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Abstract. This paper considers a generalization of the network design
problem for On-Demand Multimodal Transit Systems (ODMTS). An
ODMTS consists of a selection of hubs served by high frequency buses,
and passengers are connected to the hubs by on-demand shuttles which
serve the first and last miles. This paper generalizes prior work by includ-
ing three additional elements that are critical in practice. First, differ-
ent frequencies are allowed throughout the network. Second, additional
modes of transit (e.g., rail) are included. Third, a limit on the number
of transfers per passenger is introduced. Adding a constraint to limit the
number of transfers has a significant negative impact on existing Benders
decomposition approaches as it introduces non-convexity in the subprob-
lem. Instead, this paper enforces the limit through transfer-expanded
graphs, i.e., layered graphs in which each layer corresponds to a certain
number of transfers. A real-world case study is presented for which the
generalized ODMTS design problem is solved for the city of Atlanta.
The results demonstrate that exploiting the problem structure through
transfer-expanded graphs results in significant computational improve-
ments.

Keywords: Combinatorial optimization · Multimodal transportation ·
Benders decomposition · Transfer-expanded graphs.

1 Introduction

This paper is motivated by the design and implementation of an On-Demand
Multimodal Transit System (ODMTS) for the city of Atlanta. The share of
public transit in Atlanta (about 2–3%) is very low compared to other American
cities (e.g., about 15% in Boston) and Atlanta is also the 8th most congested
city in the world. There is thus a strong need for a modern transit systems that
leverages the train and bus infrastructure of the city and complements it with
innovative mobility concepts.

This paper considers the design of an ODMTS for Atlanta that combines a
network of trains and buses with on-demand multimodal shuttles that act as
feeders to/from the bus/rail network and serve local demand. ODMTS address
the first/last mile problem that plagues transit systems, while mitigating con-
gestion on high-density corridors and leveraging economy of scale. ODMTS and
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their design challenge was introduced in [10], which also presents an overview of
related work. The main contribution of this paper is to generalizes prior work by
including three additional elements that are critical for ODMTS in large cities
such as Atlanta. First, different frequencies are allowed throughout the network.
Second, additional modes of transit (e.g., rail) are included. Third, a limit on
the number of transfers per passenger is introduced. Adding a constraint to limit
the number of transfers has a significant negative impact on existing Benders
decomposition approaches as it introduces non-convexity in the subproblem.
Instead, this paper enforces the limit through transfer-expanded graphs, i.e.,
layered graphs in which each layer corresponds to a certain number of transfers.
A real-world case study is presented for which the generalized ODMTS design
problem is solved for the city of Atlanta. The results demonstrate that exploit-
ing the problem structure through transfer-expanded graphs results in significant
computational improvements.

2 The Generalized ODMTS Design Problem

This section presents the generalized ODMTS design problem that enhances the
model from [10] along several dimensions: The choice of bus frequencies, addi-
tional transportation modes and, most importantly, a constraint on the number
of transfers. The Benders decomposition approach in [10] exploits a natural de-
composition of the ODMTS design problem. The network design is determined
by the master problem, while the routing of the passengers for a given design is
determined by the subproblem. A major benefit of this decomposition is that the
subproblem can be solved for each trip independently. The same decomposition
is used in this paper.

2.1 The Master Problem For Network Design

Consider a directed multigraph G = (V,A), with vertices V = {1, . . . , n} and arc
set A. Let F be the set of possible frequencies, i.e., the total number of vehicles
during the time horizon, let M be the set of possible transportation modes, which
may include shuttles, and let K be the total number of arcs that each passenger
may travel. By definition, K is equal to the maximum number of transfers plus
one. In the multigraph G, each arc a ∈ A is uniquely defined by the quadruple
a = (i, j,m, f) ∈ V × V ×M × F , i 6= j. Using arc a means traveling from i to
j with mode m, which departs with frequency f . For a given arc a ∈ A, these
elements are referred to as i(a), j(a), m(a), and f(a), respectively.

Designing a generalized ODMTS amounts to deciding which arcs a ∈ A are
made available to passengers. Let the binary variable za ∈ B be equal to one if
arc a is made available, and zero otherwise. The cost of enabling arc a is given
by the parameter βa. It is assumed that βa ≥ 0 for all a ∈ A.

For a given design, a cost is incurred due to passengers traveling trough the
network. This cost Φ(z) is a function of the values of the z-variables that define
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min
∑
a∈A

βaza + Φ(z), (1a)

s.t.
∑

a∈δ+(i,m)

f(a)za −
∑

a∈δ−(i,m)

f(a)za = 0 ∀i ∈ V,m ∈M, (1b)

∑
f∈F |(i,j,m,f)∈A

z(i,j,m,f) ≤ 1 ∀i ∈ V, j ∈ V,m ∈M, (1c)

za ∈ B ∀a ∈ A. (1d)

Fig. 1. Formulation for the generalized ODMTS design problem.

the design. The value of Φ(z) can be found by solving the subproblem, which is
discussed in Section 2.2. If the subproblem is not feasible, then Φ(z) =∞.

A formulation for the master problem is presented in Figure 1. For conve-
nience, δ+(i) is defined as the set of all arcs going out of i ∈ V . Similarly, the set
δ+(i,m) is defined as the set of all arcs with mode m ∈ M going out of i ∈ V .
The sets δ−(i) and δ−(i,m) are defined analogously for the incoming arcs.

Objective (1a) minimizes the cost of the design plus the cost of routing the
passengers through the network. Constraints (1b) ensure that the frequencies
for each mode are balanced at each vertex. For example, if three buses arrive
during the time horizon, then three buses should also depart. Constraints (1c)
enforce that only one frequency can be selected for a given connection and a
given mode. Equations (1d) state the integrality requirements.

2.2 The Subproblem: Routing Passengers Through the Network

For a given design, the passenger trips are routed through the network at min-
imum cost. Let T be the set of all passenger trips, and let each trip r ∈ T be
defined by an origin o(r), a destination d(r), and a number of passengers p(r). If
trip r ∈ T is routed through arc a ∈ A, then a cost of γra is incurred. The total
cost of routing all passenger trips, Φ(z), is the sum over the costs per trip. It is
assumed that γra > 0 for every arc a ∈ A and trip r ∈ T , such that the optimal
route is a simple path from o(r) to d(r).

Solving the subproblem amounts to solving a shortest path problem from o(r)
to d(r) for each trip r ∈ T , with the additional restriction that the number of arcs
in the path is at most K. This problem is known as the cardinality-constrained
shortest path problem (CSP) [6]. Note that the cardinality constraint follows
from the limit on the number of transfers. Without this limit, the subproblem
is an (unconstrained) shortest path problem (SP), as is the case in [10].

It is well-known that SP possesses total unimodularity and can be solved by
linear programming (LP). Adding an additional constraint, however, typically
destroys this structure [1]. This is indeed the case when a cardinality constraint
is added to the subproblem formulation in [10]. As a result, the cost function
Φ(z) would change from convex to non-convex, which negatively impacts Benders
decomposition approaches (see Section 3).
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To remedy this limitation, this paper presents a new formulation for the sub-
problem that enforces the transfer limit without destroying total unimodularity.
This formulation uses transfer-expanded graphs, i.e., layered graphs with a each
layer for each number of transfers. Transfer-expanded graphs encode the transit
constraints directly, making it possible to use shortest-path algorithms.

2.3 Transfer-Expanded Graphs

Transfer-expanded graphs shares some similarities with time-expanded networks,
where each vertex has multiple copies for different periods of time. This is the
case, for example, for modern algorithms for evacuation planning and scheduling
[8,12,13]. Reference [11] also uses a layered network to solve the dynamic gener-
alized assignment problem. As a result, some of the side-constraints do not need
to be handled explicitly. See [3] for a recent literature review on time-expanded
graphs.

Let Ḡr = (V̄ r, Ār) be the transfer-expanded graph for a given trip r ∈ T .
This graph contains multiple copies of the original arcs and vertices, organized
in K+1 layers. It is assumed that K ≥ 2, as the subproblem is trivial for K = 1.
A vertex v̄ = (i, k) ∈ V̄ r in the transfer-expanded graph is defined by a vertex
i ∈ V in the original graph and by a layer k ∈ {1, . . . ,K + 1}. Similarly, the
definition of an arc is extended to ā = (a, k, l), in which a ∈ A is the original
arc, k ∈ {1, . . . ,K} is the layer of the starting vertex of ā and l ∈ {2, . . . ,K+ 1}
is the layer of the ending vertex.

The transfer-expanded graph is constructed as follows. For convenience, Fig-
ure 2 provides an example for K = 3. First, the vertex set V̄ r is defined. For
the origin and the destination of the trip, introduce the vertices (o(r), 1) and
(d(r),K+1). For the other vertices i ∈ V \{o(r), d(r)} of the original graph, add
the copies (i, k) for k ∈ {2, . . . ,K} to the transfer-expanded graph. The arc set
Ār is constructed based on the arcs of the original graph, as follows:

1. For each arc starting in the origin, i.e., a ∈ δ+(o(r)), add the arc (a, 1, 2) if
j(a) 6= d(r), or the arc (a, 1,K + 1) if j(a) = d(r).

2. For each arc not adjacent to the origin or the destination, i.e., a ∈ A and
i(a), j(a) /∈ {o(r), d(r)}, add the arcs (a, k, k + 1) for all k ∈ {2, . . . ,K − 1}.

3. For each arc ending in the destination that does not start in the origin, i.e.,
a ∈ δ−(d(r)), i(a) 6= o(r), add the arcs (a, k,K + 1) for all k ∈ {2, . . . ,K}.

By construction, it follows that solving CSP on the original graph is equivalent to
solving SP on the transfer-expanded graph. Figure 3 formulates the subproblem
as a collection of SPs on transfer-expanded graphs. Let yrā ∈ B be the flow on
arc ā ∈ Ār of trip r ∈ T . For convenience, define δ̄+

r (v̄) to be the set of all arcs
in Ār coming out of v̄ ∈ V̄ r. Similarly, let δ̄−r (v̄) be the set of incoming arcs.

Objective (2a) minimizes the cost of all trips. Constraints (2b) state that
passengers can only use arcs available in the design. Constraints (2c) enforce flow
conservation, and Equations (2d) define the variables. Due to total unimodularity
of the SPs, no integrality conditions are required.
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Fig. 2. A transfer-expanded graph for K = 3, |M | = 1, |F | = 1, for a complete graph
as the original graph. The dotted arcs are removed when the triangle inequality holds.

Φ(z) = min
∑
r∈T

∑
ā=(a,k,l)∈Ār

γray
r
ā (2a)

s.t. yrā ≤ za ∀r ∈ T, ā = (a, k, l) ∈ Ār, (2b)

∑
ā∈δ̄+r (v̄)

yrā −
∑

ā∈δ̄−r (v̄)

yrā=


1 if v̄ = (o(r), 1)

−1 if v̄ = (d(r),K + 1)

0 else

∀r ∈ T, v̄ ∈ V̄ r, (2c)

yrā ≥ 0 ∀r ∈ T, ā ∈ Ār. (2d)

Fig. 3. Formulation for the subproblem on transfer-expanded graphs.

The main advantage of using tranfer-expanded graphs is that the limit on
the number of transfers can be enforced without destroying total unimodularity.
A potential downside is that the number of variables and constraints in the
subproblem increases with K. In public transit, however, the number of transfers
that passengers are willing to take, and therefore the value of K, is typically
very low. Furthermore, a larger subproblem does not necessarily mean that the
subproblem is more difficult to solve, as algorithms may benefit from the fact
that the transfer-expanded graph is acyclic. When the z-variables are integers,
for example, the acyclic subproblem for each trip can be solved in linear time
through topological sorting [5].

