Skip to main content

A Combined DFT and RRKM-Based Study on the Reactivity of HCO + NH\(_2\) on Amorphous Water Ice Surface

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Formamide is observed in the interstellar medium and it is thought to play an important role as a precursor of prebiotic molecules. In this work we study the reactivity of NH\(_2\) and HCO on the open surface of amorphous ice model, which can either lead to the formation of formamide (through radical-radical coupling) or CO + NH\(_3\) (through direct H-abstraction) by means of DFT electronic structure calculations, and derive their unimolecular rate constants within the RRKM scheme. We found that radical-radical coupling is faster and hence there is no competition between the two processes in this particular case. Despite of this result, the radical-radical mechanism in dust grain ices is still to be validated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balucani, N., et al.: A Combined crossed molecular beam and theoretical studies of the N(\(^2\)D) + CH\(_4\) reaction and implications. J. Phys. Chem. 113(42), 11138–11152 (2009). https://doi.org/10.1021/jp904302g

  2. Barone, V., et al.: Gas-phase formation of the prebiotic molecule formamide: insights from new quantum computations. Mon. Not. R. Astron. Soc. Lett. 453(1), L31–L35 (2015). https://doi.org/10.1093/mnrasl/slv094

    Article  Google Scholar 

  3. Biver, N., et al.: Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy). Sci. Adv. 1(9), e1500863 (2015). https://doi.org/10.1126/sciadv.1500863

    Article  Google Scholar 

  4. Bockelee-Morvan, D., et al.: New molecules found in comet C/1995 O1 (Hale-Bopp). Astron. Astrophys. 353, 1101–1114 (2000)

    Google Scholar 

  5. Caselli, P., Ceccarelli, C.: Our astrochemical heritage. Astron. Astrophys. Rev. 20(1), 56 (2012). https://doi.org/10.1007/s00159-012-0056-x

    Article  Google Scholar 

  6. Ceccarelli, C., et al.: Seeds of life in space (SOLIS): the organic composition diversity at 300–1000 au scale in solar-type star-forming regions. Astrophys. J. 850, 176 (2017). https://doi.org/10.3847/1538-4357/aa961d

    Article  Google Scholar 

  7. Codella, C., et al.: Seeds of life in space (SOLIS) II. Formamide in protostellar shocks: Evidence for gas-phase formation. Astron. Astrophys. 605, L3 (2017). https://doi.org/10.1051/0004-6361/201731249

    Article  Google Scholar 

  8. Enrique-Romero, J., Rimola, A., Ceccarelli, C., Ugliengo, P., Balucani, N., Skouteris, D.: Reactivity of HCO with CH\(_{3}\) and NH\(_{2}\) on water ice surfaces a comprehensive accurate quantum chemistry study. ACS Earth Space Chem. 3(10), 2158–2170 (2019). https://doi.org/10.1021/acsearthspacechem.9b00156

    Article  Google Scholar 

  9. Frisch, M.J., et al.: Gaussian16 Revision C.01 (2016), gaussian Inc., Wallingford CT

    Google Scholar 

  10. Garrod, R.T., Herbst, E.: Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores. Astron. Astrophys. 457(3), 927–936 (2006)

    Article  Google Scholar 

  11. Herbst, E.: The synthesis of large interstellar molecules. Int. Rev. Phys. Chem. 36(2), 287–331 (2017). https://doi.org/10.1080/0144235X.2017.1293974

    Article  Google Scholar 

  12. Kahane, C., Ceccarelli, C., Faure, A., Caux, E.: Detection of formamide, the simplest but crucial amide, in a solar-type protostar. ApJ 763(2), L38 (2013). https://doi.org/10.1088/2041-8205/763/2/L38

    Article  Google Scholar 

  13. López-Sepulcre, A., Balucani, N., Ceccarelli, C., Codella, C., Dulieu, F., Theulé, P.: Interstellar formamide (NH\(_{\rm 2}\)CHO), a key prebiotic precursor. ACS Earth Space Chem. 3(10), 2122–2137 (2019). https://doi.org/10.1021/acsearthspacechem.9b00154

    Article  Google Scholar 

  14. Noble, J.A., et al.: Hydrogenation at low temperatures does not always lead to saturation: the case of HNCO. A&A 576, A91 (2015). https://doi.org/10.1051/0004-6361/201425403

    Article  Google Scholar 

  15. Rimola, A., et al.: Can formamide be formed on interstellar ice? An atomistic perspective. ACS Earth Space Chem. 2(7), 720–734 (2018). https://doi.org/10.1021/acsearthspacechem.7b00156

    Article  Google Scholar 

  16. Saladino, R., Botta, G., Pino, S., Costanzo, G., Di Mauro, E.: Genetics first or metabolism first? The formamide clue. Chem. Soc. Rev. 41(16), 5526 (2012). https://doi.org/10.1039/c2cs35066a

    Article  Google Scholar 

  17. Skouteris, D., Vazart, F., Ceccarelli, C., Balucani, N., Puzzarini, C., Barone, V.: New quantum chemical computations of formamide deuteration support a gas-phase formation of this prebiotic molecule. Mon. Not. R. Astron. Soc. Lett. slx012 (2017). https://doi.org/10.1093/mnrasl/slx012

  18. Song, L., Kästner, J.: Formation of the prebiotic molecule NH\(_{\rm 2}\)CHO on astronomical amorphous solid water surfaces: accurate tunneling rate calculations. Phys. Chem. Chem. Phys. 18(42), 29278–29285 (2016). https://doi.org/10.1039/C6CP05727F

    Article  Google Scholar 

  19. Vazart, F., Calderini, D., Puzzarini, C., Skouteris, D., Barone, V.: State-of-the-art thermochemical and kinetic computations for astrochemical complex organic molecules: formamide formation in cold interstellar clouds as a case study. J. Chem. Theory Comput. 12(11), 5385–5397 (2016). https://doi.org/10.1021/acs.jctc.6b00379

    Article  Google Scholar 

Download references

Aknowledgement

We wish to thank Dimitrios Skouteris for his efforts in developing the RRKM code used in this work and making it available to us, and also to prof. Gretobape for exciting discussions. We acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program, for the Project “the Dawn of Organic Chemistry” (DOC), grant agreement No 741002. Some of the calculations presented in this paper were performed using the GRICAD infrastructure (https://gricad.univ-grenoble-alpes.fr), which is partly supported by the Equip@Meso project (reference ANR-10-EQPX-29-01) of the programme Investments d’Avenir supervised by the Agence Nationale pour la Recherche. Additionally this work was granted access to the HPC resources of IDRIS under the allocation 2019-A0060810797 attributed by GENCI (Grand Equipment National de Calcul Intensif).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Enrique-Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Enrique-Romero, J., Rimola, A., Ceccarelli, C. (2020). A Combined DFT and RRKM-Based Study on the Reactivity of HCO + NH\(_2\) on Amorphous Water Ice Surface. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12253. Springer, Cham. https://doi.org/10.1007/978-3-030-58814-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58814-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58813-7

  • Online ISBN: 978-3-030-58814-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics