Skip to main content

Numerical Analysis of Single Jet Impinging a Flat and Non-flat Plate

  • Conference paper
  • First Online:
  • 1235 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12253))

Abstract

The complexity of the flow field and heat transfer in jet impingement has led to several studies in order to increase the processes and products performance. Jet impingement is widely implemented, since it ensures high average heat transfer coefficients and the uniformity of the temperature over the target surface. However, the flow generated depends on several parameters related to the jet flow, such as jet velocity and temperature, and the target plate geometry. Complex impinging surfaces are identified in the majority of the applications, such as reflow soldering and cooling of turbines or solar systems. To increase the process efficiency, it is important to fully understand the interactions between the jet and the target surface. Considering the interest of this field, the present study is conducted to investigate the influence of the target surface on heat transfer in a single jet impingement process. To minimize the number of experiments, decreasing time and costs, the implementation of numerical tools is fundamental. In that sense, the impingement of the hot air jet over a flat and non-flat plate was predicted numerically using the ANSYS FLUENT software. The velocity and temperature profile were analyzed and the Nusselt number were compared for both cases. The results show the complexity of the flow generated in the vicinity of the step and the changes of the jet flow structure when it impinges a complex surface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Spring, S., Xing, Y., Weigand, B.: An experimental and numerical study of heat transfer from arrays of impinging jets with surface ribs. J. Heat Transf. 134(8), 082201 (2012)

    Article  Google Scholar 

  2. Annerfeldt, M.O., Persson, J L., Torisson, T.: Experimental investigation of impingement cooling with tubulators or surface enlarging elements. In: Proceeding of ASME Turbo Expo 2001, New Orleans, Louisiana, USA, 2001-GT-0149, pp. 1–9 (2001)

    Google Scholar 

  3. Brakmann, R., Chen, L., Weigand, B., Crawford, M.: Experimental and numerical heat transfer investigation of an impinging jet array on a target plate roughened by cubic micro pin fins. J. Turbomach. 138(11), 111010 (2016)

    Article  Google Scholar 

  4. Ligrani, P.M., Ren, Z., Buzzard, W.C.: Impingement jet array heat transfer with small-scale cylinder target surface roughness arrays. Int. J. Heat Mass Transf. 107, 895–905 (2017)

    Article  Google Scholar 

  5. Buzzard, W.C., Ren, Z., Ligrani, P.M., Nakamata, C., Ueguchi, S.: Influences of target surface small-scale rectangle roughness on impingement jet array heat transfer. Int. J. Heat Mass Transf. 110, 805–816 (2017)

    Article  Google Scholar 

  6. Ren, Z., Buzzard, W.C., Ligrani, P.M., Nakamata, C., Ueguchi, S.: Impingement jet array heat transfer: target surface roughness shape, reynolds number effects. J. Thermophys. Heat Transf. 31(2), 346–357 (2017)

    Article  Google Scholar 

  7. Hofmann, H.M., Kaiser, R., Kind, M., Martin, H.: Calculations of steady and pulsating impinging jets - an assessment of 13 widely used turbulence models. Numer. Heat Transf. Part B Fundam. 51(6), 565–583 (2007)

    Article  Google Scholar 

  8. Ortega-Casanova, J., Granados-Ortiz, F.J.: Numerical simulation of the heat transfer from a heated plate with surface variations to an impinging jet. Int. J. Heat Mass Transf. 76, 128–143 (2014)

    Article  Google Scholar 

  9. Ozmen, Y., Ipek, G.: Investigation of flow structure and heat transfer characteristics in an array of impinging slot jets. Heat Mass Transf. 52(4), 773–787 (2015). https://doi.org/10.1007/s00231-015-1598-z

    Article  Google Scholar 

  10. Penumadu, P.S., Rao, A.G.: Numerical investigations of heat transfer and pressure drop characteristics in multiple jet impingement system. Appl. Therm. Eng. 110, 1511–1524 (2017)