Finally, it is worth pointing out that if o(r) and d(r) are only served by shut-
tles, and shuttles satisfy the triangle inequality, then some arcs may be removed
from the transfer-expanded graph without sacrificing optimality. Specifically, us-
ing a shuttle on the path (o(r), 1) → (i, 2) → (d(r),K + 1) for i ∈ V is always
dominated by using a direct shuttle from (o(r), 1) to (d(r),K+1). It follows that
the shuttle arcs between (i, 2) and (d(r),K+1) may be removed for all i ∈ V , as
also indicated in Figure 2. For K ≤ 3, it then follows that the transfer-expanded
graph does not require more edges than the original graph.
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3 Benders Decomposition

Following [10], a Benders decomposition approach is presented for the generalized
ODMTS design problem. The goal is to solve the master problem (1), which
is complicated by the fact that Φ(z) is defined implicitly. To apply Benders
decomposition, replace Φ(z) in Objective (1a) by a new variable θ ∈ R, and add
the constraint θ ≥ Φ(z). Note that this does not change the problem, as θ = Φ(z)
in any optimal solution. In Benders decomposition, the constraint θ ≥ Φ(z) is
enforced through Benders cuts. For subproblem (2), these cuts are

θ ≥ Φ(z̄) +
∑
r∈T

∑
a∈A

K∑
k=1

λrka (z̄)(za − z̄a), (3)

with λrka (z) the dual values of Constraints (2b) and z̄ any feasible solution to
the LP relaxation of the master problem [2]. For the case study in this paper,
the subproblem is always feasible. If this assumption is not satisfied, Benders
feasibility cuts, which are similar to (3), may also be included [2].

The Benders decomposition approach is implemented in C++ and Gurobi
8.1.1. The master problem is the main model, and the Benders cuts (3) are sepa-
rated in both the MIP solution callback (in case the z-variables are integer) and
in the MIP node callback (in case the z-variables are fractional). The subproblem
for each trip is also solved with Gurobi, and dual simplex is used to ensure that
the basis remains feasible when the subproblem is solved for different values of z.
To prevent excessive calls to the subproblem, feasibility heuristics are disabled.
The number of cut separation rounds in the root node is set to the maximum
value to get the best possible bound. Finally, the 2ε-trick is used to stabilize the
master problem [7]. This stabilization uses ε = 0.00001 and the trivial core point
obtained by assigning za = 1

4 to every bus arc.
Without transfer-expanded graphs, the subproblem is not totally unimodular

and Φ(z) is not convex (see Section 2.2). In that case, Benders decomposition
cannot be applied directly. Instead, θ ≥ Φ(z) may be enforced by adding combi-
natorial Benders cuts in the MIP solution callback and Benders cuts for the LP
relaxation of the subproblem in both callbacks [4,9]. However, it is well-known
that relying too much on combinatorial Benders cuts may result in slow algo-
rithmic progress, and many cuts may be necessary to find the optimal solution.

4 Atlanta as a Case Study

The generalized ODMTS design problem was solved for the city of Atlanta. In
Atlanta, the Metropolitan Atlanta Rapid Transit Authority (MARTA) operates
two modes: bus and rail. The case study added on-demand shuttles and the
bus system was redesigned accordingly. More precisely, define the three modes
M = {S,B,R} for shuttle, bus, and rail respectively. Shuttle arcs are introduced
to connect from origins to hubs and from hubs to destinations, as well as to serve
the local demand. The corresponding za variables are fixed to one, as shuttles are
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always available. Following [10], the cost of using a shuttle is a weighted sum of
cost and convenience, controlled by the parameter α ∈ [0, 1]. Let da and ta be the
travel distance and the travel time of arc a ∈ A, respectively. The parameter cS is
the cost of using a shuttle per person per unit of distance. The cost of traversing
arc a ∈ A for trip r ∈ T is then defined as γra = p(r)

(
(1− α)cSda + αta

)
.

Bus arcs are defined between the potential hub locations and between each
hub and the three nearest rail stations. The cost of enabling bus arc a ∈ A is
given by βa = (1 − a)cBf(a)da. That is, the distance is multiplied by the cost
per unit distance and the number of buses over the time horizon. The cost of

traversing a bus arc is given by γra = α
(
ta + L+ H

2f(a)

)
. Here L is the fixed time

required for a transfer, H is the time horizon, and H
2f(a) is the expected waiting

time before the next bus arrives, which depends on the frequency. Rail arcs are
defined between all rail stations that are connected by the same rail line. The
costs of traversing an arc is defined in the same way as for the buses. For each
rail arc a ∈ A, the variable za is fixed to one, which makes the cost of enabling
an arc irrelevant.

The case study uses the following data and parameters to create a realistic
instance and evaluate the computational benefit of transfer-expanded graphs.
It uses passenger trip data provided by MARTA for March 16, 2018, between
6am and 10am. Connecting trips have been chained together to obtain origin
and destination pairs. This resulted in 2588 unique trips, with 7167 passengers
in total. There are 5563 bus stops and rail stations in total, and their locations
were also provided by MARTA. Eleven hubs were selected manually on the map.
For the distances da, great-circle distances are used. To estimate travel times ta,
the distances are divided by a constant speed of 30 mph. The cost parameters are
set to cS = 5 and cB = 1. The fixed transfer time is chosen to be five minutes,
i.e., L = 5 minutes, and the time horizon is set to four hours, i.e., H = 240
minutes. To balance cost and convenience, α = 0.5 is used. The rail frequency is
assumed to be fixed to six per hour, i.e., f(a) = 6× 4 = 24, and bus frequencies
are determined by the model to be either three per hour or six per hour. At most
two transfers are allowed, i.e., K = 3.

Figure 4a presents the result of solving the generalized ODMTS problem us-
ing transfer-expanded graphs. In total, it took 122 seconds to obtain the optimal
solution and prove optimality, with a minimum objective value of 131,905. With-
out transfer-expanded graphs, i.e., when adding combinatorial Benders cuts, it
was not possible to obtain an optimal solution in reasonable time. Instead, the
evaluation considered a relaxation in which the combinatorial Benders cuts were
ignored and only the Benders cuts for the LP relaxation of the subproblem were
added. Solving this relaxation to optimality took 3.8 hours. Keep in mind that
this relaxation explores routes that may require many transfers. To evaluate the
quality of the design obtained by the relaxation, the passengers were routed
through the transfer-expanded formulation with the z-variables fixed to their
values found in the relaxation. The result is presented in Figure 4b and has
an objective value of 131,965. Solving the relaxed problem results in a smaller
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(a) Based on transfer-expanded graphs. (b) Based on relaxed problem.

Fig. 4. Network designs for Atlanta showing shuttles (thin lines), rail (thick lines), and
buses (arrows, orange/light for low frequency and purple/dark for high frequency).

public transit network because the relaxation does not completely enforce the
transfer limit.

In summary, the main benefit of the transfer-expanded formulation is the
significant computational benefits it provides in capturing the transfer limit.
Without transfer-expanded paths, it can be optimal to fractionally select long
paths that do not adhere to this constraints. These longer fractional paths likely
play a role in the difference of computational performance.

5 Conclusion

This paper presented a generalization of the ODMTS design problem that intro-
duces three critical elements in practice: different frequencies, additional tran-
sit modes, and a limit on the number of transfers. Transfer-expanded graphs
are introduced to handle the transfer limit without negatively impacting exist-
ing Benders decomposition approaches. The Atlanta case study demonstrates
that this approach is very effective, as transfer-expanded graphs significantly
improve computational performance. Exploiting the problem structure through
transfer-expanded graphs opens the door to designing increasingly realistic net-
works in the future. One possible extension is to incorporate the capacity of the
on-demand shuttles. As capacity of these shuttles is typically small, expanded
networks could also be used to model capacity efficiently.
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