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Abstract. Software security has become a primary concern for both the
industry and academia in recent years. As dependency on critical services
provided by software systems grows globally, a potential security threat
in such systems poses higher and higher risks (e.g. economical damage,
a threat to human life, criminal activity).

Finding potential security vulnerabilities at the code level automatically
is a very popular approach to aid security testing. However, most of
the methods based on machine learning and statistical models stop at
listing potentially vulnerable code parts and leave their validation and
mitigation to the developers. Automatic program repair could fill this
gap by automatically generating vulnerability mitigation code patches.
Nonetheless, it is still immature, especially in targeting security-relevant
fixes.

In this work, we try to establish a path towards automatic vulnera-
bility fix generation techniques in the context of JavaScript programs.
We inspect 361 actual vulnerability mitigation patches collected from
vulnerability databases and GitHub. We found that vulnerability mit-
igation patches are not short on average and in many cases affect not
just program code but test code as well. These results point towards that
a general automatic repair approach targeting all the different types of
vulnerabilities is not feasible. The analysis of the code properties and fix
patterns for different vulnerability types might help in setting up a more
realistic goal in the area of automatic JavaScript vulnerability repair.
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János Scholarship of the Hungarian Academy of Sciences and the ÚNKP-19-4-SZTE-
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1 Introduction

Software security is one of the most striking problems of today’s software sys-
tems. With the advent of low-cost mobile/IoT devices connected to the Internet,
the problem of insecure applications has risen sharply. Large impact security vul-
nerabilities are explored daily, for example, a serious flaw [18] has been discovered
in ’Sudo’, a powerful utility used in macOS this February. Security problems can
cause not just financial damage [3] but can compromise vital infrastructure, or
used to threaten entire countries.

Finding potential security vulnerabilities at the code level automatically is
a very popular approach to aid security testing and to help explore potential
security issues before they get into the release. However, most of the methods
based on machine learning and statistical models stop at listing potentially vul-
nerable code parts and leave their validation and mitigation to the developers.
Automatic program repair could fill this gap by automatically generating vul-
nerability mitigation code patches. Nonetheless, it is still immature, especially
in targeting security-relevant fixes.

In this work, we inspect 361 actual vulnerability mitigation patches collected
from vulnerability databases and GitHub to gain some knowledge about them
that can help in establishing an automatic vulnerability repair mechanism. We
formulated our particular research goals into the following three research ques-
tions that we address in this paper:

RQ1: What are the basic properties (the amount of added or removed files and
lines) of the vulnerability mitigation code changes in JavaScript programs?

RQ2: How do vulnerability mitigation patches affect test code?

RQ3: How frequent are those small and concise code changes among real-world
vulnerability patches that could be targeted by automated code fix generation?

We found that vulnerability mitigation patches are not short on average and
in many cases affect not just program code but test code as well. The results point
towards that a general automatic repair approach targeting all the different types
of vulnerabilities is not feasible. Most of the security fixes containing many lines
would be hard to generate automatically, however, some types of vulnerabilities
are mitigated with a relatively small commit containing ten lines or less. These
are the ones we would first target by an automatic repair tool. The analysis of the
code properties and fix patterns for different vulnerability types might help in
setting up a more realistic goal in the area of automatic JavaScript vulnerability
repair.

The remaining of the paper is structured as follows. Section 2 collects the
related works. In Section 3 we give details about the data we analyze. Section 4
contains the discussion of results we got and the answers to the research ques-
tions. Section?? enumerates the possible threats to the validity of our work,
while we conclude the paper in Section 5.
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2 Related Work

Two lines of research works are very closely related to ours. First, the prediction
of software vulnerabilities based on manual or automatic features extracted from
the source code or related repositories, and second, automatic program repair
with a special focus on security-related bugs.

Vulnerability prediction and data sets. In their preliminary study, Siavvas et
al. [16] investigated if a relationship exists among software metrics and specific
vulnerability types. They used 13 metrics and found that software metrics may
not be sufficient indicators of specific vulnerability types, but using novel metrics
could help.

In their work, Jimenez et al. [8] proposed an extensible framework (Vul-
Data7) and dataset of real vulnerabilities, automatically collected from software
archives. They presented the capabilities of their framework on 4 large systems,
but one can extend the framework to meet specific needs.