    Article  Google Scholar 

  11. Viskanta, R.: Nusselt-reynolds prize paper - heat transfer to impinging isothermal gas and flame jets. Exp. Therm. Fluid Sci. 6, 111–134 (1993)

    Article  Google Scholar 

  12. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  13. Menter, F.R., Ferreira, J.C., Esch, T.: The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines. Int. Gas Turbine Congr. 2003(1992), 1–7 (2003)

    Google Scholar 

  14. Wen, Z., He, Y., Cao, X., Yan, C.: Numerical study of impinging jets heat transfer with different nozzle geometries and arrangements for a ground fast cooling simulation device. Int. J. Heat Mass Transf. 95, 321–335 (2016)

    Article  Google Scholar 

  15. Xing, Y., Spring, S., Weigand, B.: Experimental and numerical investigation of heat transfer characteristics of inline and staggered arrays of impinging jets. J. Heat Transf. 132(9), 092201 (2010)

    Article  Google Scholar 

  16. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer, USA (1996). https://doi.org/10.1007/978-3-642-97651-3

    Book  MATH  Google Scholar 

  17. Martin, H.: Heat and mass transfer between impinging gas jets and solid surfaces. Adv. Heat Transf. 13, 1–60 (1977)

    Article  Google Scholar 

  18. Ben Kalifa, R., Habli, S., Saïd, N.M., Bournot, H., Le Palec, G.: Parametric analysis of a round jet impingement on a heated plate. Int. J. Heat Fluid Flow 57, 11–23 (2016)

    Article  Google Scholar 

  19. Behnia, M., Ooi, A., Gregory, P.: Prediction of turbulent heat transfer in impinging jet geometries. Modell. Simul. Turbulent Heat Transf. 15, 147–175 (2006)

    MATH  Google Scholar 

  20. Lee, D.H., Chung, Y.S., Ligrani, P.M.: Jet impingement cooling of chips equipped with multiple cylindrical pedestal fins. J. Electron. Packag. Trans. ASME 129(3), 221–228 (2007)

    Article  Google Scholar 

  21. Zuckerman, N., Lior, N.: Jet impingement heat transfer: physics, correlations, and numerical modeling. Adv. Heat Transf. 39(06), 565–631 (2006)

    Article  Google Scholar 

  22. Xu, P., Sasmito, A.P., Qiu, S., Mujumdar, A.S., Xu, L., Geng, L.: Heat transfer and entropy generation in air jet impingement on a model rough surface. Int. Commun. Heat Mass Transf. 72, 48–56 (2016)

    Article  Google Scholar 

  23. Chung, Y.S., Lee, D.H., Ligrani, P.M.: Jet impingement cooling of chips equipped with cylindrical pedestal profile fins. J. Electron. Packag. Trans. ASME 127(2), 106–111 (2005)

    Article  Google Scholar 

  24. Cengel, Y.A., Ghajar, A.J.: Heat and Mass Transfer: Fundamentals and Applications, Fifth Edit. McGraw-Hill Education, New York (2011)

    Google Scholar 

  25. Barbosa, F.V., Teixeira, S F C F., Teixeira J.C.F.: Influence of the nozzle-to-plate distance in a jet impinging a cold plate – a numerical approach. In.: Proceeding of ECOS 2019 - The 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (2019)

    Google Scholar 

Download references

Acknowledgments

The first author would like to express her gratitude for the support given by the Portuguese Foundation for Science and Technology (FCT) and the MIT Portugal Program. This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020 (ALGORITMI Center) and R&D Units Project Scope UIDP/04077/2020 (METRICS Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávia V. Barbosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbosa, F.V., Teixeira, S.F.C.F., Teixeira, J.C.F. (2020). Numerical Analysis of Single Jet Impinging a Flat and Non-flat Plate. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12253. Springer, Cham. https://doi.org/10.1007/978-3-030-58814-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58814-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58813-7

  • Online ISBN: 978-3-030-58814-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics