
Designing a Patient-Centric System for Secure
Exchanges of Medical Data?

Thais Webber[0000−0002−8091−6021], Juan Mendoza
Santana[0000−0003−1718−2480], Andreas Francois Vermeulen[0000−0003−2225−6851],

and Juliana K.F. Bowles[0000−0002−5918−9114]

School of Computer Science, University of St Andrews
St Andrews KY16 9SX, UK

{tcwds,jjm20,afv,jkfb}@st-andrews.ac.uk

Abstract. Designing patient-centric healthcare systems which consider
the smart integration of distributed medical data is challenging. This in-
cludes handling numerous architectural dependencies and requirements
as a result of blending a variety of future generation technologies. Exam-
ples of recent approaches are proposals of a unified format for medical
records to facilitate efficient healthcare provision, transparent data ac-
cess control using blockchain technology, and emergent authentication
mechanisms and privacy-preserving techniques for data analytics. The
Serums project proposes an innovative design for a Smart Health Centre
System in a distributed development effort. The goal is a comprehensive
solution for integration and access of transnational medical records. This
paper focuses on the architectural design workflow as a way of delivering
artefacts for development iterations and contribute towards module in-
tegration planning in the software development process. Our experience
shows that in data integration projects for healthcare provision, system
architects and developers can profit from the designed viewpoints as arte-
facts to reveal integration challenges and highlight quality attributes.

Keywords: Healthcare information systems · Patient health records ·
Architectural design.

1 Introduction

The integration of Patient Health Records (PHRs) in a smart and secure envi-
ronment for information retrieval can be an extensive challenge for researchers,
system architects, healthcare providers and governments. Nonetheless, the vision
of such an integration aims to enable, in the future, European-wide healthcare
systems. In Europe, there is a clear trend towards patients becoming more em-
powered in healthcare processes and being increasingly aware of privacy and
data ownership. For instance, patients may want to have more control over who
has access to their data and to which parts of their data, whilst expecting the

? This research is funded by the EU H2020 project Serums: Securing Medical Data in
Smart Patient-Centric Healthcare Systems (grant code 826278).



system to comply with the EU General Data Protection Regulation (GDPR)1

and other legal and ethical regulations.
The EU Horizon 2020 project Serums2 aims to combine next-generation tech-

nologies, such as blockchain and data lake principles, in a patient-centric tool-
chain for accessing, storing, communicating and analysing distributed medical
records in a secure and privacy-preserving way [8]. It specifies the transforma-
tion and aggregation of PHRs from distributed data sources (e.g., from hospitals,
medical practices, healthcare databases, health monitoring devices) into a uni-
fied and universal format for metadata storage named Smart Patient Health
Record (SPHR). Complex access rules to SPHR are expected to be written by
patients and healthcare professionals on a user-friendly front-end as data sharing
agreements, which are stored as smart contracts over a blockchain network.

The challenge of designing an architecture like Serums for projects that em-
ploy diverse and emerging technologies is even bigger when teams are not co-
located. Successful integration projects with dispersed teams rely on a system-
level modular design with well-defined requirements and documentation about
each module and their inter-dependencies [14]. The degree to which it is pos-
sible to reduce ambiguity and guarantee cohesion of requirements in a project
is also dependent on how the architectural design workflow is conducted and
documented from early stages of development [14].

In this paper, we discuss the Smart Health Centre System (SHCS) archi-
tectural design workflow within Serums and the contribution of each designed
artefact (e.g. requirements specification, viewpoint diagrams, interaction dia-
grams, and several others) towards identifying development challenges. The dis-
cussions about the workflow outcomes are directed towards software engineering
researchers, project managers and architectural analysts. We also point out the
role of viewpoints in identifying the expected quality attributes (i.e., compli-
ance, traceability, auditability, testability and interoperability) for the effective
integration of systems such as SHCS.

This paper is structured as follows. In Section 2, we present related work
regarding integrated healthcare records, emerging technologies and the Serums
perspective. In Section 3, we introduce the architectural design workflow defined
for Serums, and present an overview of its architectural design in Section 4.
Section 5 discusses the design workflow outcome towards the desired quality
attributes for a seamless integration, and further summarises considerable ob-
servations from applying the first iteration of the design process. We conclude
with suggestions for further work in Section 6.

2 Recent related work

In recent years, sharing PHRs across healthcare institutions and countries has
become an essential requirement of future-generation effective healthcare provi-
sion. To successfully achieve this goal, different integration solutions have been

1 Information on GDPR can be found at https://gdpr-info.eu/
2 For more information see http://www.serums-h2020.org.



presented by researchers and software developers using different technologies
such as Blockchain, Cloud Computing, IoT, Big Data, and so on [6], [9], [10],
[17]. In addition, prototypes have been developed to evaluate the design of such
personalised and decentralised medical records systems. MedRec [5] is an ex-
ample of a recent system developed with blockchain technology to deal with
sensitive medical information. It is mostly focused on empowering patients and
providers in the choice to release metadata and in engaging medical stakehold-
ers to participate in the network as miners. The mining reward is to access
and aggregate anonymised data to perform advanced analytics. By contrast, the
Serums project applies the concept of distributed ledgers mostly to store and
retrieve patient records, focusing on the development of a robust and secure
authorisation mechanism that allows patients and healthcare organisations to
create personalised access to medical records. Moreover, the goal of Serums is to
establish a tool-chain which is modular and integrates several next-generation
technologies such as multi-factor user authentication schemes [2], and in the
future, distributed privacy-preserving data analytics [11].

3 The Architectural Design Workflow

Serums follows an architectural design workflow in order to guarantee a clear
integration process and adequate adherence to system requirements. An example
of a basic design workflow for global software development (GSD) can be found
in the work of Sangwan et al. [14].

The development of the Smart Health Centre System (SHCS) for Serums [8]
can be classified as an example of a GSD project. The overall project assembles a
total of 9 European partners within 7 countries including hospitals, academic and
industrial partners. The coordinating team is responsible for the development
and integration of the SHCS [8]. The integration task raises many challenges
to the teams regarding sharing the understanding of system requirements, tech-
nological issues and various collaboration aspects such as exchanging concise
technical reports to reduce design misalignment.

In addition, the project combines features of the Rational Unified Process
(RUP) and incremental development models [15]. As described in [15], the de-
velopment iterations are divided into four phases: Inception, Elaboration, Con-
struction and Transition. The last is mainly concerned with the deployment of
the system in the user community. In this paper, we focus on the Elaboration
phase, aiming to include the integration task in the early stages of the design
process. Fig. 1 illustrates the Serums architectural design workflow.

3.1 Elaboration Phase

The Elaboration phase focuses on architectural design activities that enable a
common understanding of the requirements and the establishment of an overall
system architecture. It enables software architects to identify and describe the
principal modules (aka subsystems) and their relationships [15]. For instance, the



Fig. 1. Serums architectural design workflow

SHCS requires that only authorised users can access information from patient
records which are usually distributed across multiple locations and may there-
fore present different privacy constraints that cannot be violated by the SHCS.
Integrating both the requirements for the SHCS and the rules of each individual
data source is an important integration challenge that must be addressed before
reaching the Construction phase. This particular integration requirement can be
refined on every development iteration assuming that for the first iteration only
the rules of the SHCS are followed, whereas for the second iteration, the rules of
each individual data source have to be integrated as well as part of the original
requirement.

The SHCS architecture must be able to comply with this requirement that
concerns not one but different scopes within the architecture such as the security
modules and the complex data storage and retrieval modules. Thus, several arte-
facts need to be designed by each team to cope with this specification. Below,
we describe each activity foreseen in the Elaboration phase of the architectural
design workflow for Serums (see Fig. 1).

– Requirements Assessment : entails significant effort on the clear specifica-
tion of system requirements and their coverage, generating a shared artefact
called Requirements Specification (e.g., document). In practice, this docu-
ment could also contain explicit remarks on how these requirements relate



to the architecture towards supporting fundamental design decisions that
impact non-functional aspects (i.e., quality attributes) [1].

– Parallel design: the listed activities in this workflow section could be partially
performed in parallel, synchronously and/or asynchronously, even though
they are depicted within a parallel gateway. In what follows, we give a brief
description of each planned parallel activity and its suggested artefact.
– Context definition: the design effort begins delivering the system Con-
text viewpoint. It captures the interaction of the system with its environ-
ment, through relationships with other actors such as people and external
systems. Sommerville [15] proposes context models as an artefact to iden-
tify the boundaries of a system. These models can be represented through
use case diagrams, UML interaction diagrams (typically sequence diagrams),
and in our particular case using a more general diagram [13]. Use case dia-
grams can only be created when a system requirements specification is (at
least partially) available. Preliminary architecture descriptions can focus on
views that show the system’s modules with their major internal processes
and explicit dependencies.
– Functional design: aims to identify the functional blocks that will in-
tegrate the overall solution following the principles of high cohesion and
low coupling [7]. In addition, this task includes the design of artefacts that
describe the system’s architectural elements that deliver the overall function-
alities. Examples of artefacts generated from this activity are the functional
and interaction viewpoints. These artefacts are needed to guide structural
properties of the information, the concurrency, and the deployment whenever
it is required. An incomplete system due to missing functional components
can be a consequence of poor functional design. Additionally, modular de-
velopment depends highly on this activity.
– Information flow definition: allows us to specify in a high-level manner
how information is stored, manipulated, managed and transferred within the
system. At the same time, this flow enables us to expand on the nature of the
connections between components and modules identified in the functional
design, for we agree that components interact with each other by passing
information. This viewpoint is a high-level view of data elements and infor-
mation flow, it can include some elements of the structure of the data and
observations about static information (which is not transferred across com-
ponents). A diagram can capture the sequence in which the information is
passed and transformed through the modules of the system. The information
flow is particularly relevant because it also allows architects to visualise the
responsibilities of each module and their expected functionality, and define
an initial design of the interfaces that will be provided.
– Concurrency design: aims to identify and describe the presence of con-
currency within the system delivering a Concurrency viewpoint as artefact.
A good concurrent design can help to identify bottlenecks and deadlocks
generated by the interaction of different components. In addition, this de-
sign permits to identify convergence points in which the communication and
the information flow can be synchronised.



– Deployment design: captures the environment in which the system will
be deployed through the different stages of the development process. It is
directly related to the infrastructure needed by each of the functional mod-
ules capturing the hardware requirements and runtime dependencies. This
activity delivers a Deployment viewpoint that can be summarised into high-
level diagrams containing visualisations of the mappings between logical and
physical elements, processing components, network interconnections, and re-
flections on the storage facilities required.
– Operational design: captures how the system will be operated, adminis-
tered, and supported when it is running in its production environment. It is
a significant activity that must be considered and planned at design time to
enable the definition of installation procedures, management, and normal op-
eration of the system. Additionally, contingency plans can be introduced as
means to mitigate problems resulting from unexpected functionality, which
can be critical for healthcare systems.

– Analysing dependencies: marks the end of the Elaboration phase in terms of
achieving a stable set of designed artefacts to follow up to the next phase of
development cycle.

The parallel design activity above could also be named as Development de-
sign. The integration of these viewpoints entails an important step of archi-
tectural design, which will support the system development process. It aims
to highlight the aspects of the architecture that are interesting to stakeholders
involved in building, testing, maintaining, and enhancing the system. This per-
spective can be achieved by combining artefacts such as Context viewpoint to
capture users and external agents, Functional and Interaction viewpoints, In-
formation flow viewpoint, Concurrency viewpoint to define development units,
dependencies and connections, and Deployment design to raise awareness about
the system technical requirements. The Operational viewpoint will be evaluated
towards the end of the Construction phase entering the Transition phase.

4 The Architectural Design for Serums

The architectural design plays a key role in system integration because its arte-
facts describe the responsibilities of each subsystem/module as well as the inter-
faces and steps required for their interaction [15]. The proposed SHCS architec-
ture follows the workflow described in Section 3.

Context analysis: the Context definition within Serums’ SHCS is shown in
Fig. 2. There are three categories of users: hospital administrators, healthcare
professionals, and patients. Each category can perform specific actions such as
request a patient’s SHPR and manage credentials or access rules. The diagram
also shows that the system interacts with the data from three different hospitals
(ZMC, FCRB and USTAN). Even though in a real scenario this interaction may
differ from hospital to hospital, for the current prototype we assume that it hap-
pens through standardised APIs for each data source. In addition, an interaction



Fig. 2. SHCS Context Viewpoint

with personal health tracking devices is depicted. The context viewpoint allows
us to place actors, functionalities and external connections in a perspective in
which details of internal system features (e.g. front-end receiving requests for
the security layer and for data retrieval processes) are abstracted in a black-box.

Functional design: the Functional viewpoint of SHCS is shown in Fig. 3.
In this diagram, modules are explicitly divided following their main goals and
interfaces with the integration module. The integration module has two sub-
modules: the front-end dealing with user interface and users requests; and the
back-end for interfacing and coordinating other modules to get responses. The
functional viewpoint translates the requirements into implementation modules
that will inter-operate via APIs. This diagram is the foundation for the infor-
mation flow as well as for the deployment and interaction viewpoints, mostly
because they all depend on the definition of functional modules to capture their
different perspectives.

Information flow definition: the Information Flow within the SHCS is
shown in the diagram of Fig. 4. It formalises the challenge of gathering the
distributed medical records into a flexible infrastructure of data processing (ac-
quisition, transformation, storage and retrieval). The data flow viewpoint enables
the mapping of critical design decisions related to these operations. For instance,



Fig. 3. SHCS Functional Viewpoint

the responsibilities of the integration module are detailed here and it depicts all
needed handlers (back-end) and response flows to users (front-end).

Development design: the Interaction viewpoint is shown in Fig. 5. It rep-
resents the setup that will allow all the different modules to interact with each
other. This viewpoint together with the Information flow, the Functional view-
point, and the Deployment viewpoint (shown in Fig. 6) shape the development
design. All perspectives combined enable developers to make relevant decisions
for the modules implementations.

The modular approach proposed in the Functional viewpoint enables the
SHCS to deal with different technologies, such as blockchain, distributed data-
bases, and so on. Each high-tech solution has specific requirements that must be
satisfied; our Deployment viewpoint shows the solutions for this issue by means of
containerisation [16]. Furthermore, an additional level of interoperability has to
do with the communication between modular subsystems, which is directly ad-
dressed in our Interaction viewpoint. Concurrency design is shown in a simplified
manner through the Interaction viewpoint and the Information flow viewpoint.
The Operational design is not included here because this is still a very early
stage of the project in which operation modes have yet to be explored before
being documented.



Fig. 4. SHCS Information Flow diagram



Fig. 5. SHCS Interaction Viewpoint

Fig. 6. SHCS Deployment Viewpoint

4.1 Architectural Design Overview

In the first software design iteration, we generated different viewpoints that can
be aggregated in a high-level diagram showing the architectural overview, to
gain an understanding of the required components of the SHCS. Fig. 7 presents
the Serums architectural overview that assembles four different perspectives (or
layers) of integration.

Security layer: is responsible for handling privacy issues to guarantee confi-
dentiality, integrity and availability when processing medical data. It is responsi-
ble for the generation of secure access tokens to be associated with user sessions,
which will enable information exchange within the system components. It is also
responsible for the synchronisation of two modules: (i) Authentication to make
sure only individuals with credentials can access and visualise (fully or partially)
the requested patient’s health record and (ii) Authorisation which is managed
by the Blockchain network to control the credentials and access rules for infor-



Fig. 7. SHCS architecture overview

mation retrieval. Role-based access permissions will be programmed as well as
processes for maintaining records of the performed transactions for audit trail.

User Interaction layer: is responsible for building the system’s front-end
and back-end modules, which comprise the central integration layer for demon-
strating the usage of Serums. It implements processes such as the interface graph-
ical elements (front-end connection to users and its connection to the back-end
processes), user access rules and credentials management (back-end connections
to Security layer and Data Lake layer). Serums authorised users (individual,
group or organisation) connect and interact with the system via the front-end,
in it the authentication process has to be included as the first step of the naviga-
tion flow, subsequently the back-end will communicate with the Authorisation
module to resolve the Role-based permission rules that are created, stored and
updated in the Security Layer.

Data Lake layer (intermediate layer between the Serums SHCS and the
data sources of medical organisations responsible for data storage and retrieval):
integrates the module responsible for distributed medical data processing. It
must be able to dispatch segments of a patient’s health record based on the user’s
permission. This layer is responsible for assembling the Smart Patient Health
Record (SPHR) as a unified format to represent medical data from multiple
sources. The data lake will not store explicit medical information, instead it will



store pointers to the real data, which will be retrieved on demand. The SPHR
will be constructed based on the metadata extracted from the real data, the
extraction of the metadata is also responsibility of this layer. The Data Lake
layer depends directly on the Data Sources Layer, and provides services to the
User Interaction Layer.

Data Sources layer: this layer can integrate modules, systems, subsystems
or APIs responsible for creating a safe environment for data acquisition from
organisations to integrate SPHR. It consolidates distributed data servers (i.e.,
from organisations such as hospitals, national databases, the patient’s home
environment), implicating in several trusted and untrusted network connections
for the acquisition of PHR data. This layer, though depicted in our architectural
overview, is not under the control of the Serums team, and as seen in the Context
Viewpoint (Fig. 2) is external to the system.

Fig. 7 is a valuable artefact delivered after a few iterations in the Elaboration
phase of the design workflow. This output is the result of combining high-level
requirements, preliminary design artefacts and several informal discussions be-
tween system architects of distributed teams.

5 Quality attributes for SHCS integration

The emphasis on non-functional requirements is usually orthogonal to functional
design [4]. In this paper, we define quality attributes as non-functional require-
ments for SHCS integration. The design workflow should be able to produce arte-
facts that capture the desired quality attributes for the integrated SHCS: compli-
ance, traceability, auditability, testability and interoperability. These properties
are relevant for the project and they can, and should be, considered in the design
of artefacts. The intersection between design viewpoints and quality attributes
is summarised in Table 1.

Table 1. Desired quality attributes within integration perspective and major artefacts.
Ticks indicate whether an artefact (viewpoint) is essential to inspect a quality attribute.

Quality attributes for SHCS integration
Testability

Artefact V-model (testing approaches)Compliance
Traceability &

Auditability
Unit Integration System Acceptance

Interoperability

Requirements Specification X
Context viewpoint X X X X
Functional viewpoint X X X
Information flow viewpoint X X X X X X
Interaction viewpoint X X
Concurrency viewpoint X
Deployment viewpoint X X
Operational viewpoint X

Compliance determines that the integrated system is in accordance with es-
tablished guidelines and specifications. From the collection of artefacts produced



in the design workflow, compliance can be easily emphasised, for example, from
the Information flow viewpoint refinement until it is thoroughly aligned with the
requirements specification. In addition, compliance can be demonstrated with
the help of the Context viewpoint, in which the actions and responses are de-
scribed, thus enabling us to judge whether the system developed matches these
actions. A more thorough analysis for compliance can be ultimately done with
respect to the Requirements Specification.

Traceability in our context is defined as a quality attribute related to the
ability to collect data regarding time records of transactions performed by users
within the system. The Information flow and Functional viewpoints are valu-
able artefacts to ensure that this property will be fulfilled. In operation, the
system should be able to produce transaction logs in the security layer that
allow analysts to audit the system. Then, as a consequence of traceability, it
is also possible to achieve Auditability, meaning that the integrated system can
deliver information to verify if the requirements have been met and identify any
non-conformance in the system operation. This can be achieved thanks to the
security layer, in which a Blockchain implementation will automatically generate
an entry into the ledger regarding information access. The Information flow di-
agram explicitly shows that the authorisation layer includes tasks related to the
log entries in the Blockchain, just as it is mentioned in the Functional viewpoint.
Complementary the Context viewpoint aids to capture what actions should be
logged, hence strengthening traceability and auditability.

Testability is the degree to which a software artefact (module, requirements- or
design document) supports testing in the test context. This quality attribute for
Serums refers to the ability acquired through the viewpoints design to perform
conclusive and reproducible testing. The V-Model [12] has been taken into consid-
eration in order to align our architectural workflow and the generated artefacts
to different stages of verification and validation according to that model. The
context for unit testing can be related to the Functional viewpoint, in which indi-
vidual components are responsible to perform specific tasks. Integration testing
can be observed within the Interaction viewpoint in which all elements converge
into the integration module. System testing can be placed within the Deploy-
ment viewpoint and the Information flow, that in conjunction provide a holistic
perspective of the system. Acceptance testing can be done based on the actions
and responses shown in the Context viewpoint. By enabling these testing stages
related to the V-Model, our architectural workflow and artefacts contribute to
develop testability as a feature of the integrated SHCS.

Interoperability is defined as the ability of systems to exchange and make use
of information. SHCS has many challenges regarding module integration and
how to define interfaces for secure data exchange. This quality attribute can be
evaluated, for example, using the Container viewpoint to identify these intercon-
nections. In our proposed architectural design, several other viewpoints (Context,
Functional, Information flow) show the presence of external data sources related
to hospital data. There is an evident demand for understanding interoperability,
specially in the presence of dispersed data sources from partners and healthcare



organisations. Irrespective of their specific implementations, the SHCS must be
able to cope with each one of them seamlessly. It is at this point that standard
protocols, such as Health Level Seven (HL7) [3] for delivering health information,
can be considered.

Considering the five quality attributes highlighted as important in the context
of the Serums project, we present a summary of observations gathered from the
first iteration of the architectural design workflow.

1. Dispersed teams increase the challenges to specify and design modules be-
cause individual preconceptions have a greater weight in such project setup.

2. Sustaining informal discussions among dispersed teams often results in re-
work and misalignment of activities [14]. This is a challenge we have identified
in our design workflow within the integration perspective.

3. Deriving formal specifications from high-level project requirements is not
trivial because they focus on different aspects of the system.

4. Project requirements must be differentiated from system requirements and
from individual requirements for each module.

5. Requirements assessment in the design workflow has the upmost relevance for
acquiring all five quality attributes further in the remaining design activities.

6. There is a need for individual architectural design for each functional module
besides the system’s architectural design.

7. The relation between system architecture and module architecture must be
clearly established to ease seamless integration.

8. Functional viewpoint granularity can vary depending on the perspective/re-
sponsibility of a development team.

9. The Functional viewpoint does not necessarily give a clear indication of all
modules and operations involved in the overall architectural design. Several
discussions in different communication channels were conducted during this
modelling activity (not all captured in logs and documentation).

10. The Functional viewpoint and the Information flow are highly related to the
SHCS desired quality attributes of traceability, auditability and testability.

11. Information flow is concerned with specific actions, thus there is no global
description of the system’s information flow.

12. The Information flow viewpoint is one of the richest artefacts to understand
modules interfaces, data exchanges and security steps demanded by SHCS.
It allows the module dependencies and internal processes to be further dis-
cussed and detailed amongst teams. Moreover, it could guide SHCS testing
plan and expected system behaviour under user requests.

13. There are several approaches to interoperability, though we have proposed
containerisation, we cannot guarantee at this stage that this will be sufficient
for the entire system, additional development efforts are required to evaluate
the effectiveness of containerisation.

14. Containerisation is being used instead of virtualisation, easing the deploy-
ment of modular components in a single shared unit of hardware.

15. Non-functional requirements and quality attributes have to be specified for
the system as a whole and also for each individual module. The real con-



tribution of each component to the success of quality attributes has to be
reflected individually.

The architectural design workflow has been illustrated with artefacts to help
the relevant stakeholders make design decisions that impact SHCS. These im-
pacts are first understood in the Elaboration phase when the system architecture
can still be prone to change. If these potential issues are detected and dealt with
in this early stage, the Construction phase will follow a smooth development.
For example, if the interaction between components is opportunely defined, then
development teams can focus on satisfying the expected APIs, while the team
responsible for the integration can handle the other modules as black boxes, and
thus have no concerns regarding their actual implementation.

6 Conclusion

This paper addresses how the architectural design workflow of a system can
be used as the means to uncover integration challenges, in our case the SHCS
for Serums. It is natural to assume that modular decomposition of a system
results in more focused artefacts across distributed teams. However this decom-
position should be done taking into consideration the need for future integration
at the centre of the architectural design. Early identification of module depen-
dencies from architectural design artefacts and their derived models is a rich
contribution to understand the challenges of Serums integration. For instance,
the design viewpoints accompanied with several support diagrams help to iden-
tify integration factors needed to achieve desired quality attributes. In addition,
these artefacts could help dispersed teams to share a common understanding of
the integrated system in more effective ways to lead next development iterations.

Some challenges are still open for discussion regarding the architectural de-
sign workflow and the architectural design itself. Access to patient health records
is granted on the basis of interaction rules between SHCS users. These interac-
tions are rather complex, because they depend on time, geographical and other
regulatory restrictions that might result in conflicting rules. These conflicts have
to be identified and resolved first from a specification perspective, and then from
an implementation one, that is, decisions have to be made by the stakeholders
to define how these conflicts should be resolved.

This paper highlights that designing integrated healthcare systems can be
less complex when following a proper design workflow. The proposed workflow
emerged from the architectural and technological dependencies and challenges
inherent in our project. Defining unambiguous requirements that can be con-
cisely understood and documented is the first step to have teams sharing the
same architectural vision from early stages of the software lifecycle. Moreover,
reviewing the architectural design against desired quality attributes and business
goals could be a key point for a future successful system integration.



References

1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: a survey. IEEE Transactions on Software En-
gineering 30(5), 295–310 (May 2004)

2. Belk, M., Fidas, C., Pitsillides, A.: Flexpass: Symbiosis of seamless user authenti-
cation schemes in IOT. In: Extended Abstracts of the 2019 CHI Conf. on Human
Factors in Computing Systems. ACM, New York, NY, USA (2019)

3. Benson, T., Grieve, G.: Principles of Health Interoperability SNOMED CT, HL7
and FHIR. Health Information Technology Standards (HITS), Springer (2016)

4. Blaine, J.D., Cleland-Huang, J.: Software quality requirements: How to balance
competing priorities. IEEE Software 25(2), 22–24 (March 2008)

5. Ekblaw, A., Azaria, A., Halamka, J.D., Lippman, A.: A case study for blockchain
in healthcare : Medrec prototype for electronic health records and medical research
data. In: Open & Big Data Conference, August 22-24, 2016. IEEE (2016)

6. Griggs, K., Ossipova, O., Kohlios, C., Baccarini, A., Howson, E., Hayajneh, T.:
Healthcare blockchain system using smart contracts for secure automated remote
patient monitoring. Journal of Medical Systems 42(130) (July 2018)

7. ISO/IEC/IEEE: ISO/IEC/IEEE International Standard - systems and software
engineering–vocabulary. ISO/IEC/IEEE 24765:2017(E) pp. 1–541 (Aug 2017).

8. Janic, V., Bowles, J., Vermeulen, A., et al.: The Serums tool-chain: Ensuring se-
curity and privacy of medical data in smart patient-centric healthcare systems. In:
2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA,
USA, 2019. pp. 2726–2735 (2019)

9. Karimi, L., Joshi, J.: Multi-owner multi-stakeholder access control model for a
healthcare environment. In: 2017 IEEE 3rd Int. Conf. on Collaboration and Inter-
net Computing (CIC). pp. 359–368. IEEE (Oct 2017)

10. Khan, S.I., Hoque, A.S.M.L.: Health data integration with secured record linkage:
A practical solution for bangladesh and other developing countries. In: 2017 Int.
Conf. on Networking, Systems and Security (NSysS). pp. 156–161 (Jan 2017)

11. Kumar, M., Rossbory, M., Moser, B., Freudenthaler, B.: Deriving an optimal noise
adding mechanism for privacy-preserving machine learning. In: Anderst-Kotsis, G.,
et al. (eds.) Database and Expert Systems Applications, DEXA 2019. Communi-
cations in Computer and Information Science, vol. 1062. Springer (2019)

12. Mathur, S., Malik, S.: Advancements in the v-model. International Journal of Com-
puter Applications 1(12), 29–34 (2010)

13. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference
Manual, The (2nd Edition). Pearson Higher Education (2004)

14. Sangwan, R., Bass, M., Mullick, N., Paulish, D.J., Kazmeier, J.: Global Software
Development Handbook (Auerbach Series on Applied Software Engineering Series).
Auerbach Publications (2006)

15. Sommerville, I.: Software Engineering. Pearson, 10th edn. (2015)
16. Syed, M., Fernandez, E.: A reference architecture for the container ecosystem. In:

Proceedings of the 13th Int. Conf. on Availability, Reliability and Security. ARES
2018, ACM, New York, NY, USA (2018)

17. Zhang, P., Schmidt, D., White, J., Lenz, G.: Chapter one - blockchain technology
use cases in healthcare. In: Raj, P., Deka, G. (eds.) Blockchain Technology: Plat-
forms, Tools and Use Cases, Advances on Computers, vol. 111, pp. 1–41. Elsevier
(2018)