Neuhas et al. [12] introduced a new approach (and the corresponding tool)
called Vulture, which can predict vulnerable components in the source code,
mainly relying on the dependencies between the files. They analyzed the Mozilla
codebase to evaluate their approach using SVM for classification.

In their work, Shin et al. [14] created an empirical model to predict vulnerabil-
ities from source code complexity metrics. Their model was built on the function
level, but they consider only the complexity metrics calculated by Understand
C++.1 They concluded that vulnerable functions have distinctive characteris-
tics separating them from “non-vulnerable but faulty” functions. They studied
the JavaScript Engine from the Mozilla application framework. In another work
Shin et al. [13] performed an empirical case study on two large code bases:
Mozilla Firefox and Red Hat Enterprise Linux kernel, investigating if software
metrics can be used in vulnerability prediction. They considered complexity,
code churn, and developer activity metrics. The results showed that the metrics
are discriminative and predictive of vulnerabilities.

Chowdhury et al. [5] created a framework that can predict vulnerabilities
mainly relying on the CCC (complexity, coupling, and cohesion) metrics [4]. They
also compared four statistical and machine learning techniques (namely C4.5
Decision Tree, Random Forests, Logistic Regression, and Naive Bayes classifier).
The created model was accurate (with precision above 90%), but the recall was
only 20% or lower which means an F-measure of 0.33 at most. The authors
concluded that decision-tree-based techniques outperformed statistical models
in their case.

Morrison et al. [11] built a model – replicating the vulnerability prediction
model by Zimmermann et al [20] – for both binaries and source code at the
file level. The authors checked several learning algorithms including SVM, Naive
Bayes, random forests, and logistic regression. On their dataset, Naive Bayes
and random forests performed the best.

1 https://scitools.com/
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Yu et al. introduced HARMLESS [19], a cost-aware active learner approach
to predict vulnerabilities. They used a support vector machine-based predic-
tion model with under-sampled training data, and a semi-supervised estimator
to estimate the remaining vulnerabilities in a codebase. HARMLESS suggests
which source code files are most likely to contain vulnerabilities. They also used
Mozilla’s codebase in their case study, with 3 different feature sets: metrics, text,
and the combination of text mining and crash dump stack traces. The same set
of source code metrics were used than that of Shin et al. [13].

Some works investigate the possible application of general fault prediction
models for vulnerability prediction. Zimmermann et al. [20] argued in their work
that vulnerabilities cannot be predicted as easily as defects. They used classical
metrics widely used in defect prediction to see whether they can work as predic-
tors of vulnerabilities at the binary level. They also planned to leverage specific
metrics that are related to software security.

Shin et al. [15] investigated the usability of fault prediction models in the case
of vulnerability prediction. They performed an empirical study on the code-base
of Mozilla Firefox. The authors created 2 models: a traditional fault prediction
model and a specialized, vulnerability prediction model. In their research, both
models predicted vulnerabilities with high recall (90%) and low precision (9%)
with F-measure around 0.16.

All the above works target file-level vulnerability prediction, while our focus
is on identification and automatic repair of vulnerable JavaScript functions.

Automatic vulnerability repair. Automatic program repair research has matured
a lot in the last couple of years. A lot of the challenges [9] have been solved
but there are still a lot of open questions. Moreover, automatic program repair
results targeting software vulnerabilities specifically are very sparse.

To assist developers to deal with multiple types of vulnerabilities, Ma et al.
propose a new tool, called VuRLE [10], for automatic detection and repair of vul-
nerabilities. VuRLE (1) learns transformative edits and their contexts (i.e., code
characterizing edit locations) from examples of vulnerable codes and their cor-
responding repaired codes; (2) clusters similar transformative edits; (3) extracts
edit patterns and context patterns to create several repair templates for each
cluster. VuRLE uses context patterns to detect vulnerabilities and customizes
the corresponding edit patterns to repair them.

Smirnov and Chiueh introduce a program transformation system called DIRA
[17] that can automatically transform an arbitrary application into a form that
(1) can detect a control-hijacking attack when the control-sensitive data struc-
ture it tampers with is activated; (2) can identify the network packets that lead
to the control-hijacking attack, and send these packets to a front-end content
filter to prevent the same attack from compromising the application again, and
(3) can repair itself by erasing all the side effects of the attack packets as if it
never received them.

Gao et al. [7] present BovInspector, a tool framework for automatic static
buffer overflow warnings inspection and validated bugs repair. Experimental re-
sults on real open source programs show that BovInspector can automatically
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inspect on average of 74.9% of total warnings, and false warnings account for
about 25% to 100% (on average of 59.9%) of the total inspected warnings. In
addition, the automatically generated patches fix all target vulnerabilities.

All of the above tools, however, focus primarily on general techniques and/or
evaluate the approach on a limited number of particular security issues for
general-purpose OO languages (Java and C++, respectively). We aim to explore
the vulnerability fixes for JavaScript programs and to discover the possibilities
of an automated vulnerability repair mechanism that could target many types
of security issues.

3 Background

To inspect real-world JavaScript vulnerability mitigation patches, we had to col-
lect them using data mining. We reused the processing tool-chain, data sources,
and intermediate data files published in our previous work [6], where we built
vulnerability prediction models based on the collected data using static source
code metrics as predictors. We were able to collect 361 actual vulnerability fixing
code changes from over 200 different JavaScript projects. The high-level process
of collecting actual vulnerability patches is depicted in Figure 1.

Fig. 1. Overall process of the data collection

We leveraged two publicly available vulnerability databases, nsp (the Node
Security Platform, which is now part of npm) [1] and the Snyk Vulnerability
Database [2]. Both of these projects aim to analyze programs for vulnerable
third-party module usages. The main issue with these extracted raw vulner-
ability sources is that they contain unstructured data. The entries include a
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human-readable description of vulnerabilities with URLs of fixing commits, pull
requests, or issues in GitHub or other repositories. However, these URLs are
somewhat arbitrary, they can appear on multiple places within the entries and
any of them might be missing entirely. To handle this, we wrote a set of Python
scripts to process these vulnerability entries and create an internal augmented
and structured representation of them.

Once we collected all the vulnerability fixing commits, we analyzed these
unidiff format patches to extract added, removed, and modified files as well as
added/removed program and test lines of code. We applied a simple heuristic
to find test code, we searched for the term “test” in the path or name of the
file or in the name of JavaScript function a code change affects. We also apply
sophisticated mapping to be able to tell which functions are changed by the
vulnerability fix. Therefore, we are not only able to tell how many lines of code
is changed, but also how many and what particular functions are affected by
the security fix. All the data we used for answering our research questions is
available online.2

4 Results

4.1 RQ1: Basic Properties of Vulnerability Fixing Patches

Table 1 displays the descriptive statistics of the 361 real vulnerability mitigation
patches we analyzed.

Table 1. Descriptive statistics of the vulnerability fixing patches

Min Max Median Average Std.dev.

Added files 0 93 0 1.02 8.61
Modified files 0 132 2 3.88 12.72
Removed files 0 7 0 0.11 0.58
Added lines 0 7 521 10 138.53 771.55
Removed lines 0 3 205 4 74.17 315.70
All changed lines 0 9 179 15 212.69 978.27
Affected functions 0 466 2 10.48 40.01

At the file level, security fixes in JavaScript programs mostly modify existing
files. The mitigation patches we analyzed contained almost 4 file modifications
on average, but only around 1 file addition. File removal was very rare.

The number of line additions is twice as large as line removals. Note, that the
unidiff file format marks line modifications as a line removal plus a line addition,
thus some of the additions and removals together form line modifications. How-
ever, the average of the added lines by a patch is almost 140, while the removed
line average is less than 75. Therefore, security fixes contain a lot of added lines

2 https://doi.org/10.5281/zenodo.3767909
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together with some modifications and removals. It is also important to note that
the average changed lines (any additions, removals, and modifications altogether)
per vulnerability fixes are 212.69. So quite many lines are affected by fixes on
average. However, as we can see, the standard deviation of these values is extra
large as well, almost one thousand. Additionally, the median of the values is 15
only (half of the patches change 15 lines or less only). These suggest that far
fewer lines are changed in most of the fix patches, but several very huge changes
affect the average.

We also mapped the code change patches to actual JavaScript functions to
see how many different functions are affected in the vulnerability fixes at the
logical level. The same trend is true for the changed lines. On average, more
than 10 functions are changed in the course of a vulnerability fix. However, the
median of such values is only 2. Therefore, most of the patches affect a very small
number of functions, with some patches containing an extremely large number
of modified functions.

4.2 RQ2: Vulnerability Fixing Patches and Test Code

Table 2 contains the same descriptive statistics for the patches from the test
code’s perspective. The trends are similar, but the magnitude of values is one
fourth that of the program code.

Table 2. Descriptive statistics of the vulnerability fixing patches

Min Max Median Average Std.dev.

Added test files 0 4 0 0.15 0.55
Modified test files 0 14 0 0.68 1.40
Removed test files 0 1 0 0.01 0.12
Added test lines 0 1 027 0 32.81 108.35
Removed test lines 0 242 0 7.91 32.04
All changed test lines 0 1 269 0 40.72 135.60
Affected test functions 0 63 0 4.55 9.76

Figure 2 provides further details on the distribution of the changed program
and test code lines. We can see the average number of changed code and test
lines by the vulnerability fixing patches grouped by the CWE categories of the
vulnerabilities. The vulnerability databases enumerated the associated CWE
categorizations together with the vulnerability descriptions, therefore we could
mine this information as well. It is noticeable that there are some vulnerability
types where fixes do not introduce test code changes at all. However, where
fixing patches do contain test code modifications, their magnitude is comparable
to that of the program code’s modifications on average.

4.3 RQ3: Possible Targets for Automated Fix Generation

In our previous work [6], we showed that it is possible to use machine learn-
ing models to predict JavaScript vulnerabilities effectively based on source code
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Fig. 2. The average number of changed lines in program and test code within the
mitigation patches, grouped by CWE types
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analysis results. In this work, we investigated how feasible it would be to gener-
ate also fixes for the detected vulnerabilities in an automated way, i.e. applying
automated program repair techniques. Since the state-of-the-art of such tech-
niques is still immature and efficient automatic patch generation works only for
small code fragments, we inspected how many of the real-world vulnerability
fixes are small and concise, thus being a good candidate for automatic repair.

According to Figure 2, there are only 8 different CWE groups where the
vulnerabilities belonging to them have fixes with 10 or less changed lines. Vul-
nerabilities of these types are definitely to best candidates for building auto-
mated repair techniques for fixing them. However, it is also evident, that there
are much more short vulnerability fixes, so grouping them based on their CWE
categories might not be the best strategy. Therefore, we plotted the number of
vulnerabilities by CWE groups together with the number of fixes containing 10
or fewer lines of code changes. As can be seen in Figure 3, a considerable pro-
portion of each CWE group contains vulnerabilities with short fixing patches.
Thus, automated patch generation could be extended to such fixes.

Going a bit deeper, we also examined a couple of vulnerability fixing patches
with such short code-changes manually. Our goal was to evaluate the feasibility
of automatic fix generation at the semantic level. It is not enough that a code we
need to generate is short, but it should be such that its semantics is not overly
complicated to apply automatic repair techniques for it.

Vulnerability fix in the Node.js WebSocket project.3 A vulnerability of type
CWE-410: Insufficient Resource Pool is fixed in one line (see Listing 4.1), chang-
ing the value of maxPayload from null to 100 * 1024 * 1024. This is a simple,
straightforward change and the occurrance of “null” is easy to detect. However,
to come up with a proper payload value automatically would be a hard task for
an automatic repair tool.

1 --- lib/WebSocketServer.js

2 +++ lib/WebSocketServer.js

3
4 @@ -37,7 +37,7 @@ function WebSocketServer(options , callback)

{

5 disableHixie: false ,

6 clientTracking: true ,

7 perMessageDeflate: true ,

8 - maxPayload: null

9 + maxPayload: 100 * 1024 * 1024

10 }).merge(options);

11
12 if (! options.isDefinedAndNonNull(’port’) && !options.

isDefinedAndNonNull(’server ’) && !options.value.

noServer) {

Listing 4.1. Vulnerability fix in Node.js WebSocket

3 npm:ws:20160624
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Fig. 3. Number of total vulnerabilities and mitigation patches with 10 lines or less,
grouped by CWE categories
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Vulnerability fix in the LinkedIn dust.js project.4 A vulnerability of type
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code
(’Eval Injection’) is fixed by extending a simple conditional check with an addi-
tional condition (see Listing 4.2). These types of fixes are common in automatic
repair for regular software bugs, thus they should be adapted to the vulnerability
domain as well.

1 --- lib/dust.js

2 +++ lib/dust.js

3
4 @@ -851,7 +851 ,10 @@

5 SQUOT = /\’/g’;

6
7 dust.escapeHtml = function(s) {

8 - if (typeof s === ’string ’) {

9 + if (typeof s === "string" || (s && typeof s.toString ===

"function")) {

10 + if (typeof s !== "string") {

11 + s = s.toString ();

12 + }

13 if (! HCHARS.test(s)) {

14 return s;

15 }

Listing 4.2. Vulnerability fix in LinkedIn dust.js

Interestingly, this fix includes changes in the test code. The added condition
is tested with a new test case as shown in Listing 4.3.

1 --- test/jasmine -test/spec/coreTests.js

2 +++ test/jasmine -test/spec/coreTests.js

3
4 @@ -688,6 +688 ,13 @@ var coreTests = [

5 },

6 expected: "1",

7 message: "should test using a multilevel reference as a

key in array access"

8 + },

9 + {

10 + name: "Outputting an array calls toString and HTML -

encodes",

11 + source: "{array}",

12 + context: { "array": ["You & I", " & Moe"] },

13 + expected: "You &amp; I, &amp; Moe",

14 + message: "should HTML -encode stringified arrays

referenced directly"

15 }

16 ]

17 },

Listing 4.3. Added test case for the vulnerability fix in LinkedIn dust.js

4 npm:dustjs-linkedin:20160819
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Therefore, we should think of automatically generating new test cases upon
automatic vulnerability fix generation. During future research, we have to put
some effort into finding out which fixes are those that require such test case
extensions.

Vulnerability fix in the Chrome driver project.5 A vulnerability of type CWE-
319: Cleartext Transmission of Sensitive Information is fixed by changing “http”
to “https” (see Listing 4.4). The CWE-319 group of vulnerabilities appears to be
a perfect candidate for generating fixes automatically. If we could find a method
that identifies occurrences of “http” in contexts that are used as actual addresses,
we could easily propose a fix automatically. In our future research, we will focus
first on these vulnerability groups.

1 --- install.js

2 +++ install.js

3
4 @@ -15,7 +15,7 @@ var url = require(’url’)

5 var util = require(’util’)

6
7 var libPath = path.join(__dirname , ’lib’, ’chromedriver ’)

8 - var cdnUrl = process.env.npm_config_chromedriver_cdnurl ||

process.env.CHROMEDRIVER_CDNURL || ’http :// chromedriver.

storage.googleapis.com’

9 + var cdnUrl = process.env.npm_config_chromedriver_cdnurl ||

process.env.CHROMEDRIVER_CDNURL || ’https :// chromedriver.

storage.googleapis.com’

10 // adapt http :// chromedriver.storage.googleapis.com/

11 cdnUrl = cdnUrl.replace (/\/+$/, ’’)

12 var downloadUrl = cdnUrl + ’/%s/chromedriver_%s.zip’

Listing 4.4. A vulnerability fix in Chrome driver

5 Conclusions

In this paper, we inspected 361 real-world fixes of vulnerabilities explored in
JavaScript programs. Our focus was on analyzing the various properties of such
security fixing patches to aid further research on automatically generating such
patches.

We found that security fixes in JavaScript programs mostly modify existing
files and that the number of line additions and/or modifications overweight line
removals. We also investigated if the test code is changed during vulnerability
fixes. Although the overall amount of test code changed is significantly smaller
than that of the program code, we observed that if a patch contains test code
modifications, its magnitude is similar to the program code changes. That is,
there are types of security issues that are fixed without test code adjustments,
but for some security types, test code modifications are really important.

5 npm:chromedriver:20161208
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Finally, we examined the patches from the perspective of automatic repair
techniques. In general, it would be hard to generate potential vulnerability fixes
as the size of code changes and their types vary significantly. However, we showed
that at least half of the fixes contain 15 or fewer code lines, which can be handled
by automatic repair tools, but the semantic complexity of the changes is also
important. We identified a couple of good candidates for starting with automatic
security fix generation, like that of the vulnerabilities from the CWE-319 group.

A lot of further research is needed in this area, but we think our small
scale empirical investigation contains some useful insights and guidance of fur-
ther directions. We plan to develop automatic repair techniques for the above-
mentioned vulnerability categories and evaluate their performance.
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