
Zipper Stack: Shadow Stacks Without Shadow?

Jinfeng Li, Liwei Chen??, Qizhen Xu, Linan Tian, Gang Shi, Kai Chen, and
Dan Meng

1 Institute of Information Engineering, Chinese Academy of Sciences
2 School of Cyber Security, University of Chinese Academy of Sciences

{lijinfeng,chenliwei,xuqizhen,tianlinan,shigang,chenkai,mengdan}@iie.ac.cn

Abstract. Return-Oriented Programming (ROP) is a typical attack
technique that exploits return addresses to abuse existing code repeat-
edly. Most of the current return address protecting mechanisms (also
known as the Backward-Edge Control-Flow Integrity) work only in lim-
ited threat models. For example, the attacker cannot break memory iso-
lation, or the attacker has no knowledge of a secret key or random values.

This paper presents a novel, lightweight mechanism protecting return ad-
dresses, Zipper Stack, which authenticates all return addresses by a chain
structure using cryptographic message authentication codes (MACs).
This innovative design can defend against the most powerful attackers
who have full control over the program’s memory and even know the
secret key of the MAC function. This threat model is stronger than the
one used in related work. At the same time, it produces low-performance
overhead. We implemented Zipper Stack by extending the RISC-V in-
struction set architecture, and the evaluation on FPGA shows that the
performance overhead of Zipper Stack is only 1.86%. Thus, we think
Zipper Stack is suitable for actual deployment.

Keywords: Intrusion detection · Control Flow Integrity.

1 Introduction

In the exploitation of memory corruption bugs, the return address is one of
the most widely exploited vulnerable points. On the one hand, code-reuse at-
tacks (CRAs), such as ROP [5] and ret2libc [26], perform malicious behavior by
chaining short sequences of instructions which end with a return via corrupted
return addresses. These attacks require no code injection so they can bypass non-
executable memory protection. On the other hand, the most widely exploited
memory vulnerability, stack overflow, is also exploited by overwriting the return

? This work is partially supported by the National Natural Science Foundation of
China (No. 61602469, U1836211), and the Fundamental theory and cutting edge
technology Research Program of Institute of Information Engineering, CAS(Grant
No. Y7Z0411105).

?? Corresponding Author

ar
X

iv
:1

90
2.

00
88

8v
3

 [
cs

.C
R

]
 1

5
Ju

l 2
02

0

address. Both CRAs and stack smashing attacks are based on tampering with
the return addresses.

In order to protect the return addresses, quite a few methods were presented,
such as Stack Protector (also known as Stack Canary) [8, 38], Address Space
Layout Randomization (ASLR) [32], Shadow Stacks [6, 9, 23, 29], Control Flow
Integrity (CFI) [1,2], and Cryptography-based CFI [21,24]. However, they have
encountered various problems in the actual deployment.

Stack Protector and ASLR rely on secret random values (cookies or memory
layout). Both methods are widely deployed now. However, if there is a memory
leak, both methods will fail [30]: the attacker can read the cookie and hold it
unchanged while overwriting the stack to bypass the Stack Protector, and de-
randomize ASLR to bypass ASLR. Some works have proved that they can be
reliably bypassed in some circumstances [16, 20, 27], such as BROP [4]. Even
if there is no information leaking, some approaches can still bypass ASLR and
perform CRAs [25].

Shadow Stack is a direct mechanism that records all return addresses in a
protected stack and checks them when returns occur. It has been implemented
via both compiler-based and instrumentation-based approaches [9, 10]. In re-
cent years, commercial hardware support has also emerged [17]. But Shadow
Stack relies heavily on the security of the memory isolation, which is difficult
to guarantee in actual deployment. Some designs of Shadow Stack utilize ASLR
to protect Shadow Stack. However, they cannot thwart the attacks contains any
information disclosure [7, 9]. Since most methods that bypass ASLR [20,27] are
effective against this type of defense. Other designs use page attributes to pro-
tect Shadow Stack, for instance, CET [17]. However, defenses that rely on page
attributes, such as NX (no-execute bit), have been bypassed by various technolo-
gies in actual deployment [18]: a single corrupted code pointer to the function
in the library (via a JOP/COOP attack) may change the page attribute and
disable the protection. In light of these findings, we think that mechanisms that
do not rely on memory isolation are more reliable and imperative.

Cryptography-based protection mechanisms based on MAC authentication
have also been proposed. These methods calculate the MACs of the return ad-
dresses and authenticate them before returns [21, 24, 40]. They do not rely on
memory isolation because the attacker cannot generate new correct MACs with-
out the secret key. But they face other problems: replay attacks (which reuse
the existing code pointers and the MACs of them), high-performance overhead,
and security risk of keys. A simple authentication of MAC is vulnerable fac-
ing replay attacks, so some designs introduce extra complexity to mitigate the
problem (such as adding a nonce or adding stack pointer into the MAC input).
Besides, these methods’ performance overhead is also huge, since they use a cryp-
tographic MAC and then save the result into memory. Both operations consume
massive runtime overhead. The security of the secret key is also crucial. Theses
works assume that there is no hardware attack or secret leak from the kernel.
However, in the real world, the secret key can be leaked by a side-channel attack

2

or an attack on context switching in the kernel. Therefore, we should go further
over these assumptions, and consider a more powerful threat model.

In this paper, we propose a novel method to protect return addresses, Zipper
Stack, which uses a chain of MACs to protect the return addresses and all the
MACs. In the MAC chain, the newest MAC is generated from the latest return
address and the previous MAC. The previous MAC is generated from the return
address and MAC before the previous one, as Figure 1 shows. So the newest
MAC is calculated from all the former return addresses in the stack, although
it is generated by computing the latest address and the previous MAC. Zipper
Stack minimizes the amount of state requiring direct protection: only the newest
MAC needs to be protected from tampering. Without tampering the newest
MAC, an attacker cannot tamper with any return address because he cannot
tamper the whole chain and keep the relation.

Fig. 1: Core of Zipper Stack

Zipper Stack avoids the problems of Shadow Stack and Cryptography-based
protection mechanisms. Compared to Shadow Stack, it does not rely on memory
isolation. Consequently, the attacks that modify both the shadow stack and the
main stack cannot work in Zipper Stack. Compared with other cryptography-
based mechanisms, Zipper Stack can resist against replay attacks itself and will
not fail even if the secret key is leaked (see Section 4). In terms of efficiency,
Zipper Stack performs even better. Our design is more suitable for parallel pro-
cessing in the CPU pipeline, which avoids most performance overhead caused by
the MAC calculation and memory access. The performance overhead of Zipper
Stack with hardware support based on Rocket Core [35] (RISC-V CPU [36]) is
only 1.86% based on our experiments.

The design of Zipper Stack solved three challenges: First, it avoids the signif-
icant runtime overhead that most cryptography-based mechanisms suffer since
the newest MAC is updated in parallel. In our hardware implementation, most
instructions that contain a MAC generation/authentication take only one cy-
cle (See Section VI). Second, it utilized the LIFO order of return addresses to

3

minimize the amount of state requiring direct protection. In general, a trust
root authenticating all the data can help us defend against replay attacks or
attacks containing secret key leaks (which most current return address protec-
tion method cannot). While in Zipper Stack, the authentication uses the newest
MAC, at the same time, the MAC is a dynamic trust root itself. So it gets
better security without extra overhead. Third, previous methods protect each
return address separately, so any one been attacked may cause attacks. Zipper
Stack, however, connect all the return addresses, leverage the prior information
to increase the bar for attackers.

In order to demonstrate the design and evaluate the performance, we imple-
ment Zipper Stack in three deployments corresponding to three situations:

a) Hardware approach, which is suitable when hardware support of Zipper
Stack is available. b) Customized compiler approach, which is suitable when
hardware support is not available, but we can recompile the applications. c)
Customized ISA approach, which is suitable when we cannot recompile the pro-
grams, but we can alter the function of CALL/RET instructions.

Ideally, the hardware approach is the best - it costs the lowest runtime over-
head. The other two approaches, however, are suitable in some compromised
situation. In the hardware approach, we instantiated Zipper Stack with a cus-
tomized Rocket Core (a RISC-V CPU) on the Xilinx Zynq VC707 evaluation
board (and hardware-based Shadow Stack as a comparison). In customized com-
piler approach, we implemented Zipper Stack in LLVM. In customized ISA ap-
proach, we use Qemu to simulate the modified ISA.

Contributions. In summary, this paper makes the following contributions:

1. Design: We present a novel, concise, efficient return address protection
mechanism, called Zipper Stack, which protect return addresses against the
attackers have full control of all the memory and know the secret keys, with
no significant runtime overhead. Consequently, we analyze the security of
our mechanism.

2. Implementation: To demonstrate the benefits of Zipper Stack, we imple-
mented Zipper Stack on the FPGA board, and a hardware-based Shadow
Stack as a comparison. To illustrate the potential of Zipper Stack to be
further implemented, we also implemented it in LLVM and Qemu.

3. Evaluation: We quantitatively evaluated the runtime performance overhead
of Zipper Stack, which is better than existing mechanisms.

2 Background and Related Work

2.1 ROP attacks

Return Oriented Programming (ROP) [5, 26] is the major form of code reuse
attacks. ROP makes use of existing code snippets ending with return instructions
called gadgets to perform malicious acts. In ROP attacks, the attackers link
different gadgets by tampering with a series of return addresses. An ROP attack
is usually made up of multiple gadgets. At the end of each gadget, a return

4

instruction links the next gadget via the next address in the stack. The defenses
against ROP mainly prevent return instructions from using corrupted return
addresses or randomize the layout of the codes.

2.2 Shadow Stack and SafeStack

Shadow Stack is a typical technique to protect return addresses. Shadow Stack
saves the return addresses in a separate memory area and checks the return
addresses in the main stack when returns. It has been implemented in both
compiler-based and instrumentation-based approaches [6,9,12,22,29]. SafeStack
[19] is a similar way, which moves all the return addresses into a separated stack
instead of backs up the return addresses. SafeStack is now implemented in LLVM
as a component of CPI [33].

An isolated stack mainly brings about two problems: One is that memory
isolation costs more memory overhead and implementation complexity. Another
one is that security relies on the security of memory isolation, which is impracti-
cal. As the structure of the shadow stack is simply the copies of return addresses,
it is fragile once the attacker can modify its memory area. For example, in Intel
CET, the shadow stack’s protection is provided by a new page attribute. But a
similar approach in DEP is easily bypassed by a variety of methods modifying
the page attribute in real-world attacks [18]. ASLR is also bypassed in real-world
attacks that other implementations rely on. The previous work [7] constructed
a variety of attacks on Shadow Stack.

2.3 CFI and Crypto-based CFI

Control Flow Integrity (CFI), which first introduced by Abadi et. al. [1, 2], has
been recognized as an important low-level security property. In CFI, runtime
checks are added to enforce that jumps and calls/rets land only to valid locations
that have been analyzed and determined ahead of execution [34,37,39]. The secu-
rity and performance overhead of different implementations differ. Fine-grained
CFI approaches will introduce significant overhead. However, coarse-grained CFI
has lower performance overhead but enforces weaker restrictions, which is not
secure enough [7]. Besides, Control-Flow Graphs (CFGs), which fine-grained CFI
bases on, are constructed by analyzing either the disassembled binary or source
code. CFG cannot be both sound and complete, so even if efficiency losses are
not mainly considered, CFI is not a panacea for code reuse attacks [11]. Due to
the above reasons, CFI is not widely deployed on real systems now.

To improve CFI, some implementations also introduce cryptography methods
to solve problems such as inaccurate static analysis: CCFI [21], RAGuard [40],
Pointer-Authentication [24]. Most of these methods are based on MAC: the
MACs of protected key pointers, including return addresses, are generated,
whereafter, authenticated before use. But all of these methods rely heavily on
secret keys and cost tremendous performance overhead. Another problem of
these mechanisms is replay attacks. The attackers can perform replay attacks by
reusing the existing values in memory.

5

3 Threat Model

In this paper, we assume that a powerful attacker has the ability to read and
overwrite arbitrary areas of memory. He tries to perform ROP (or ret2lib) at-
tacks. This situation is widespread - for example, a controllable pointer out of
bounds can help the attacker acquire the capability. Reasonably, the attacker
cannot alter the value in the dedicated registers (called Top and Key registers
in our design), since these registers cannot be accessed by general instructions.

The attacker in our assumption is more powerful than all previous works.
Shadow Stacks assume that the attackers cannot locate or overwrite the shadow
stack, which is part of the memory. In our work, we do not need that assumption,
which means it can defend against more powerful attacks.

4 Design

In this section, we elaborate on the design of Zipper Stack in detail. Here, we
take the hardware approach as an example. The design in other approaches is
equivalent.

4.1 Overview

Fig. 2: Overview of Zipper Stack (hardware approach)

In the hardware approach, we need hardware support and the modification
of memory layout. Figure 2 shows the overview of the hardware in Zipper Stack:
Zipper Stack needs two dedicated registers and a MAC module in the CPU, but
it requires no hardware modification of the memory. The registers include the
Top register holding a MAC (Nm bits) and the Key register holding a secret key
(Ns bits). Both the registers are initialized as random numbers at the beginning
of a process, and they cannot be read nor rewritten by attackers. The secret key
will not be altered in the same process. Therefore, we temporarily ignored this
register for the sake of simplicity in the following. Assuming that the width of
return addresses is Na, the MAC module should perform a cryptographic MAC
function with an input bit width of Na + Nm and an output bit width of Nm.

We now turn to the memory layout of Zipper Stack. In Zipper Stack, all
return addresses are bound to a MAC, as shown in Figure 3. The novelty is, the
MAC is not generated from the address bound with itself, but from the previous
return address with the MAC bound with that address. This connection keeps

6

Fig. 3: Layout in Zipper Stack: The dotted rectangles in the figure indicate the input
of the MAC function, and the solid lines indicate the storage location of the MAC.

all return addresses and MAC in a chain. To maintain the structure, the top
one, namely the last return address pushed into the stack, is handled together
with the previous MAC and the new MAC is saved into the Top register; while
the bottom one, i.e., the first return address pushed into the stack is bound to
a random number (exactly the initial value of Top register when the program
begins).

4.2 Operations

Next, we describe how Zipper Stack works with return addresses in the runtime,
i.e., how to handle the Call instructions and the Return instructions. As Figure
4 shows.

Call: In general, the Call instructions perform two operations. First, push
the address of the next instruction into the stack. Then, set the PC to the call
destination. While in Zipper Stack, the Call instructions become slightly more
complicated and need three steps:

1. Push the Top register along with the return address into the main stack;
2. Calculate a new MAC of the Top register and the return address and save

the new MAC into the Top register;
3. Set the PC to the call destination.

Return: In general, the Return instructions also perform two operations.
First, pop the return address from the stack; second, set the PC to this address.

7

Fig. 4: The stack layout before/after a call/return. Previous MAC is generated from
previous return address and the MAC with that return address. SP stands for stack
pointer.

Correspondingly, in Zipper Stack, Returns also become a little more complicated,
including three steps.

1. Pop the return address and the previous MAC from the main stack and
calculate the MAC of them. Then check whether it matches the Top register.
If not, raise an exception (which means an attack).

2. Save the MAC poped from the stack into the Top register.

3. Set the PC to the return address.

Figure 4 shows the process of CALL and RET in Zipper Stack. We omit the
normal operations about the PC and return addresses.

The core idea of Zipper Stack is to use a chain structure to link all return
addresses together. Based on this structure, we only need to focus on the pro-
tection and verification of the top of the chain instead of protecting the entire
structure. Just like a zipper, only the slider is active, and when the zipper is
pulled up, the following structure automatically bites up. Obviously, protecting
a MAC from tampering is much easier than protecting a series of MAC from
tampering: Adding a special register in the CPU is enough, and there is no need
to protect a special memory area.

4.3 Setjump/Longjump and C++ Exceptions

In most cases, the return addresses are used in a LIFO order (last in, first
out). But there are exceptions, such as setjump/longjump and C++ excep-
tions. Consequently, most mechanisms protecting return addresses suffer from

8

the Setjump/Longjump and C++ Exceptions, some papers even think the block-
chaining like algorithm cannot work with exceptional control-flows [12]. However,
Zipper Stack can accommodate both Setjump/Longjump and C++ Exceptions.
Both Setjump/Longjump and C++ Exceptions mainly save and restore the
context between different functions. The main task of them is stack unwind.
The return addresses in the stack will not encounter any problem since Zipper
Stack does not alter either the value nor the position of return addresses. The
only problem is how to restore the Top register. The solution is quite simple:
backup the Top register just like backup the stack pointer or other registers (in
Setjump/Longjump save them in the jump buffer, similar in C++ Exceptions).
When we need to Longjump or handle an exception, restore the Top register
just as restoring other registers. The chain structure will remain tight.

However, the jump buffer is in memory, so this solution exposes the Top
register (since the attacker can write on arbitrary areas of memory) and leaves
an opportunity to overwrite the Top register. So additional protection is a must.
In our implementation, we use a MAC to authenticate the jump buffer (or context
record in C++ exception). In this way, we can reuse the MAC module.

5 Implementations

5.1 Hardware approach

We introduce the hardware approach first. In hardware approach, we imple-
mented a prototype of Zipper Stack by modifying the Rocket Chip Generator [35]
and customized the RISC-V instruction set accordingly. We also added a MAC
module, several registers, and several instructions into the core. Whereafter, we
modified the toolchain, including the compiler and the library glibc. Besides, we
implemented a similar Shadow Stack for comparison.

Core and New Instructions In Rocket core, we added a Top register and a
Key register, which correspond to those designed in the algorithm. These two
registers cannot be loaded/stored via normal load/store instructions. At the
beginning of a program, the Key and Top register are initialized by random
values.

In RISC-V architecture, a CALL instruction will store the next PC, i.e., re-
turn address, to the ra register, and a RET instruction will read the address
in the ra register and jump to the address. Consequently, two instructions were
added in our prototype: ZIP (after call), UNZIP (before return). They will per-
form as a Zipper Stack’s CALL/RET together with a normal CALL/RET.

For the sake of simplicity, we use a compressed structure. In RISC-V archi-
tecture, the return address in register ra, so we put the return address and the
MAC together into ra. In the current Rocket core, only lower 40 bits are used
to store the address. Therefore, we use the upper 24 bits to hold the MAC.
Correspondingly, our Top register is 24 bits. And our Key register is 64 bits.

9

Our new instructions will update a MAC (ZIP after a CALL) or check and
restore a MAC (UNZIP before a RET). When a ZIP instruction is executed, the
address in ra (only lower 40 bits) along with the old MAC in the Top register
will be calculated into a new MAC. The new MAC is stored in the Top register.
The old MAC is stored to the higher 24 bits in the ra register (the lower 40 bits
remain unchanged). Correspondingly, when an UNZIP instruction is executed,
the ra register (including the MAC and address) is calculated and compared
with the Top register. If the values match, the MAC in ra (higher 24 bits) is
restored into the Top register, and the higher 24 bits in ra is restored to zero. If
the values do not match, an exception will be raised (which means an attack).

MAC Module Next, we added a MAC module in the Rocket Core. Here,
we use Keccak [3] (Secure Hash Algorithm 3 (SHA-3) in one special case of
Keccak) as the MAC function. In our hardware implementation, the arguments
of Keccak are as follows: l = 4, r = 256, c = 144 The main difference between
our implementation and SHA-3 is that we use a smaller l: in SHA-3, l = 6. This
module will take 20 cycles for one MAC calculation normally, and it costs 793
LUTs and 432 flip flops.

Fig. 5: Pipeline of ZIP and UNZIP

Pipeline The pipeline in Rocket Core is a 5-stage single-issue in-order pipeline.
To reduce performance overhead, the calculations are processed in parallel. If
the next instruction that uses a MAC calculation arrives after the previous one
finished, the pipeline will not stall. Figure 5 is a pipeline diagram of two instruc-
tions. In Figure 5, IF, ID, EX, MEM, WB stand for fetch, decode, execute, mem-
ory, and write back stages. UD/CK stands for updating Top register/checking
MACs. As the figure shows, if the next ZIP/UNZIP instruction arrives after the
MAC calculation, only one extra cycle is added to the pipeline, which is equiv-
alent to inserting a nop. It is worth noting that the WB stage in ZIP/UNZIP

10

does not rely on the finish of the UD/CK stage: in the write back stage, it only
writes the ra register, and the value does not rely on the current calculation.
Fortunately, most functions require more cycles than 20. So in most cases, the
ZIP/UNZIP instruction takes only one cycle.

Customized Compiler To make use of the new instructions, we also cus-
tomized the riscv-gcc. The modification on riscv-gcc is quite simple: Whenever
we store a return address onto the stack, we add a ZIP instruction; whenever we
pop a return address from the stack, we add a UNZIP instruction. It is notewor-
thy that, if a function will not call any function, ra register will not be spilled
to the stack. So we only add the new instructions when the ra register is saved
into/restored from the stack (rather than all calls and returns).

Setjmp/Longjmp Support To support Setjmp/Longjmp, we also modified
the glibc in the RISC-V tool chain. We have only modified two points:

1. Declaration of the Jump Buffer: Add additional space for the Top register
and MAC.

2. Setjmp/Longjmp: Store/restore the Top register; Authenticate the data.

Our changes perfectly support Setjmp/Longjmp, which is verified in some
benchmarks in SPEC2000, such as perlbmk. These benchmarks will not pass
without Setjmp/Longjmp support.

Optimization In order to further reduce the runtime overhead, we also opti-
mized the MAC module. We added a small cache (with a size of 4) to cache
the recent results. If a new request can be found in the cache, the calculation
will take only one cycle. This optimization slightly increased the complexity of
the hardware, but significantly reduced runtime overhead (by around 30%, see
Section 6).

A Comparable Hardware Based Shadow Stack In order to compare with
Shadow Stacks, we also implemented a hardware supported Shadow Stack on
Rocket Core. We tried to be consistent as much as possible: We added two
instructions that back up or check the return address, and a pointer pointing
the shadow stack. The compiler with Shadow Stacks inserts the instructions just
like the way in Zipper Stack.

5.2 LLVM

In customized compiler approach, we implemented Zipper Stack algorithm based
on LLVM 8.0. First we allocate some registers: we set the lower bits of XMM15 as
the Top register, and several XMM registers as the Key register (we use different
size of Key, corresponding to different numbers of rounds of AES-NI, see next
part). We modified the backend of the LLVM so as to forbid these registers to be

11

used by anything else. Therefore, the Key and Top register will not be leaked. At
the beginning of a program, the Key and Top register are initialized by random
numbers. We also modified the libraries so that the libraries will not use these
registers.

MAC function Our implementation leverages the AES-NI instructions [13]
on the Inter x86-64 architecture to minimize the performance impact of MAC
calculation. We use the Key register as the round key of AES-NI, and use one
128-bit AES block as the input (64-bit address and 64-bit MAC). The 128-bit
result is truncated into 64-bit in order to fit our design. We use different rounds
of AES-NI to test the performance overhead: a) standard AES, performs 10
rounds of an AES encryption flow, we mark it as full ; b) 5 rounds, marked as
half ; c) one round, marked as single. Obviously, the full MAC function is the
most secure one, and the single is the fastest one.

Operations In each function, we insert a prologue at the entry, and an epilogue
before the return. In the prologue, the old Top register is saved onto stack, and
updated to the new MAC of the current return address and the old Top register
value. In the epilogue, the MAC in the stack and return address are authenticated
using the Top register. If it doesn’t match, an exception will be raised. Just as
we introduced before.

5.3 Qemu

To figure out whether it is possible to run the existing binaries if we change the
logic of calls and returns, we customized the x86-64 instruction set and simulated
it with Qemu. All the simulation is in the User Mode of Qemu 2.7.0.

The modification is quite concise: we add two registers and change the logic
of Call and Ret instructions. As the algorithm designed, the Call instruction
will push the address and the Top register, update the Top register with a
new MAC, while Ret instruction will pop the return address and check the
MAC. Since Qemu uses lower 39 bits to address the memory, we use the upper
25 bits to store the MAC. Correspondingly, the width of the Top register is
also 25 bits. The Key register here is 64 bits. We used SHA-3 as the MAC
function in this implementation. Since we did not change the stack structure,
this implementation has good binary compatibility. Therefore it can help us to
evaluate the security with real x86-64 attacks.

6 Evaluation and Analysis

We evaluated Zipper Stack in two aspects: Runtime Performance and Security.
We evaluated the performance overhead with the SPEC CPU 2000 on the FPGA
and SPEC CPU 2006 in LLVM approach. Besides, we also tested the compati-
bility of modified x86-64 ISA with existing applications.

12

Table 1: Security Comparison
Adversary Stack Protector ASLR Shadow Stack MAC/Encryption Zipper Stack

Stack Overflow safe safe safe safe safe

Arbitrary Write unsafe safe safe safe safe

Memory Leak & Arbitrary Write unsafe unsafe unsafe safe safe

Secret Leak & Arbitrary Write N/A N/A N/A unsafe safe

Replay Attack unsafe unsafe N/A unsafe safe

Brute-force Attempts N/A N/A N/A 2Ns−1 2Ns−1 + N ∗ 2Nm−1 *

*: Under a probability of 1 − (1 − 1/e)N , the valid collision of a certain attack does not exist.
N: The number of gadgets in an attack; Nm: Bit width of MAC/ciphertext; Ns: Bit width of secret.
The Brute-force attack already contains the memory leak, so the ALSR is noneffective and not
considered.

6.1 Security

We first analyze the security of Zipper Stack, then show the attack test results,
and finally, compare the security of different implementations.

Security Analysis The challenge for the attacker is clear: how to tamper with
the memory to make the fake return address be used and bypass our check?
We list the defense effect of different methods of protecting return addresses
in the face of different attackers in Table 1. The table shows that Zipper Stack
has higher security than Shadow Stack and other cryptography-based protection
mechanisms.

Direct Overwrite First, we consider direct overwrite attacks. In the previous
cryptography-based methods, the adversary cannot know the key and calculate
the correct MAC, so it is secure. But we go further that the adversary may steal
the key and calculate the correct MAC. As Figure 6 shows, to tamper with any
return address structure and bypass the check (let’s say, Return Address N), the
attacker must bypass the pre-use check. Even if the attacker has stolen the key,
the attacker needs to tamper with the MAC, which is used to check the return
address, i.e., the MAC stored beside Return Address N+1. Since the MAC and
the return address are authenticated together, the attacker has to modify the
MAC stored beside Return Address N+2 to tamper with the MAC bound to
Return Address N+1. And so on, the attacker has to alter the MAC at the top,
which is in the Top register. As we have assumed, the register is secure against
tampering. As a result, an overwrite attack won’t work.

Replay Attack Next, we discuss replay attacks: since we have assumed that
the attacker can read all the memory, is the attacker able to utilize the protected
addresses and their MACs in memory to play a replay attack? In Zipper Stack, it
is not feasible because once the call path has changed, the MAC will be updated
immediately. The MACs in an old call path cannot work in a new call path, even
if the address is the same. This is an advantage over previous cryptography-based
methods: Zipper Stack resist replay attacks naturally.

Brute-force Attack Then we discuss the security of Zipper Stack in the face of
brute force. Here we consider the attacks which read all related data in memory,

13

Fig. 6: Direct Overwrite Attack: The solid lines indicate the protect relation of the
MACs, and the dotted lines show the order that the attacker should overwrite in.

guess the secret constantly, and finally construct the attack. In the cryptography-
based approaches, security is closely related to the entropy of the secret. Here
in Zipper Stack, the entropy of the secret is the bit width of Key register (Ns),
which means the attacker needs to guess the correct Key register in a space of
size 2Ns. Once the attacker gets the correct key, the attack becomes equivalent
to an attack with a secret leak.

Attack with Secret Leak The difference between Zipper Stack and other
cryptography-based approaches is, other approaches will fail to protect control
flow once the attacker knows the secret, but Zipper Stack will not. Because even
if the attacker knows the secret key, the Top register cannot be altered. If an
attack contains N gadgets, the attacker needs to find N collisions whose input
contains the ROP (or ret2lib) gadget addresses to use the gadgets and bypass the
check3. Considering an ideal MAC function, one collision will take about 2Nm−1

times of guesses on average4. So an attack with N gadgets will take N ∗ 2Nm−1

times of guesses on average even if the Key register is leaked. The total number
of guesses is (guessing Key value and the collisions) 2Ns−1 + N ∗ 2Nm−1. And
more unfortunate for the attackers: under a certain probability (1 − (1 − 1/e)N

for an attack contains N gadgets), the valid collision does not even exist. Take an
attack that contains five gadgets as an example, the possibility that the collision
does not exist is around 90%, and the possibility grows as the N grows.

Attack Tests We tested some vulnerabilities and the corresponding attacks to
evaluate the security of Zipper Stack. In these tests, we use Qemu implementa-

3 The same gadget addresses won’t share the same collision, because the MACs bound
to them differ.

4 The MAC function is a (Nm + Na)bit-to-Nmbit function, so choosing a gadget
address will determine Na bits of input, which means there are 2Nm optional values.
On average, there is one collision in the values, since every 2Nm+Na/2Nm = 2Na

inputs share the same MAC value. Because of our special algorithm, this is not
a birthday attack nor an ordinary second preimage attack, but a limited second
preimage attack.

14

tion, because most attacks are very sensitive to the stack layout, a customized
compiler (or just a compiler in a different version) may lead to failures. Using
Qemu simulation can keep the stack layout unchanged, avoid the illusion that the
defense works, which is actually because of the stack layout changes. We wrote a
test suite contains 18 attacks and the corresponding vulnerable programs. Each
attack contains at least one exploit on return addresses, including stack overflow,
ROP gadget, or ret2lib gadget. All attacks are detected and stopped (all of them
will alter the MAC and cannot pass the check during return). These tests show
that Zipper Stack is reliable. Table 2 shows the difference between Zipper Stack
and other defense methods.

Table 2: Attack Test against Defenses

Defence # Applied # Secured # Bypassed

DEP 20 2 18

ASLR 8 2 6

Stack Canary 6 2 4

Coarse-Grained CFI 16 10 6

Shadow Stacks 2 0 2

Zipper Stack 20 20 0

Attacks Against Shadow Stacks The above attacks can also be stopped by
Shadow Stacks. To further prove the Zipper Stack’s security advantages com-
pared to Shadow Stacks, we also wrote two proof-of-concept attacks (correspond-
ing to two common types of shadow stack) that can bypass the shadow stack.
As introduced in previous work [7], Shadow Stack implementations have various
flaws and can be attacked via different vulnerabilities. We constructed similar
attacks. In both PoC attacks, we corrupt the shadow stack before we overwrite
the main stack and perform ROP attacks. In the first example, the shadow stack
is parallel to the regular stack, as introduced in [9]. The layout of the shadow
stack is easy to obtain because its offset to the main stack is fixed. In the second
example, the shadow stack is compact (only stores the return address). The off-
set of this shadow stack to the main stack is not fixed, so we used a memory leak
vulnerability to locate the shadow stack and the current offset. In both cases,
Shadow Stack can not stop the attacks, but Zipper Stack can. We also added
both attacks to Table 2.

Security of Different Approaches The security of Zipper Stack is mainly
affected by two aspects: the security of Top register and the length of MAC,
corresponding to the risk of tamper of MAC and the risk of brute-force attack.
From the Top register’s perspective, the protection in the hardware and Qemu
approach is complete. In both implementations, the program cannot access the
Top register except the call and return, so there is no risk of tampering. In the
LLVM approach, an XMM register is used as the Top register, so it faces the

15

Table 3: Result of SPEC 2000 in Hardware Approach

Baseline Shadow Stack Zipper Stack Zipper Stack (optimized)
Benchmark (seconds) (seconds/slowdown) (seconds/slowdown) (seconds/slowdown)

164.gzip 10923.10 10961.65 (0.35%) 10960.60 (0.34%) 10948.88 (0.24%)
175.vpr 7442.48 7528.06 (1.15%) 7490.49 (0.65%) 7485.40 (0.58%)
176.gcc 8227.93 8318.83 (1.10%) 8348.99 (1.47%) 8317.34 (1.09%)
181.mcf 11128.67 11153.01 (0.22%) 11183.31 (0.49%) 11168.93 (0.36%)
186.crafty 10574.27 10942.89 (3.49%) 10689.74 (1.09%) 10692.53 (1.12%)
197.parser 8318.16 8577.67 (3.12%) 8658.89 (4.10%) 8544.72 (2.72%)
252.eon 14467.81 15111.99 (4.45%) 15519.98 (7.27%) 15040.26 (3.96%)
253.perlbmk 7058.96 7310.78 (3.57%) 7388.20 (4.66%) 7342.20 (4.01%)
254.gap 7728.56 7850.32 (1.58%) 7926.10 (2.56%) 7817.52 (1.15%)
255.vortex 13753.47 14738.06 (7.16%) 14748.70 (7.24%) 14644.70 (6.48%)
256.bzip2 6829.01 6893.50 (0.94%) 6954.81 (1.84%) 6865.27 (0.53%)
300.twolf 11904.25 12044.16 (1.18%) 11974.22 (0.59%) 11917.37 (0.11%)

Average 2.36% 2.69% 1.86%

possibility of being accessed. We banned the use of XMM15 in the compiler and
recompiled the libraries to prevent access to the Top register, but there are still
risks. For example, there may be unintended instructions in the program that
can access the XMM15 register. From the perspective of MAC length, MAC
in LLVM approach is 64-bit wide and therefore has the highest security. MAC
in hardware is 24-bit wide and Qemu is 25-bit wide, so they have comparable
security but still lower than LLVM approach.

6.2 Performance Overhead

We evaluated the performance overhead of different approaches. The cost of the
hardware approach is significantly lower than that of the LLVM approach. It is
worth noting that QEMU is not designed to reflect the guest’s actual perfor-
mance, it only guarantees the correctness of logic 5. Thus, we do not evaluate
the performance overhead of the QEMU approach.

SPEC CINT 2000 in Hardware Approach To evaluate the performance of
Zipper Stack on RISC-V, we instantiated it on the Xilinx Zynq VC707 evaluation
board and ran the SPEC CINT 2000 [14] benchmark suite (due to the limited
computing power of the Rocket Chip on FPGA, we chose the SPEC 2000 instead
of SPEC 2006). The OS kernel is Linux 4.15.0 with support for the RISC-V
architecture. The hardware and GNU tool-chain are based on freedom (commit
cd9a525) [28]. All the benchmarks are compiled with GCC version 7.2.0 and -O2
optimization level. We ran each benchmark for 3 times.

Table 3 shows the results of Zipper Stack and Shadow Stacks.The result
shows that without optimization, Zipper Stack is slightly slower than Shadow

5 For example, QEMU will optimize basic blocks. Some redundant instructions (e.g.
a long nop slide) may be eliminated directly, which cannot reflect real execution
performance.

16

Stacks (2.69% vs 2.36%); while with optimization (the cache), Zipper Stack is
much faster than Shadow Stacks (1.86% vs 2.36%). To sum up, the runtime
overhead of Zipper Stack is satisfactory (1.86%).

Table 4: Result of SPEC 2006 in LLVM approach

Baseline Full Half Single
Benchmark (seconds) (seconds/slowdown) (seconds/slowdown) (seconds/slowdown)

401.bzip2 337.69 385.98 (14.30%) 358.32 (5.76%) 336.33 (-0.40%)
403.gcc 240.38 341.06 (41.89%) 305.94 (21.43%) 272.42 (13.33%)
445.gobmk 340.28 493.47 (45.02%) 427.90 (20.48%) 384.91 (13.12%)
456.hmmer 269.62 270.50 (0.33%) 268.81 (-0.30%) 268.74 (-0.33%)
458.sjeng 403.38 460.58 (14.18%) 435.94 (7.47%) 421.69 (4.54%)
462.libquantum 251.50 265.50 (5.57%) 261.17 (3.70%) 256.72 (2.07%)
464.h264ref 338.29 410.56 (21.37%) 381.11 (11.24%) 355.97 (5.23%)
473.astar 285.58 362.00 (50.11%) 333.91 (14.47%) 311.26 (8.99%)

Average 21.13% 8.96% 4.75%

Performance Overhead in LLVM Approach To evaluate the performance
of Zipper Stack on customized compiler, we run the SPEC CPU 2006 [15] com-
piled by our customized LLVM (with optimization -O2).

Table 4 shows the performance overhead of Zipper Stack in LLVM approach6.
Shadow Stack is reported to cost about 2.5-5% [9,31].Our approach costs 4.75%
∼ 21.13% accroding to the results, depending on how many rounds we perform
in MAC function. It does not cost too much overhead if we use only one round
of AES-NI, although it is still slower than hardware approach. Furthermore, it
costs 21.13% when we perform a standard AES encryption, which is faster than
CCFI [21], since we encrypt less pointers than CCFI.

6.3 Compatibility Test

Here, we test the binary compatibility of Zipper Stack. This test is only valid
for Qemu implementation. In the other two implementations, due to we have
modified the compiler, we can use Zipper Stack as long as we recompile the
source code, so there is no compatibility issue. The purpose of this test is: If
we only modify the Call and Ret instructions in the x86-64 ISA, and use the
compression structure to maintain the stack layout, is it possible to maintain
binary compatibility directly?

We randomly chose 50 programs in Ubuntu (under the path /usr/bin) to
test the compatibility in Qemu. 42 out of 50 programs are compatible with our
mechanism. Most failures are due to the Setjmp/Longjmp, which we have not
supported in Qemu yet. So we think although some issues need to be solved (such
as the setjmp/longjump), Zipper Stack can be used directly on most existing
x86-64 binaries.
6 The performance gain is due to memory caching artifacts and fluctuations.

17

7 Conclusion

In this paper, we proposed Zipper Stack, a novel algorithm of return address
protection, which authenticates all return addresses by a chain structure using
MAC. It minimizes the amount of state requiring direct protection and costs low
performance overhead.

Through our analysis, Zipper Stack is an ideal way to protect return ad-
dresses, and we think it is a better alternative to Shadow Stack. We discussed
various possible attackers and attacks in detail, concluding that an attacker
cannot bypass Zipper Stack and then counterfeit the return addresses. In most
cases, Zipper Stack is more secure than existing methods. The simulation of at-
tacks on Qemu also corroborates the security of Zipper Stack. Our experiment
also evaluated the runtime performance of Zipper Stack, and the results have
shown that the performance loss of Zipper Stack is very low. The performance
overhead with hardware support based on Rocket Core is only 1.86% on average
(versus a hardware-based Shadow Stack costs 2.36%). Thus, the proposed design
is suitable for actual deployment.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow Integrity.
In: Proceedings of the 12th ACM Conference on Computer and Com-
munications Security. pp. 340–353. CCS ’05, ACM, New York, NY, USA
(2005). https://doi.org/10.1145/1102120.1102165, http://doi.acm.org/10.1145/
1102120.1102165

2. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow Integrity Principles,
Implementations, and Applications. ACM Trans. Inf. Syst. Secur. 13(1), 4:1–4:40
(Nov 2009). https://doi.org/10.1145/1609956.1609960, http://doi.acm.org/10.

1145/1609956.1609960
3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function

family main document. Submission to NIST (Round 2) 3(30) (2009)
4. Bittau, A., Belay, A., Mashtizadeh, A., Mazières, D., Boneh, D.: Hacking blind. In:

IEEE Symposium on Security and Privacy (SP), 2014. pp. 227–242. IEEE (2014)
5. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When Good Instructions Go

Bad: Generalizing Return-oriented Programming to RISC. In: Proceedings of the
15th ACM Conference on Computer and Communications Security. pp. 27–38. CCS
’08, ACM, New York, NY, USA (2008). https://doi.org/10.1145/1455770.1455776,
http://doi.acm.org/10.1145/1455770.1455776

6. Chiueh, T.C., Hsu, F.H.: RAD: a compile-time solution to buffer overflow attacks.
In: Proceedings 21st International Conference on Distributed Computing Systems.
pp. 409–417 (Apr 2001). https://doi.org/10.1109/ICDSC.2001.918971

7. Conti, M., Crane, S., Davi, L., Franz, M., Larsen, P., Negro, M., Liebchen, C.,
Qunaibit, M., Sadeghi, A.R.: Losing control: On the effectiveness of control-flow
integrity under stack attacks. In: Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security. pp. 952–963 (2015)

8. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle,
P., Zhang, Q., Hinton, H.: Stackguard: Automatic adaptive detection and pre-
vention of buffer-overflow attacks. In: USENIX Security Symposium. vol. 98, pp.
63–78. San Antonio, TX (1998)

18

https://doi.org/10.1145/1102120.1102165
http://doi.acm.org/10.1145/1102120.1102165
http://doi.acm.org/10.1145/1102120.1102165
https://doi.org/10.1145/1609956.1609960
http://doi.acm.org/10.1145/1609956.1609960
http://doi.acm.org/10.1145/1609956.1609960
https://doi.org/10.1145/1455770.1455776
http://doi.acm.org/10.1145/1455770.1455776
https://doi.org/10.1109/ICDSC.2001.918971

9. Dang, T.H., Maniatis, P., Wagner, D.: The Performance Cost of Shadow Stacks
and Stack Canaries. In: Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security. pp. 555–566. ASIA CCS ’15, ACM, New
York, NY, USA (2015). https://doi.org/10.1145/2714576.2714635, http://doi.

acm.org/10.1145/2714576.2714635

10. Davi, L., Sadeghi, A.R., Winandy, M.: ROPdefender: A Detection Tool
to Defend Against Return-oriented Programming Attacks. In: Proceedings
of the 6th ACM Symposium on Information, Computer and Communi-
cations Security. pp. 40–51. ASIACCS ’11, ACM, New York, NY, USA
(2011). https://doi.org/10.1145/1966913.1966920, http://doi.acm.org/10.1145/
1966913.1966920

11. Evans, I., Long, F., Otgonbaatar, U., Shrobe, H., Rinard, M., Okhravi, H.,
Sidiroglou-Douskos, S.: Control Jujutsu: On the Weaknesses of Fine-Grained Con-
trol Flow Integrity. In: Proceedings of the 22Nd ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 901–913. CCS ’15, ACM, New York, NY,
USA (2015). https://doi.org/10.1145/2810103.2813646, http://doi.acm.org/10.
1145/2810103.2813646

12. Frantzen, M., Shuey, M.: Stackghost: Hardware facilitated stack protection. In:
USENIX Security Symposium. vol. 112 (2001)

13. Gueron, S.: Intel® advanced encryption standard (aes) new instructions set. Intel
Corporation (2010)

14. Henning, J.L.: Spec cpu2000: Measuring cpu performance in the new millennium.
Computer 33(7), 28–35 (2000)

15. Henning, J.L.: SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput.
Archit. News 34(4), 1–17 (Sep 2006). https://doi.org/10.1145/1186736.1186737,
http://doi.acm.org/10.1145/1186736.1186737

16. Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks
against kernel space aslr. In: 2013 IEEE Symposium on Security and Pri-
vacy(SP). vol. 00, pp. 191–205 (05 2013). https://doi.org/10.1109/SP.2013.23,
doi.ieeecomputersociety.org/10.1109/SP.2013.23

17. Intel: Control-flow enforcement technology preview (2016), https:

//software.intel.com/sites/default/files/managed/4d/2a/control-flow-

enforcement-technology-preview.pdf

18. Katoch, V.: Whitepaper on bypassing aslr/dep (2011), https://www.exploit-db.
com/docs/english/17914-bypassing-aslrdep.pdf

19. Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-
pointer integrity. In: OSDI. vol. 14, p. 00000 (2014)

20. Marco-Gisbert, H., Ripoll-Ripoll, I.: Exploiting Linux and PaX ASLRs weaknesses
on 32-and 64-bit systems (2016)

21. Mashtizadeh, A.J., Bittau, A., Boneh, D., Mazières, D.: CCFI: Cryptographi-
cally Enforced Control Flow Integrity. In: Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security. pp. 941–951. CCS ’15,
ACM, New York, NY, USA (2015). https://doi.org/10.1145/2810103.2813676,
http://doi.acm.org/10.1145/2810103.2813676

22. Ozdoganoglu, H., Vijaykumar, T., Brodley, C.E., Kuperman, B.A., Jalote, A.:
Smashguard: A hardware solution to prevent security attacks on the function return
address. IEEE Transactions on Computers 55(10), 1271–1285 (2006)

23. Prasad, M., Chiueh, T.c.: A Binary Rewriting Defense Against Stack based Buffer
Overflow Attacks. In: USENIX Annual Technical Conference, General Track. pp.
211–224 (2003)

19

https://doi.org/10.1145/2714576.2714635
http://doi.acm.org/10.1145/2714576.2714635
http://doi.acm.org/10.1145/2714576.2714635
https://doi.org/10.1145/1966913.1966920
http://doi.acm.org/10.1145/1966913.1966920
http://doi.acm.org/10.1145/1966913.1966920
https://doi.org/10.1145/2810103.2813646
http://doi.acm.org/10.1145/2810103.2813646
http://doi.acm.org/10.1145/2810103.2813646
https://doi.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/1186736.1186737
https://doi.org/10.1109/SP.2013.23
doi.ieeecomputersociety.org/10.1109/SP.2013.23
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://www.exploit-db.com/docs/english/17914-bypassing-aslrdep.pdf
https://www.exploit-db.com/docs/english/17914-bypassing-aslrdep.pdf
https://doi.org/10.1145/2810103.2813676
http://doi.acm.org/10.1145/2810103.2813676

24. Qualcomm Technologies, I.: Pointer authentication on armv8.3 (2017),
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-

authentication-on-armv8-3.pdf
25. Seibert, J., Okhravi, H., Söderström, E.: Information leaks without mem-

ory disclosures: Remote side channel attacks on diversified code. In: Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security. pp. 54–65. CCS ’14, ACM, New York, NY, USA
(2014). https://doi.org/10.1145/2660267.2660309, http://doi.acm.org/10.1145/
2660267.2660309

26. Shacham, H.: The Geometry of Innocent Flesh on the Bone: Return-into-libc With-
out Function Calls (on the x86). In: Proceedings of the 14th ACM Conference
on Computer and Communications Security. pp. 552–561. CCS ’07, ACM, New
York, NY, USA. https://doi.org/10.1145/1315245.1315313, http://doi.acm.org/
10.1145/1315245.1315313

27. Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of the 11th ACM
conference on Computer and communications security. pp. 298–307. ACM (2004)

28. SiFive: Sifive’s freedom platforms (2015), https://github.com/sifive/freedom
29. Sinnadurai, S., Zhao, Q., fai Wong, W.: Transparent runtime shadow stack: Pro-

tection against malicious return address modifications (2008)
30. Strackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., Walter, T.:

Breaking the Memory Secrecy Assumption. In: Proceedings of the Second Euro-
pean Workshop on System Security. pp. 1–8. EUROSEC ’09, ACM, New York, NY,
USA (2009). https://doi.org/10.1145/1519144.1519145, http://doi.acm.org/10.
1145/1519144.1519145

31. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: Eternal War in Memory. Proceed-
ings of the IEEE Symposium on Security and Privacy (SP) pp. 48–62 (2013)

32. Team, P.: PaX address space layout randomization (ASLR) (2003)
33. Team, T.C.: Clang 3.8 documentation safestack (2015), http://clang.llvm.org/

docs/SafeStack.html
34. Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, Ú., Lozano, L.,

Pike, G.: Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM. In:
USENIX Security. vol. 26, pp. 27–40 (2014)

35. UC Berkeley Architecture Research: Rocket chip generator (2012), https://

github.com/freechipsproject/rocket-chip
36. UC Berkeley Architecture Research: The risc-v instruction set architecture (2015),

https://riscv.org/
37. van der Veen, V., Göktas, E., Contag, M., Pawoloski, A., Chen, X., Rawat, S., Bos,

H., Holz, T., Athanasopoulos, E., Giuffrida, C.: A tough call: Mitigating advanced
code-reuse attacks at the binary level. In: 2016 IEEE Symposium on Security and
Privacy (SP). pp. 934–953. IEEE (2016)

38. Wagle, P., Cowan, C., et al.: Stackguard: Simple stack smash protection for gcc.
In: Proceedings of the GCC Developers Summit. pp. 243–255. Citeseer (2003)

39. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., Zou,
W.: Practical control flow integrity and randomization for binary executables. In:
2013 IEEE Symposium on Security and Privacy (SP). pp. 559–573. IEEE (2013)

40. Zhang, J., Hou, R., Fan, J., Liu, K., Zhang, L., McKee, S.A.: RAGuard: A Hard-
ware Based Mechanism for Backward-Edge Control-Flow Integrity. In: Proceedings
of the Computing Frontiers Conference. pp. 27–34. CF’17, ACM, New York, NY,
USA (2017). https://doi.org/10.1145/3075564.3075570, http://doi.acm.org/10.
1145/3075564.3075570

20

https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://doi.org/10.1145/2660267.2660309
http://doi.acm.org/10.1145/2660267.2660309
http://doi.acm.org/10.1145/2660267.2660309
https://doi.org/10.1145/1315245.1315313
http://doi.acm.org/10.1145/1315245.1315313
http://doi.acm.org/10.1145/1315245.1315313
https://github.com/sifive/freedom
https://doi.org/10.1145/1519144.1519145
http://doi.acm.org/10.1145/1519144.1519145
http://doi.acm.org/10.1145/1519144.1519145
http://clang.llvm.org/docs/SafeStack.html
http://clang.llvm.org/docs/SafeStack.html
https://github.com/freechipsproject/rocket-chip
https://github.com/freechipsproject/rocket-chip
https://riscv.org/
https://doi.org/10.1145/3075564.3075570
http://doi.acm.org/10.1145/3075564.3075570
http://doi.acm.org/10.1145/3075564.3075570

	Zipper Stack: Shadow Stacks Without Shadow

