
PrivColl: Practical Privacy-Preserving
Collaborative Machine Learning

Yanjun Zhang, Guangdong Bai (�), Xue Li, Caitlin Curtis,
Chen Chen, and Ryan K L Ko

The University of Queensland, St Lucia, Queensland, Australia
{yanjun.zhang, g.bai, c.curtis, chen.chen, ryan.ko}@uq.edu.au

xueli@itee.uq.edu.au

Abstract. Collaborative learning enables two or more participants, each
with their own training dataset, to collaboratively learn a joint model.
It is desirable that the collaboration should not cause the disclosure
of either the raw datasets of each individual owner or the local model
parameters trained on them. This privacy-preservation requirement has
been approached through differential privacy mechanisms, homomorphic
encryption (HE) and secure multiparty computation (MPC), but exist-
ing attempts may either introduce the loss of model accuracy or imply
significant computational and/or communicational overhead.
In this work, we address this problem with the lightweight additive se-
cret sharing technique. We propose PrivColl, a framework for protect-
ing local data and local models while ensuring the correctness of training
processes. PrivColl employs secret sharing technique for securely evalu-
ating addition operations in a multiparty computation environment, and
achieves practicability by employing only the homomorphic addition op-
erations. We formally prove that it guarantees privacy preservation even
though the majority (n−2 out of n) of participants are corrupted. With
experiments on real-world datasets, we further demonstrate that Priv-
Coll retains high efficiency. It achieves a speedup of more than 45X over
the state-of-the-art MPC-/HE-based schemes for training linear/logistic
regression, and 216X faster for training neural network.

Keywords: privacy · machine learning · collaborative learning.

1 Introduction

The performance of machine learning largely relies on the availability of datasets.
To take advantage of massive data owned by multiple entities, collaborative ma-
chine learning has been proposed to enable two or more data owners to construct
a joint model. One typical scenario demanding collaborative learning is where
the features of a same sample are held by multiple data owners. The collabo-
ration among owners can improve the model accuracy by leveraging additional
features from each other. A real-world example is that a recommender system
can take use of the ratings of a same item among multiple online merchants to
enhance its predictive power.

ar
X

iv
:2

00
7.

06
95

3v
1

 [
cs

.C
R

]
 1

4
Ju

l 2
02

0

2 Y. Zhang et al.

To address the privacy concerns arising from collaborative learning, many
studies [7, 12, 40, 44] have been proposed to provide data locality by distribut-
ing learning algorithms onto data owners such that the data can be confined
within their owners. Despite this, their learning processes still entail sharing
locally trained models, in order to synthesize the final models. However these
local models are subject to information leakage. For example, model-inversion
attacks [10, 30] are able to restore training data from them. In addition, in the
scenarios where the model itself represents intellectual property, e.g., in financial
market systems, it is an essential requirement for the local models to be kept
confidential [32].

To provide a supplementary, i.e., privacy-preserving synthesis of the local
models, differential privacy mechanisms and cryptographic mechanisms may be
employed. The former [1, 8, 19, 23, 37, 38, 48] usually entails adding noise on the
model parameters, causing loss in the accuracy of the final models. The crypto-
graphic mechanisms such as homomorphic encryption (HE) [7,29,36] and secure
multiparty computation (MPC) [5,11,12,28,31] are able to yield identical models
as those trained on plaintext data, but are known to be limited by the significant
computational or communicational overheads.

This work focuses on the practicability of the cryptographic solutions. We
propose a lightweight framework named PrivColl for privacy-preserving col-
laborative learning in the distributed feature scenario. PrivColl adopts the
two-layer architecture commonly used in previous privacy-preserving collabora-
tive learning frameworks [23, 31, 40]. It has a local node layer consisting of par-
ticipating data owners, and an aggregation node (which can be untrustworthy).
The main strategy of PrivColl is to dispense the homomorphic multiplication
operations and non-linear functions on ciphertext, as they are far more costly in
computation and communication than the addition operations [3, 13, 15, 42]. To
this end, we redesign the workflow of collaborative learning, so that it employs
only the homomorphic addition operations provided by additive secret shar-
ing scheme [4] for synthesizing local models and intermediate outcomes. The
computation that is carried out by the aggregation mode uses only the sum of
the intermediate results that are generated by the local nodes (detailed in Sec-
tion 3.3). As such, PrivColl achieves significant cost savings, in comparison
with state-of-the-art cryptographic solutions.

The redesigned workflow also ensures that both the raw data and local mod-
els are always kept with their owners. We formally prove PrivColl preserves
privacy in such a way that the honest-but-curious participants, who have access
to the sum of the intermediate outcomes produced by the local nodes and ad-
ditional knowledge learned from the training iterations, are unlikely (i.e., with
a negligible probability ε) to reveal the raw training data or the local model
parameters of other participants.

Notably, our new collaborative learning workflow in PrivColl introduces
no sacrifice to the accuracy of the models, and also supports a wide range of
machine learning algorithms as previous work does [1, 23, 31]. Intuitively, our
solution makes use of the chain rules in calculus to decompose gradient descent

PrivColl: Practical Privacy-Preserving Collaborative Machine Learning 3

optimization into computational primitives, and to distribute them to the local
nodes and the aggregation node respectively. When they collaborate together,
these primitives can be recombined to achieve the correctness of learning. We
prove that such correctness is guaranteed for any algorithm that uses gradient
descent for optimization, including but not limited to linear regression, logistic
regression, and a variety of neural networks.
Contributions. In general, our contributions can be summarized as follows.

– A Novel Privacy-preserving Collaborative Framework. We propose
a novel framework PrivColl for collaborative learning with distributed fea-
tures. It preserves privacy while enabling a wide range of machine learning
algorithms and achieving high computation efficiency. Not only does Priv-
Coll achieve the data locality as previous work does, but it also keeps the
local models confidential.

– Provable Privacy Preservation and Correctness Guarantee. We prove
the privacy preservation of PrivColl, demonstrating a negligible probabil-
ity of corrupted parties revealing either the original data or the trained
parameters from other honest parties. We also prove that PrivColl en-
sures the learned model is identical to that in the traditional non-distributed
framework.

– Experimental Evaluations. We conduct experiments on real datasets,
showing that PrivColl achieves a significant improvement of efficiency over
the state-of-the-art cryptographic solutions based on MPC and HE. For ex-
ample, PrivColl achieves around 22.5 minutes for a two-hidden-layer neu-
ral network to process all samples in the MNIST dataset [27], while it takes
more than 81 hours with a state-of-the-art MPC protocol SecureML [31].

2 Background

In this section, we introduce the background knowledge that is necessary to
understand our framework.

2.1 Gradient Descent Optimization

Gradient descent is by far the most commonly used optimization strategy among
various machine learning and deep learning algorithms. It is used to find the
values of coefficients that minimize a cost function as far as possible. Given a
defined cost function J , the coefficient matrix W is derived by the optimization
arg minW J , and is updated as:

W := W − α ∂J

∂W
(1)

Given a particular training dataset X and a label matrix y, the cost function
J can be defined as J(σ(XW), y,W), where σ is determined by the learning
model. For example, in logistic regression, σ is usually a sigmoid function 1/(1+

4 Y. Zhang et al.

e−z), while in neural network, σ is a composite function that is known as forward
propagation. According to the chain rule in calculus, the gradient with respect
to W is computed as ∂J

∂σ
∂σ

∂XW
∂XW
∂W + τ , where τ is the gradient with respect

to the regularization term, which is independent to X. Let ∆ be ∂J
∂σ

∂σ
∂XW , and

∂XW
∂W equals to X, then the gradient with respect to W can be written as:

∂J

∂W
= ∆X + τ. (2)

As such, we can decompose the gradient descent optimization into ∆ , X and
τ , in which ∆ is a function of XW . This provides an algorithmic foundation for
PrivColl’s distribution of learning algorithms.

2.2 Additive Secret Sharing Scheme

Secret sharing schemes aim to securely distribute secret values amongst a group
of participants. PrivColl employs the secret sharing scheme proposed by [4],
which uses additive sharing over Z232 . In this scheme, a secret value srt is split
to s shares E1

srt, ..., E
s
srt ∈ Z232 such that

E1
srt + E2

srt + ...+ Essrt ≡ srt mod 232, (3)

and any s − 1 elements Ei1srt, ..., E
is−1

srt are uniformly distributed. This prevents
any participant who has part of the shares from deriving the value of srt, unless
all participants join their shares.

In addition, the scheme has a homomorphic property that allows efficient and
secure addition on a set of secret values srt1, ..., srts held by corresponding par-
ticipants S1, ..., Ss. To do this, each participant Si executes a randomised sharing
algorithm Shr(srti, S) to split its secret srti into shares E1

srti , ..., E
s
srti , and dis-

tributes each Ejsrti to the participant Sj . Then, each Si locally adds the shares
it holds, Eisrt1 , ..., E

i
srts , to produce

∑s
j=1E

i
srtj (denoted by Ei for brevity). Af-

ter that, a reconstruction algorithm Rec({(Ei, Si)}Si∈S), which takes Ei from
each participant and add them together, can be executed by an aggregator to
reconstruct the

∑s
i=1 srti without revealing any secret addends srti.

3 Design of PrivColl

3.1 Scope and Threat Model

The involved parties in PrivColl are a set of local nodes (i.e., data owners)
S1, ..., Ss and an aggregation node Agg. Each local node holds part of features of
the training samples, denoted by X l (l ∈ {1, ..., s}), and the corresponding local
model W l (l ∈ {1, ..., s}) trained on X l. Each X l ∈ Rm×dl is a m × dl matrix
representing m training samples with dl features, and W l ∈ Rdl×k is a matrix
of coefficients, where k is the number of output classes. In PrivColl, m and k
are public and known by every party, and dl is private and only known by the

PrivColl: Practical Privacy-Preserving Collaborative Machine Learning 5

corresponding data owner Sl. We use X to denote the vertical concatenation of
the local training datasets X1, ..., Xs. Then we know that X is a m× n matrix
where n =

∑s
l=1 dl (i.e., the total number of features in X). Since dl is private,

n is unknown unless all of the local nodes join their views.
PrivColl aims to defend against an honest-but-curious adversary A, who

follows the collaboration protocols and training procedures, but is intending to
obtain the datasets of other local nodes (i.e., X l) and/or the model parameters
trained out of them (i.e., W l). The adversary may control Agg, and t out of s
local nodes. Here, we conservatively assume t < s−1, which implies that at least
two local nodes need to be out of the adversary’s control, as s − 1 comprised
local nodes who has the sum of their shares, colluding with Agg who has the
sum of all shares, will be able to obtain the share of the remaining node by a
simple subtraction (detailed in Section 4).

3.2 Definitions of Privacy Preservation and Correctness

Keeping local data/model private and providing functional correctness are the
main properties PrivColl aims to achieve. Below we present the definitions of
these two properties.

Definition 1. (ε-privacy) A mechanism preserves ε-privacy if the probability
for a probabilistic polynomial-time (PPT) adversary to derive X l or W l of any
benign node Sl based on its knowledge is not greater than ε.

Definition 2. (Correctness) Given a function F that takes as input a train-
ing dataset X, and its distributed version F ′ that takes as inputs X’s vertical
partitions X1, ..., Xs, we say F ′ is correct if F ′({(Sl, X l), Agg}Sl∈S) = F(X).

3.3 Workflow of PrivColl

Figure 1 illustrates the end-to-end workflow of PrivColl, which is divided into
the following steps.

Initialization: Each local node Sl holds its own training dataset X l ∈
Rm×dl , and randomly initializes its coefficient matrix W l ∈ Rdl×k.

Step 1: In each iteration of gradient descent, each Sl multiplies X l by W l

locally, resulting in a X lW l ∈ Rm×k. The value of dl, i.e., the number of features
in X l, is removed by such a matrix multiplication.

Step 2: Each Sl executes the sharing algorithm Shr to split X lW l into s
shares using the additive secret sharing scheme.

{(Si, EiXlW l)}Si∈S ← Shr(X lW l, S), (4)

in which Shr takes as input a secret X lW l and a set S of local nodes, and
produces a set of shares EiXlW l(i ∈ {1, ..., s}), each of which is distributed to a
different Si ∈ S. Then, each Sl calculates the sum of all shares it receives, and
gets El =

∑s
j=1E

l
XjW j .

6 Y. Zhang et al.

E1XsWs EsXsWs…

Aggregation
node

… …

①

①

⑤

⑤

Local node 1

Local node s

Data s: Xs

Model Parameter s: Ws

②

+

③

EsX1W1 EsXsWs…

Additive secret-sharing
scheme

Data 1: X1

Model Parameter 1: W1 E1X1W1 E1XsWs…

E1X1W1 EsX1W1…

EsX1W1

E1XsWs

④

E1

Es

Compute

…
…

Fig. 1: The end-to-end workflow of the PrivColl

Step 3: Agg collects all El from local nodes and add them together. Since

s∑
l=1

El =

s∑
l=1

s∑
j=1

ElXjW j =

s∑
j=1

s∑
l=1

ElXjW j =

s∑
j=1

XjW j , (5)

this addition reconstructs the homomorphic addition resultXW (equals
s∑
l=1

X lW l).

Step 4: Agg computes ∆ = ∂J
∂σ

∂σ
∂XW (c.f., Equation 2), and sends ∆ back to

the local nodes.
Step 5: With the received ∆, each Sl updates its local coefficient matrix W l.

W l ←W l − α(∆X l + τ l) (6)

Step 1-5 are repeated for the next training iteration until convergence.

4 Privacy Preservation Analysis

In this section, we analyze the privacy preservation of PrivColl’s learning
process. To this end, we first investigate the overall knowledge that can be learned
by an adversary from the training iterations (Section 4.2). Then we prove that
the knowledge is limited such that the desired ε-privacy (Definition 1) is achieved
with a negligible ε (Section 4.3).

4.1 Preliminaries

We start with the following lemma that is soon used in our proof.

PrivColl: Practical Privacy-Preserving Collaborative Machine Learning 7

Lemma 1. Consider a positive (semi-)definite matrix A that is obtained as the
product of a real number matrix B by its transpose BT

A = BBT , (7)

where B is of rank r. Without knowing the number of columns of B, the proba-
bility of solving the B given A, denoted as P (B|A), is ≤ (r!)−1.

Proof. Since the matrix A is positive (semi-)definite, there exists an eigen-
decomposition such that

A = UΛUT , (8)

where U denotes a matrix of eigenvectors of A (each column of U is an eigen-
vector of A), and Λ denotes a diagonal matrix whose diagonal elements are the
eigenvalues. For a positive (semi-)definite matrix, all the eigenvalues are non-
negative. A different ordering of the eigenvector columns results in a different U
and a corresponding Λ [16].

With the eigen-decomposition, B can be constructed by B = UΛ
1
2 , where

Λ
1
2 has the square roots of eigenvalues as its diagonal elements, and all its re-

maining values are zeros. Each eigen-decomposition leads to a different U and
a corresponding Λ, resulting in a unique solution of B. A matrix B of rank r
has r non-zero eigenvalues and thus there are r! different possible orderings of
eigenvector columns, implying r! different Us and the corresponding Λs. Conse-
quently, there are r! different possible solutions of computing B, which gives the
probability of solving B given A with eigen-decomposition Peigen(B|A) = (r!)−1.

In addition, without the knowledge of the number of columns in B, there
are more than r! possible solutions of solving B. This is because from the eigen-
decomposition construction, B’s columns are orthogonal. In general, the ma-
trix B need not have orthogonal columns (it can be rectangular) [22]. Thus,
P (B|A) ≤ (r!)−1.

4.2 Party Knowledge

We define the party knowledge as the overall knowledge that can be learned by
adversary parties. It includes the parties’ own inputs, and the additional knowl-
edge that can be inferred from the training iterations. We prove that the party
knowledge in PrivColl is bounded within a certain range. In particular, we
demonstrate that the overall party knowledge of adversary party I in PrivColl
is a set of {X l′ |l′∈I ,W l′ |l′∈I , XW,

∑
X lW l |l∈S\I ,

∑
X l(X l)T |l∈S\I , XXT },

where {X l′ |l′∈I ,W l′ |l′∈I , XW} are the adversary’s own input in the workflow,
and {

∑
X lW l |l∈S\I ,

∑
X l(X l)T |l∈S\I , XXT } are the additional information

that can be inferred from the training iterations. The party knowledge we derive
in this Section will be used in Section 4.3 to prove the privacy preservation of
PrivColl.

We use the simulation paradigm (also known as the real/ideal model) [15]
to prove such a bound of party knowledge. The simulation paradigm compares
what an adversary can do in a real protocol execution REAL to what it can do

8 Y. Zhang et al.

in an ideal setting with a trusted functionality (simulation) SIM [15]. Formally,
the protocol P securely computes a functionality FP if for every adversary in
REAL, there exists an adversary in SIM , such that the view of the adversary
from REAL is indistinguishable from the view of the adversary from SIM . A
perfect indistinguishability [6] between the view of REAL and SIM guarantees
that the adversary, without error probability, can learn nothing more than their
own inputs and the information required by SIM for the simulation.

We introduce some notations used in our proof. We use XS′ = {X l|Sl ∈ S′}
to indicate the inputs of any subset of local nodes S′ ⊆ S. Given any subset
I0 ⊆ S of the parties without the knowledge of XW , and subset I1 ⊆ S ∪{Agg}
of the parties with the knowledge of XW , let REAL(XS , XW,S, t,P, I) denote
the combined views of all parties in I = I0 ∪ I1 from the execution of a real
protocol P, where t is the adversary threshold (recall that t < s − 1). Let
SIM(XI , Z, S, t,FP , I) denote the views of I from an ideal execution, where Z
is the information required by SIM for the simulation. In other words, the Z
indicates the party knowledge that the adversary can and only can learn other
than their own inputs.

Theorem 1. (Party Knowledge) The simulator SIM(XI , Z, S, t,FP , I) is
perfectly indistinguishable from REAL with respect to their outputs, namely

REAL(XS , XW,S, t,P, I) ≡ SIM(XI , Z, S, t,FP , I)

if and only if

Z = {z1 =
∑

X lW l |l∈S\I , z2 =
∑

X l(X l)T |l∈S\I , z3 = XXT }.

Proof. We define the simulator through each of the ith training iteration as:

– SIM0: This is the simulator for the Initialization. In the step of initializa-
tion, the view of parties in I0∪I1 does not depend on the inputs of the parties
not in I0 ∪ I1. Therefore, instead of sending the actual {X lW l(0)}l∈S\{I0∪I1}
of the parties S\{I0∪I1} to the aggregation node, the simulator can produce
a simulation by running the parties S \ {I0 ∪ I1} on a pseudorandom vector
µl(0) in Rm as input, and then output the same pseudorandom vector to the
aggregation node. Since the model parameter W l is also randomized in the
step of initialization, the pseudorandom vectors for the inputs of all honest
parties S \{I0∪I1}, and the joint view of parties in {I0∪I1} will be identical
to that in REAL

{µl(0) |l∈S\{I0∪I1}, X
l′W l′(0) |l′∈{I0∪I1}} ≡ {X

SWS(0)}.

– SIMi, i ≥ 1: This is the simulator for the ith training iteration (i ≥ 1). The
simulator computes ∆(i) = f(Σ(i)), where the function f is determined by
the learning model. For example, in the linear regression, f(x) = x, while in
logistic regression, f(x) = 1/(1 + e−x).

PrivColl: Practical Privacy-Preserving Collaborative Machine Learning 9

We respectively consider the simulator for I0, I1. First, with respect to I0,
the simulator computes Σ(i) as

Σ(i) =
∑

µl(i) |l∈S\I0 +
∑

X l′W l′(i) |l′∈I0 −y,

where µl(i) is computed by the result from the previous iteration as

µl(i) = z
l(i−1)
1 − α

m
zl2∆

(i−1) |l∈S\I0 .

Therefore, ∑
µl(i) |l∈S\I0=

∑
z
l(i−1)
1 − α

m

∑
zl2∆

(i−1) |l∈S\I0 .

Note X l′W l′(i) is also computed by the result from the previous iteration,
and∑

X l′W l′(i) |l′∈I0=
∑

X l′W l′(i−1) − α

m

∑
X l′(X l′)T∆(i−1) |l′∈I0 .

Then, the Σ(i) can be written as

Σ(i) =
∑

z
l(i−1)
1 |l∈S\I0 +

∑
X l′W l′(i−1) |l′∈I0

− α

m
(
∑

zl2∆
(i−1) |l∈S\I0 +

∑
X l′(X l′)T∆(i−1) |l′∈I0)− y.

Note that, in REAL, the output of Σ(i) by S is∑
XSWS(i) − y =

∑
XSWS(i−1) − α

m

∑
Xs(Xs)T∆(i−1) − y.

Thus, {
∑
z
l(i−1)
1 |l∈S\I0 ,

∑
zl2 |l∈S\I0 ,

∑
X l′W l′(i−1) |l′∈I0 ,

∑
X l′(X l′)T |l′∈I0}

which is the joint view of all honest parties S\I0 and parties in I0 will be per-
fectly indistinguishable to {

∑
XSWS(i−1),

∑
Xs(Xs)T } which is the output

in REAL.
Next, we consider the simulator for I1. With respect to I1, we let the simu-
lator compute Σ(i) as

Σ(i) = µ(i) − y,
where µ(i) is computed by the result from the previous iteration as

µ(i) = XW (i−1) − α

m
z3∆

(i−1).

Then, the Σ(i) can be written as

Σ(i) = XW (i−1) − α

m
z3∆

(i−1) − y,

Note that, in REAL, the output of Σ(i) by S is

XW (i) − y = XW (i−1) − α

m
XXT∆(i−1) − y.

Thus, the joint view of all parties in SIM with knowledge of z3 will be per-
fectly indistinguishable to {XW (i−1), XXT } which is the output in REAL.

10 Y. Zhang et al.

All in all, the output of the simulator SIM of each training iteration is
perfectly indistinguishable from the output of REAL. For the simulator with

respect to I = I0 ∪ I1, knowledge of z1 =
∑
z
l(i−1)
1 |l∈S\I=

∑
X lW l |l∈S\I ,

z2 =
∑
zl2 |l∈S\I=

∑
X l(X l)T |l∈S\I and z3 = XXT is sufficient, completing

the proof.

4.3 Privacy Preservation Guarantee

With lemma introduced in Section 4.1, and party knowledge discussed in Section
4.2, we give our theorem of privacy preservation guarantee.

Theorem 2. Let I denote the adversary party with party knowledge {X l′ |l′∈I,
W l′ |l′∈I , XW,

∑
X lW l |l∈S\I ,

∑
X l(X l)T |l∈S\I , XXT }. Let XH denote the

vertical concatenation of {X l |l∈S\I}, which is the concatenation of honest local
nodes’ training datasets. Let r denote the rank of XH . PrivColl preserves ε-
privacy against adversary party I on the training dataset X ∈ Rm×n, where
ε ≤ (r!)−1.

Proof. We give some sketches here.
We start with the party knowledge XXT . In PrivColl, n (i.e. the number

of column of X) is unknown given the adversary threshold t < s−1. In addition,
the rank of X, denoted as R, is > r. Invoking Lemma 1 gives that the probability
of solving the X of rank R given XXT is ≤ (R!)−1 < (r!)−1. Then we combine
the party knowledge XW (X ∈ Rm×n, and W ∈ Rn×k). From Theorem 1, XXT

is the only information required by SIM with respect to I1 with the knowledge
of XW . In other words, combining the XW gives no more information other
than XXT . Therefore, given an unknown n, and the probability of solving the
X < (r!)−1, we have the probability of solving W is also < (r!)−1.

Then we continue to combine the party knowledge of {
∑
X lW l |l∈S\I ,∑

X l(X l)T |l∈S\I}. They are the sum of real number matrices and the sum of
non-negative real number matrices respectively. Given the adversary threshold
t < s−1, which means the number of honest local nodes (i.e. |l|l∈S\I) is ≥ 2, we

have a negligible probability to derive any X lW l or X l(X l)T from their sum.
In addition, dl (the number of columns of X l) is also unknown to I. Therefore,
with the probability of solving the X < (r!)−1, the probability of solving either
X l or W l is also < (r!)−1.

At last, we combine the party knowledge of {X l′ |l′∈I ,W l′ |l′∈I}. First, they
are the input of I, which are independent of {

∑
X lW l |l∈S\I ,

∑
X l(X l)T |l∈S\I}.

Next, we combine them into X(X)T , which will give the adversary the problem
of solving XH(XH)T . As each of dl |l∈S\I is unknown to I, we have the number of
column ofXH is also unknown to I. Thus, with Lemma 1, we have the probability
of solving the XH of rank r is ≤ (r!)−1. Similarly, combing {X l′ |l′∈I ,W l′ |l′∈I}
to XW will also give the probability of solving WH ≤ (r!)−1.

Thus, PrivColl preserves ε-privacy against adversary parties I on X, and
ε ≤ (r!)−1.

PrivColl: Practical Privacy-Preserving Collaborative Machine Learning 11

With Theorem 2, we demonstrate that, with a sufficient rank of the training
dataset of honest parties, e.g. ≥ 35, which is common in real-world datasets,
PrivColl achieves 10−40-privacy.

5 Correctness Analysis and Case Study

In this section, we first prove the correctness of PrivColl when distributing
learning algorithms that are based on gradient descent optimization. Then we
use a recurrent neural network as a case study to illustrate the collaborative
learning process in PrivColl.

5.1 Correctness of PrivColl’s Gradient Descent Optimization

The following theorem demonstrates that if a non-distributed gradient descent
optimization algorithm taking X as input, denoted by FGD(X), converges to a
local/global minima η, then executing PrivColl with the same hyper settings
(such as cost function, step size, and model structure) on X1, ..., Xs, denoted by
F ′GD({(Sl, X l), Agg}Sl∈S), also converges to η.

Theorem 3. PrivColl’s distributed algorithm of solving gradient descent op-
timization F ′GD({(Sl, X l), Agg}Sl∈S) is correct.

Proof. Let FGD(X) = η denote the convergence of FGD(X) to the local/global
minima η. Let Wi denote the model parameters of FGD at ith training iteration.
Let W ′i = |{W l

i }|l∈{1,..,s} denote the vertical concatenation on {W l
i }l∈{1,..,s},

i.e., the model parameters of F ′GD at ith training iteration.
In FGD, the ith (i ≥ 1) training iteration update Wi such that

Wi = Wi−1 − α
∂J

∂W
= Wi−1 − α

∂J

∂(XWi−1)

∂XWi−1

∂Wi−1

= Wi−1 − α
∂J

∂(XWi−1)
X.

(9)

In F ′GD, each node Sl updates its local W l
i in

W l
i = W l

i−1 − α∆X l = W l
i−1 − α

∂J

∂(XW ′i−1)

∂X lW l
i−1

∂W l
i−1

= W l
i−1 − α

∂J

∂(XW ′i−1)
X l.

Since W ′i = |{W l
i }|l∈{1,..,s}, and X = |{X l}|l∈{1,..,s}, we have in F ′GD that

W ′i = |{(W l
i−1 − α

∂J

∂(XW ′i−1)
X l)}|l∈{1,..,s} = W ′i−1 − α

∂J

∂(XW ′i−1)
X. (10)

Comparing Equation 9 and 10, we can find that Wi and W ′i are updated using the
same equation. Therefore, with FGD(X) = η, the gradient descent guarantees
F ′GD({(Sl, X l), Agg}Sl∈S) also converges to η.

Thus, F ′GD({(Sl, X l), Agg}Sl∈S) = FGD(X).

12 Y. Zhang et al.

5.2 Case Study

Figure 2 shows an example of a two-layer feed-forward recurrent neural network
(RNN). Every neural layer is attached with a time subscript c. The weight matrix
W maps the input vector X(c) to the hidden layer h(c). The weight matrix V
propagates the hidden layer to the output layer ŷ(c). The weight matrix U maps
the previous hidden layer to the current one.

……

……

……

……

……

……

……

……

……

h1(c-1) hdh(c-1) h1(c) hdh(c) h1(c+1) hdh(c+1)

x1(c-1) xn(c-1) x1(c) xn(c) x1(c+1) xn(c+1)

1(c-1)𝑦" dy
(c-1)𝑦" 1 (c)𝑦" dy

(c)𝑦" 1(c+1)𝑦" dy
(c+1)𝑦"

Fig. 2: An example of recurrent neural network

Original algorithm. Recall that the original non-distributed version of the
RNN is divided into the forward propagation and backward propagation through
time. First, in the forward propagation, the output of the hidden layer propa-
gated from the input layer is calculated as

Z
(c)
h = X(c)W + Uh(c−1) + bh

h(c) = σ1(Z
(c)
h)

(11)

The output of the output layer propagated from hidden layer is calculated as

Z
(c)
y = V h(c) + by

ŷ(c) = σ2(Z
(c)
y)

(12)

Then, the cost function
T∑
c=0

J(ŷ(c), y(c)), and the coefficient matrices W,U, V are

updated using the backward propagation through time.

The gradients of J (c) with respect to V is calculated as ∂J(c)

∂V = ∂J(c)

∂ŷ(c)
∂ŷ(c)

∂Z
(c)
y

∂Z(c)
y

∂V .

We let ∂J(c)

∂ŷ(c)
= δ

(c)
loss, δ

(c)
ŷ = σ′2(Z

(c)
y). The gradient of J (c) with respect to V can

be written as:
∂J (c)

∂V
= [δ

(c)
loss ◦ δ

(c)
ŷ](h(c))T . (13)

The gradients of J (c) with respect to U is calculated as ∂J(c)

∂U = ∂J(c)

∂ŷ(c)
∂ŷ(c)

∂h(c)
∂h(c)

∂U ,

where ∂J(c)

∂ŷ(c)
∂ŷ(c)

∂h(c) = V T [δ
(c)
loss ◦ δ

(c)
ŷ], and

∂h(c)

∂U
=

c∑
k=0

∂h(c)

∂h(k)
∂+h(k)

∂U
=

c∑
k=0

(c∏
i=k+1

σ′1(Z
(i)
h)U

)
σ′1(Z

(k)
h)h(k−1).

PrivColl: Practical Privacy-Preserving Collaborative Machine Learning 13

Let δ
(c)
h = σ′1(Z

(c)
h), then the gradient of J (c) with respect to U is

∂J (c)

∂U
= V T δ

(c)
loss ◦ δ

(c)
ŷ

(c∑
k=0

(c∏
i=k+1

δ
(i)
h U

)
δ
(k)
h h(k−1)

)
. (14)

Similarly, the gradients of J (c) with respect to W is calculated as:

∂J (c)

∂W
= V T δ

(c)
loss ◦ δ

(c)
ŷ

(c∑
k=0

(c∏
i=k+1

δ
(i)
h U

)
δ
(k)
h X(k)

)
. (15)

Algorithm 1 Privacy Preserving Collaborative Recurrent Neural Network

1: Input: Local training data Xl(c) (l = [1, ..., s], c = [0, ..., T]),
2: learning rate α
3: Output: Model parameters W l (l = [1, ..., s]), U, V
4: Initialize: Randomize W l (l = [1, ..., s]), U, V
5: repeat
6: for all Sl ∈ S do in parallel
7: Sl : Xl(c)W l, c = [0, ..., T]
8: Sl : srt(c) ← Xl(c)W l, c = [0, ..., T]

9: {(Sl, E
(c)
srt)}Sl∈S ← Shr(srt(c), S)

10: end for
11: X(c)W ← Rec({(Sl, E

(c)
srt)}Sl∈S)

12: A : Z
(c)
h ← X(c)W + Uh(c−1) + bh, h(c) ← σ1(Z

(c)
h)

13: A : Z
(c)
y ← V h(c) + by, ŷ(c) = σ2(Z

(c)
y)

14: A : δ
(c)
loss ←

∂J(c)

∂ŷ(c) , δ
(c)
ŷ ← σ′2(Z

(c)
y), δ

(c)
h = σ′1(Z

(c)
h)

15: A : ∂J(c)

∂V
← [δ

(c)
loss ◦ δ

(c)
ŷ](h(c))T

16: A : ∂J(c)

∂U
← V T δ

(c)
loss ◦ δ

(c)
ŷ

(
c∑

k=0

(c∏
i=k+1

δ
(i)
h U

)
δ
(k)
h h(k−1)

)
17: A : V ← V − α

T∑
c=0

∂J(c)

∂V

18: A : U ← U − α
T∑

c=0

∂J(c)

∂U

19: for all Sl ∈ S do in parallel

20: ∂J(c)

∂W l = V T δ
(c)
loss ◦ δ

(c)
ŷ

(
c∑

k=0

(c∏
i=k+1

δ
(i)
h U

)
δ
(k)
h Xl(k)

)
21: W l ←W l − α

T∑
c=0

∂J(c)

∂W l

22: end for
23: until Convergence

PrivColl algorithm. In PrivColl, each local node keeps X l(c), c = [0, ..., T],
and maintains the coefficient matrix W l locally. The aggregation node maintains
coefficient matrices U, V . Similar to its original non-distributed counterpart, the

14 Y. Zhang et al.

training process is divided into the forward propagation and backward propaga-
tion through time. Below we briefly outline these steps and the detailed algorithm
is given by Algorithm 1.

In the forward propagation, local nodes compute X l(c)W l, c = [0, ..., T] re-

spectively (line 7) (line number in Algorithm 1), and X(c)W =
s∑
l=1

X l(c)W l is

calculated using the secret-sharing scheme (line 8 to line 11). The aggregation

node then computes Z
(c)
h , h(c), Z

(c)
y , ŷ(c) using Equation 11 and 12 (line 12 and

line 13).
In the backward propagation through time, for each J (c) at time t, the ag-

gregation node computes δ
(c)
loss, δ

(c)
ŷ , δ

(k)
h , k = [0, ..., t], and sends δ

(c)
loss, δ

(c)
ŷ , δ

(k)
h to

local nodes (line 14). Then the aggregation node computes the gradients of J (c)

with respect to V,U using Equation 13 and 14 (line 15 and line 16), and updates
U, V (line 17 and line 18). The local nodes compute the gradients of J (c) with
respect to W l using Equation 16, and update W l respectively (line 19 to line
22).

∂J (c)

∂W l
= V T δ

(c)
loss ◦ δ

(c)
ŷ

(c∑
k=0

(c∏
i=k+1

δ
(i)
h U

)
δ
(k)
h X l(k)

)
. (16)

6 Performance Evaluation

We implement PrivColl in C++. It uses the Eigen library [17] to handle matrix
operations, and uses ZeroMQ library [21] to implement the distributed messag-
ing. The experiments are executed on four Amazon EC2 c4.8xlarge machines
with 60GB of RAM each, three of which act as local nodes and the other acts
as the aggregation node. To simulate the real-world scenarios, we execute Priv-
Coll on both LAN and WAN network settings. In the LAN setting, machines
are hosted in a same region, and the average network bandwidth is 1GB/s. In
the WAN setting, we host these machines in different continents. The average
network latency (one-way) is 137.7ms, and the average network throughput is
9.27MB/s. We collect 10 runs for each data point in the results and report the
average. We use the MNIST dataset [27], and duplicate its samples when its size
is less than the sample size m (m ≥ 60, 000).

We take non-private machine learning which trains on the concatenated
dataset as the baseline, and compare with MZ17 [31], which is the state-of-the-
art cryptographic solution for privacy preserving machine learning. It is based
on oblivious transfer (MZ17-OT) and linearly homomorphic encryption (MZ17-
LHE). As shown in Fig. 3, PrivColl achieves significant efficiency improvement
over MZ17, and due to parallelization in the computing of the local nodes, Priv-
Coll also outperforms the non-private baselines in the LAN network setting.

Linear regression and logistic regression. We use mini-batch stochastic
gradient descent (SGD) for training the linear regression and logistic regression.
We set the batch size |B| = 40 with 4 sample sizes (1, 000-100, 000) in the linear
regression and logistic regression.

PrivColl: Practical Privacy-Preserving Collaborative Machine Learning 15

In the LAN setting, PrivColl achieves around 45x faster than MZ17-OT.
It takes 13.11s for linear regression (Figure 3a) and 12.73s for logistic regression
(Figure 3b) with sample size m = 100, 000, while in MZ17-OT, 594.95s and
605.95s are reported respectively. PrivColl is also faster than the baseline,
which takes 17.20s and 17.42s for linear/logistic regression respectively. In the
WAN setting, PrivColl is around 9x faster than MZ17-LHE. It takes 1408.75s
for linear regression (Figure 3d) and 1424.94s for logistic regression (Figure
3e) with sample size m = 100, 000, while in MZ17-LHE, it takes 12841.2s and
13441.2s respectively with the same sample size. It is worth mentioning that
in MZ17, an MPC-friendly alternative function is specifically designed to re-
place non-linear sigmoid functions for training logistic regression, while in our
framework, the non-linear function is used as usual. To further break down the
overhead to computation and communication, we summarize the results of linear
regression and logistic regression on other sample sizes in Table 1.

1000 10,000 60,000 100,000
Sample Size

0

2

4

6

8

Lo
g

Ti
m

e(
s)

MZ17-LHE
MZ17-OT
Non-private
PrivColl

(a) Linear Regression LAN

1000 10,000 60,000 100,000
Sample Size

0

2

4

6

8

Lo
g

Ti
m

e(
s)

MZ17-LHE
MZ17-OT
Non-private
PrivColl

(b) Logistic Regression LAN

1000 10,000 60,000 100,000
Sample Size

4

6

8

10

12

Lo
g

Ti
m

e(
s)

MZ17-OT
Non-private
PrivColl

(c) Neural Network LAN

1000 10,000 60,000 100,000
Sample Size

0

5000

10000

15000

20000

25000

30000

Ti
m

e(
s)

MZ17-LHE
MZ17-OT
Non-private
PrivColl

(d) Linear Regression WAN

1000 10,000 60,000 100,000
Sample Size

0

5000

10000

15000

20000

25000

30000

Ti
m

e(
s)

MZ17-LHE
MZ17-OT
Non-private
PrivColl

(e) Logistic Regression WAN

1000 10,000 60,000 100,000
Sample Size

0

50000

100000

150000

200000

250000

300000

Ti
m

e(
s)

MZ17-OT-LAN
Non-private
PrivColl

(f) Neural Network WAN

Fig. 3: Efficiency comparison. a-c) the natural logarithm of running time(s) as
the sample size increases. d-f) running time(s) as the sample size increases.

Neural Network. We implement a fully connected neural network in Priv-
Coll. It has two hidden layers with 128 neurons in each layer (same as MZ17)
and takes a sigmoid function as the activation function. For training the neural
network, we set the batch size |B| = 150 with 4 sample sizes (1, 000-60, 000).

In the LAN network setting, PrivColl achieves 1352.87s (around 22.5
minutes) (Figure 3c) with sample size m = 60, 000, while in MZ17, it takes

16 Y. Zhang et al.

Table 1: PrivColl’s Overhead Breakdown for Linear/Logistic Regression
Linear Regression Logistic Regression

Computation
Communication Total

Computation
Communication Total

LAN WAN LAN WAN LAN WAN LAN WAN

m=1,000 0.445s 0.016s 103.28s 0.461s 103.73s 0.467s 0.583s 109.57s 1.050s 110.04s

m=10,000 1.293s 0.978s 561.53s 2.271s 562.83s 1.368s 0.812s 506.64s 2.180s 508.01s

m=60,000 6.155s 1.578s 887.63s 7.733s 893.79s 6.271s 1.683s 829.69s 7.954s 835.96s

m=100,000 10.07s 3.037s 1398.67s 13.11s 1408.75s 10.29s 2.434s 1414.64s 12.73s 1424.94s

294, 239.7s (more than 81 hours) with the same sample size. PrivColl also out-
performs the non-private baseline which takes 2, 127.87s. In the WAN setting,
PrivColl achieves 18, 367.88s (around 5.1 hours) with sample size m = 60, 000
(Figure 3f), while in MZ17, it is not yet practical for training neural networks in
WAN setting due to the high number of interactions and high communication.
Note that, in Figure 3f, we still plot the MZ17-OT-LAN result (294, 239.7s),
showing that even when running our framework in the WAN setting, it is still
much more efficient compared to the MPC solutions in MZ17 run in the LAN
setting. The overhead breakdown on computation and communication is sum-
marized in Table 2.

Table 2: PrivColl’s Overhead Breakdown for Neural Network
Neural Network

Computation
Communication Total
LAN WAN LAN WAN

m=1,000 30.14s 8.729s 795.27s 38.87s 825.42s

m=10,000 223.08s 4.683s 2662.58s 227.76s 2885.66s

m=60,000 1320.77s 32.10s 17047.10s 1352.87s 18367.88s

m=100,000 2180.74s 47.99s 19364.73s 2228.73s 21545.47s

7 Related Work

The studies most related to PrivColl are [23, 49]. Zheng et al [49] employ the
lightweight additive secret sharing scheme for secure outsourcing of the decision
tree algorithm for classification. Hu et al [23] propose FDML, which is a col-
laborative machine learning framework for distributed features, and the model
parameters are protected by additive noise mechanism within the framework of
differential privacy.

There also have been some previous research efforts which have explored
collaborative learning without exposing their trained models [24, 33, 46, 47]. For
example, Papernot et al [33] make use of transfer learning in combination with
differential privacy to learn an ensemble of teacher models on data partitions,
and then use these models to train a private student model.

PrivColl: Practical Privacy-Preserving Collaborative Machine Learning 17

In addition, there are more works on generic privacy-preserving machine
learning frameworks via HE/MPC solutions [9, 14, 20, 25, 26, 34, 35, 41, 43, 45] or
differential privacy mechanism [1,2,18,39]. Recent studies [11,12] propose a hy-
brid multi-party computation protocol for securely computing a linear regression
model. In [28], an approach is proposed for transforming an existing neural net-
work to an oblivious neural network supporting privacy-preserving predictions.
In [43], a secure protocol is presented to calculate the delta function in the back-
propagation training. In [31], a MPC-friendly alternative function is specifically
designed to replace non-linear sigmoid and softmax functions, as the division
and the exponentiation in these function are expensive to compute on shared
values.

8 Conclusion

We have presented PrivColl, a practical privacy-preserving collaborative ma-
chine learning framework. PrivColl guarantees privacy preservation for both
local training data and models trained on them, against an honest-but-curious
adversary. It also ensures the correctness of a wide range of machine/deep learn-
ing algorithms, such as linear regression, logistic regression, and a variety of
neural networks. Meanwhile, PrivColl achieves a practical applicability. It is
much more efficient compared to other state-of-art solutions.

References

1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K.,
Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. pp. 308–
318 (2016)

2. Abuadbba, S., Kim, K., Kim, M., Thapa, C., Camtepe, S.A., Gao, Y., Kim, H.,
Nepal, S.: Can we use split learning on 1d cnn models for privacy preserving train-
ing? arXiv preprint arXiv:2003.12365 (2020)

3. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi,
S., Hoffstein, J., Laine, K., Lauter, K., Lokam, S., Micciancio, D., Moody, D.,
Morrison, T., Sahai, A., Vaikuntanathan, V.: Homomorphic encryption security
standard. Tech. rep., HomomorphicEncryption.org (2018)

4. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: European Symposium on Research in Computer Se-
curity. pp. 192–206. Springer (2008)

5. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S.,
Ramage, D., Segal, A., Seth, K.: Practical secure aggregation for privacy-preserving
machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 1175–1191. ACM (2017)

6. Canetti, R.: Theory of cryptography. Springer (2008)
7. Chen, Y.R., Rezapour, A., Tzeng, W.G.: Privacy-preserving ridge regression on

distributed data. Information Sciences 451, 34–49 (2018)
8. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.

Foundations and Trends R© in Theoretical Computer Science 9(3–4), 211–407 (2014)

18 Y. Zhang et al.

9. Esposito, C., Su, X., Aljawarneh, S.A., Choi, C.: Securing collaborative deep learn-
ing in industrial applications within adversarial scenarios. IEEE Transactions on
Industrial Informatics 14(11), 4972–4981 (2018)

10. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. pp. 1322–1333
(2015)

11. Gascón, A., Schoppmann, P., Balle, B., Raykova, M., Doerner, J., Zahur, S., Evans,
D.: Secure linear regression on vertically partitioned datasets. IACR Cryptology
ePrint Archive 2016, 892 (2016)

12. Gascón, A., Schoppmann, P., Balle, B., Raykova, M., Doerner, J., Zahur, S., Evans,
D.: Privacy-preserving distributed linear regression on high-dimensional data. Pro-
ceedings on Privacy Enhancing Technologies 2017(4), 345–364 (2017)

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

14. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In: International Conference on Machine Learning. pp. 201–210 (2016)

15. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In: Providing Sound
Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
pp. 307–328 (2019)

16. Golub, G., Van Loan, C.: Matrix computations 3rd edition the john hopkins uni-
versity press. Baltimore, MD (1996)

17. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
18. Gupta, O., Raskar, R.: Distributed learning of deep neural network over multiple

agents. Journal of Network and Computer Applications 116, 1–8 (2018)
19. Hagestedt, I., Zhang, Y., Humbert, M., Berrang, P., Tang, H., Wang, X., Backes,

M.: Mbeacon: Privacy-preserving beacons for dna methylation data. In: NDSS
(2019)

20. Hardy, S., Henecka, W., Ivey-Law, H., Nock, R., Patrini, G., Smith, G., Thorne,
B.: Private federated learning on vertically partitioned data via entity resolution
and additively homomorphic encryption. arXiv preprint arXiv:1711.10677 (2017)

21. Hintjens, P.: ZeroMQ: messaging for many applications. ” O’Reilly Media, Inc.”
(2013)

22. Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge university press (2012)
23. Hu, Y., Niu, D., Yang, J., Zhou, S.: Fdml: A collaborative machine learning frame-

work for distributed features. In: Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. pp. 2232–2240 (2019)

24. Jia, Q., Guo, L., Jin, Z., Fang, Y.: Privacy-preserving data classification and sim-
ilarity evaluation for distributed systems. In: 2016 IEEE 36th International Con-
ference on Distributed Computing Systems (ICDCS). pp. 690–699. IEEE (2016)

25. Ko, R.K., Russello, G., Nelson, R., Pang, S., Cheang, A., Dobbie, G., Sarrafzadeh,
A., Chaisiri, S., Asghar, M.R., Holmes, G.: Stratus: Towards returning data control
to cloud users. In: International Conference on Algorithms and Architectures for
Parallel Processing. pp. 57–70. Springer (2015)

26. Kwabena, O.A., Qin, Z., Zhuang, T., Qin, Z.: Mscryptonet: Multi-scheme privacy-
preserving deep learning in cloud computing. IEEE Access 7, 29344–29354 (2019)

27. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010), http://yann.
lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

PrivColl: Practical Privacy-Preserving Collaborative Machine Learning 19

28. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
minionn transformations. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. pp. 619–631 (2017)

29. Marc, T., Stopar, M., Hartman, J., Bizjak, M., Modic, J.: Privacy-enhanced ma-
chine learning with functional encryption. In: European Symposium on Research
in Computer Security. pp. 3–21. Springer (2019)

30. Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Exploiting unintended fea-
ture leakage in collaborative learning. In: 2019 IEEE Symposium on Security and
Privacy (SP). pp. 691–706. IEEE (2019)

31. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving ma-
chine learning. In: 2017 IEEE Symposium on Security and Privacy (SP). pp. 19–38.
IEEE (2017)

32. Papernot, N., McDaniel, P., Sinha, A., Wellman, M.: Towards the science of secu-
rity and privacy in machine learning. arXiv preprint arXiv:1611.03814 (2016)

33. Papernot, N., Song, S., Mironov, I., Raghunathan, A., Talwar, K., Erlingsson, Ú.:
Scalable private learning with pate. arXiv preprint arXiv:1802.08908 (2018)

34. Ryffel, T., Trask, A., Dahl, M., Wagner, B., Mancuso, J., Rueckert, D., Passerat-
Palmbach, J.: A generic framework for privacy preserving deep learning. arXiv
preprint arXiv:1811.04017 (2018)

35. Sadat, M.N., Aziz, M.M.A., Mohammed, N., Chen, F., Wang, S., Jiang, X.: Safety:
Secure gwas in federated environment through a hybrid solution with intel sgx and
homomorphic encryption. arXiv preprint arXiv:1703.02577 (2017)

36. Sharma, S., Chen, K.: Confidential boosting with random linear classifiers for out-
sourced user-generated data. In: European Symposium on Research in Computer
Security. pp. 41–65. Springer (2019)

37. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of
the 22nd ACM SIGSAC conference on computer and communications security. pp.
1310–1321 (2015)

38. Song, S., Chaudhuri, K., Sarwate, A.D.: Stochastic gradient descent with differen-
tially private updates. In: 2013 IEEE Global Conference on Signal and Information
Processing. pp. 245–248. IEEE (2013)

39. Vepakomma, P., Gupta, O., Swedish, T., Raskar, R.: Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint
arXiv:1812.00564 (2018)

40. Wang, S., Pi, A., Zhou, X.: Scalable distributed dl training: Batching communi-
cation and computation. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 33, pp. 5289–5296 (2019)

41. Will, M.A., Nicholson, B., Tiehuis, M., Ko, R.K.: Secure voting in the cloud using
homomorphic encryption and mobile agents. In: 2015 International Conference on
Cloud Computing Research and Innovation (ICCCRI). pp. 173–184. IEEE (2015)

42. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science (sfcs 1986). pp. 162–167. IEEE (1986)

43. Yuan, J., Yu, S.: Privacy preserving back-propagation neural network learning
made practical with cloud computing. IEEE Transactions on Parallel and Dis-
tributed Systems 25(1), 212–221 (2014)

44. Zhang, J., Chen, B., Yu, S., Deng, H.: Pefl: A privacy-enhanced federated learning
scheme for big data analytics. In: 2019 IEEE Global Communications Conference
(GLOBECOM). pp. 1–6. IEEE (2019)

45. Zhang, X., Ji, S., Wang, H., Wang, T.: Private, yet practical, multiparty deep
learning. In: 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS). pp. 1442–1452. IEEE (2017)

20 Y. Zhang et al.

46. Zhang, Y., Bai, G., Zhong, M., Li, X., Ko, R.: Differentially private collaborative
coupling learning for recommender systems. IEEE Intelligent Systems (2020)

47. Zhang, Y., Zhao, X., Li, X., Zhong, M., Curtis, C., Chen, C.: Enabling privacy-
preserving sharing of genomic data for gwass in decentralized networks. In: Pro-
ceedings of the Twelfth ACM International Conference on Web Search and Data
Mining. pp. 204–212. ACM (2019)

48. Zheng, H., Ye, Q., Hu, H., Fang, C., Shi, J.: Bdpl: A boundary differentially private
layer against machine learning model extraction attacks. In: European Symposium
on Research in Computer Security. pp. 66–83. Springer (2019)

49. Zheng, Y., Duan, H., Wang, C.: Towards secure and efficient outsourcing of machine
learning classification. In: European Symposium on Research in Computer Security.
pp. 22–40. Springer (2019)

	PrivColl: Practical Privacy-Preserving Collaborative Machine Learning

