, 1024–1033 (2017)

    Article  Google Scholar 

  25. Stewart, I.D., Oke, T.R.: Thermal differentiation of local climate zones using temperature observations from urban and rural field sites. In: Preprints, 9th Symposium, on Urban Environment, Keystone, CO, pp. 2–6 (2010)

    Google Scholar 

  26. Santamouris, M.: Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 103, 682–703 (2014)

    Article  Google Scholar 

  27. Fatiguso, F., Cantatore, E., De Fino, M.: Strategies for energy retrofitting of historic urban districts. Prog. Ind. Ecol. Int. J. 10(4), 334–352 (2016)

    Article  Google Scholar 

  28. Ferber, J.: Multi-agent Systems: An Introduction to Distributed Artificial Intelligence. Addison-Wesley, Harlow (1998)

    Google Scholar 

  29. Helbing, D. (ed.): Social Self-Organization: Agent-Based Simulations and Experiments to Study Emergent Social Behavior. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24004-1

    Book  Google Scholar 

  30. Pan, X., Han, C.S., Law, K.H.: A multi - agent based simulation framework for the study of human and social behavior in egress analysis. In: International Conference on Computing in Civil Engineering, pp. 1–12. American Society of Civil Engineers (2005)

    Google Scholar 

  31. Schaumann, D., et al.: A computational framework to simulate human spatial behavior in built environments. Proc. Symp. Simul. Archit. Urban Des, pp. 121–128 (2016)

    Google Scholar 

  32. Rose, J.M., Ligtenberg, A., Van der Spek, S.C.: Simulating pedestrians through the inner-city: an agent-based approach. In: Proceedings of Social Simulation Conference SSC 2014, Barcelona, Catalunya (Spain), 1–5 September 2014. F.J. Miguel, F. Amblard, J.A. Barceló M. Madella Adv. Comput. Soc. Sci. Soc. Simulation, Barcelona Autònoma Unive. (2014)

    Google Scholar 

  33. Pawl, Z., Sets, R.: Advances in Decision Making Under Risk and Uncertainty (1992)

    Google Scholar 

  34. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence (2000)

    Google Scholar 

  35. Benenson, I., Torrens, P.M.: Geosimulation: object-based modeling of urban phenomena. Comput. Environ. Urban Syst. 28, 1–8 (2004)

    Article  Google Scholar 

  36. Koppen, W.: Das geographische system der klimat. In: Handbook der klimatologie, vol. 46 (1936)

    Google Scholar 

  37. www.istat.it/it/mappa-rischi/indicatori. Accessed 04 Mar 2020

  38. http://www.pcn.minambiente.it. Accessed 04 Mar 2020

  39. Sistema Informativo Regione Puglia. http://www.sit.puglia.it/. Accessed 23 Apr 2020

Download references

Acknowledgements

This research is funded under the project “AIM1871082-1” of the AIM (Attraction and International Mobility) Program, financed by the Italian Ministry of Education, University and Research (MIUR).

Author Contributions: Design of the geomatics research framework Alberico Sonnessa; contribution in building technologies methods and tools: Elena Cantatore; contribution in land-use and managing methods and techniques: Dario Esposito.

Paper design, investigation, methodology, formalization, identification and analysis of the case studies, writing, review and editing Alberico Sonnessa, Elena Cantatore and Dario Esposito; Project conceptualization and supervision: Francesco Fiorito.

All authors have read and agreed to the published version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberico Sonnessa .

Editor information

Editors and Affiliations

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sonnessa, A., Cantatore, E., Esposito, D., Fiorito, F. (2020). A Multidisciplinary Approach for Multi-risk Analysis and Monitoring of Influence of SODs and RODs on Historic Centres: The ResCUDE Project. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12252. Springer, Cham. https://doi.org/10.1007/978-3-030-58811-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58811-3_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58810-6

  • Online ISBN: 978-3-030-58811-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics