Skip to main content

KLT Bin Detection and Pose Estimation in an Industrial Environment

  • Conference paper
  • First Online:
  • 2142 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12254))

Abstract

In order for Automated Guided Vehicles (AGV’s) to handle KLT bins (Kleinladungsträger, Small Load Carrier) in a flexible way, a robust bin detection algorithm has to be developed. This paper presents a solution to the KLT bin detection and pose estimation task. The Mask R-CNN network is used to detect a KLT bin on color images, while a simple plane fitting approach is used to estimate its 5DoF position. This combination gives promising results in a typical use case scenario when the KLT bin is aligned with the camera view.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. An, G.H., Lee, S., Seo, M.W., Yun, K.J., Cheong, W.S., Kang, S.J.: Charuco board-based omnidirectional camera calibration method. Electronics 7, 421 (2018)

    Article  Google Scholar 

  2. Babinec, A., Jurišica, L., Hubinský, P., Duchoň, F.: Visual localization of mobile robot using artificial markers. Procedia Eng. 96, 1–9 (2014). https://doi.org/10.1016/j.proeng.2014.12.091

    Article  Google Scholar 

  3. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  4. Beloshapko, A., Korkhov, V., Knoll, C., Iben, U.: Industrial fisheye image segmentation using neural networks. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11622, pp. 678–690. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24305-0_50

    Chapter  Google Scholar 

  5. Buchholz, D., Kubus, D., Weidauer, I., Scholz, A., Wahl, F.M.: Combining visual and inertial features for efficient grasping and bin-picking. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 875–882 (2014)

    Google Scholar 

  6. Choi, S., Zhou, Q.Y., Koltun, V.: Robust reconstruction of indoor scenes. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5556–5565 (2015)

    Google Scholar 

  7. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: MeshLab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference, vol. 1, pp. 129–136 (2008). https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

  8. Drost, B., Ilic, S.: 3D object detection and localization using multimodal point pair features. In: 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization Transmission, pp. 9–16 (2012)

    Google Scholar 

  9. Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient and robust 3D object recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 998–1005 (2010)

    Google Scholar 

  10. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., Marín-Jiménez, M.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47, 2280–2292 (2014). https://doi.org/10.1016/j.patcog.2014.01.005

    Article  Google Scholar 

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. CoRR abs/1703.06870 (2017). http://arxiv.org/abs/1703.06870

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

  13. Hodan, T., Haluza, P., Obdrzálek, S., Matas, J., Lourakis, M.I.A., Zabulis, X.: T-LESS: an RGB-D dataset for 6d pose estimation of texture-less objects. CoRR abs/1701.05498 (2017). http://arxiv.org/abs/1701.05498

  14. Holz, D., Behnke, S.: Fast edge-based detection and localization of transport boxes and pallets in RGB-D images for mobile robot bin picking. In: Proceedings of ISR 2016: 47st International Symposium on Robotics, pp. 1–8 (2016)

    Google Scholar 

  15. Holz, D., et al.: Active recognition and manipulation for mobile robot bin picking. In: Röhrbein, F., Veiga, G., Natale, C. (eds.) Gearing Up and Accelerating Cross-fertilization between Academic and Industrial Robotics Research in Europe. STAR, vol. 94, pp. 133–153. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03838-4_7

    Chapter  Google Scholar 

  16. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR abs/1502.03167 (2015). http://arxiv.org/abs/1502.03167

  17. Izadi, S., et al.: Kinectfusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST 2011, New York, NY, USA, pp. 559–568. Association for Computing Machinery (2011). https://doi.org/10.1145/2047196.2047270.https://doi.org/10.1145/2047196.2047270

  18. Keselman, L., Woodfill, J.I., Grunnet-Jepsen, A., Bhowmik, A.: Intel realsense stereoscopic depth cameras. CoRR abs/1705.05548 (2017). http://arxiv.org/abs/1705.05548

  19. Lu, X.: A review of solutions for perspective-n-point problem in camera pose estimation. J. Phys. Conf. Ser. 1087, 052009 (2018). https://doi.org/10.1088/1742-6596/1087/5/052009

    Article  Google Scholar 

  20. Mohamed, I.S., Capitanelli, A., Mastrogiovanni, F., Rovetta, S., Zaccaria, R.: Detection, localisation and tracking of pallets using machine learning techniques and 2D range data. CoRR abs/1803.11254 (2018). http://arxiv.org/abs/1803.11254

  21. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR abs/1506.01497 (2015). http://arxiv.org/abs/1506.01497

  22. Rother, C., Kolmogorov, V., Blake, A.: Grabcut-interactive foreground extraction using iterated graph cuts. In: ACM Transactions on Graphics (SIGGRAPH), August 2004. https://www.microsoft.com/en-us/research/publication/grabcut-interactive-foreground-extraction-using-iterated-graph-cuts/

  23. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571 (2011)

    Google Scholar 

  24. Rusu, R., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA 2011), May 2011. https://doi.org/10.1109/ICRA.2011.5980567

  25. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. CoRR abs/1905.11946 (2019). http://arxiv.org/abs/1905.11946

  26. Tremblay, J., To, T., Sundaralingam, B., Xiang, Y., Fox, D., Birchfield, S.: Deep object pose estimation for semantic robotic grasping of household objects. CoRR abs/1809.10790 (2018). http://arxiv.org/abs/1809.10790

  27. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. CoRR abs/1711.00199 (2017). http://arxiv.org/abs/1711.00199

  28. Xu, X., Zhang, X., Han, J., Wu, C.: HALCON application for shape-based matching. In: 2008 3rd IEEE Conference on Industrial Electronics and Applications, pp. 2431–2434 (2008)

    Google Scholar 

  29. Zinsser, T., Schmidt, J., Niemann, H.: A refined ICP algorithm for robust 3-D correspondence estimation. In: Proceedings 2003 International Conference on Image Processing (Cat. No. 03CH37429), vol. 2, p. II-695 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksei Beloshapko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beloshapko, A., Knoll, C., Boughattas, B., Korkhov, V. (2020). KLT Bin Detection and Pose Estimation in an Industrial Environment. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12254. Springer, Cham. https://doi.org/10.1007/978-3-030-58817-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58817-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58816-8

  • Online ISBN: 978-3-030-58817-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics