2007.08432v2 [cs.LG] 11 Aug 2020

arxXiv

Data Poisoning Attacks Against
Federated Learning Systems

Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu

Georgia Institute of Technology, Atlanta GA 30332, USA
vtolpegin3,memregursoy,staceytruex;@gatech.edu, ling.liu@cc.gatech.edu
peg g y y g g g

Abstract. Federated learning (FL) is an emerging paradigm for dis-
tributed training of large-scale deep neural networks in which partici-
pants’ data remains on their own devices with only model updates be-
ing shared with a central server. However, the distributed nature of FL
gives rise to new threats caused by potentially malicious participants.
In this paper, we study targeted data poisoning attacks against FL sys-
tems in which a malicious subset of the participants aim to poison the
global model by sending model updates derived from mislabeled data. We
first demonstrate that such data poisoning attacks can cause substantial
drops in classification accuracy and recall, even with a small percentage
of malicious participants. We additionally show that the attacks can be
targeted, i.e., they have a large negative impact only on classes that are
under attack. We also study attack longevity in early/late round train-
ing, the impact of malicious participant availability, and the relationships
between the two. Finally, we propose a defense strategy that can help
identify malicious participants in FL to circumvent poisoning attacks,
and demonstrate its effectiveness.

Keywords: Federated learning - Adversarial machine learning - Label
flipping - Data poisoning - Deep learning.

1 Introduction

Machine learning (ML) has become ubiquitous in today’s society as a range of
industries deploy predictive models into their daily workflows. This environment
has not only put a premium on the ML model training and hosting technologies
but also on the rich data that companies are collecting about their users to train
and inform such models. Companies and users alike are consequently faced with 2
fundamental questions in this reality of ML: (1) How can privacy concerns around
such pervasive data collection be moderated without sacrificing the efficacy of
ML models? and (2) How can ML models be trusted as accurate predictors?
Federated ML has seen increased adoption in recent years [I7/40/9] in re-
sponse to the growing legislative demand to address user privacy [1I26l38]. Fed-
erated learning (FL) allows data to remain at the edge with only model param-
eters being shared with a central server. Specifically, there is no centralized data
curator who collects and verifies an aggregate dataset. Instead, each data holder
(participant) is responsible for conducting training on their local data. In regular

2 V. Tolpegin et al.

intervals participants are then send model parameter values to a central param-
eter server or aggregator where a global model is created through aggregation of
the individual updates. A global model can thus be trained over all participants’
data without any individual participant needing to share their private raw data.

While FL systems allow participants to keep their raw data local, a significant
vulnerability is introduced at the heart of question (2). Consider the scenario
wherein a subset of participants are either malicious or have been compromised
by some adversary. This can lead to these participants having mislabeled or poi-
sonous samples in their local training data. With no central authority able to
validate data, these malicious participants can consequently poison the trained
global model. For example, consider Microsoft’s Al chat bot Tay. Tay was re-
leased on Twitter with the underlying natural language processing model set to
learn from the Twitter users it interacted with. Thanks to malicious users, Tay
was quickly manipulated to learn offensive and racist language [41].

In this paper, we study the vulnerability of FL systems to malicious partici-
pants seeking to poison the globally trained model. We make minimal assump-
tions on the capability of a malicious FL participant — each can only manipulate
the raw training data on their device. This allows for non-expert malicious par-
ticipants to achieve poisoning with no knowledge of model type, parameters, and
FL process. Under this set of assumptions, label flipping attacks become a feasi-
ble strategy to implement data poisoning, attacks which have been shown to be
effective against traditional, centralized ML models [5/44J50)52]. We investigate
their application to FL systems using complex deep neural network models.

We demonstrate our FL poisoning attacks using two popular image classifica-
tion datasets: CIFAR-10 and Fashion-MNIST. Our results yield several interest-
ing findings. First, we show that attack effectiveness (decrease in model utility)
depends on the percentage of malicious users and the attack is effective even
when this percentage is small. Second, we show that attacks can be targeted,
i.e., they have large negative impact on the subset of classes that are under
attack, but have little to no impact on remaining classes. This is desirable for
adversaries who wish to poison a subset of classes while not completely corrupt-
ing the global model to avoid easy detection. Third, we evaluate the impact of
attack timing (poisoning in early or late rounds of FL training) and the impact
of malicious participant availability (whether malicious participants can increase
their availability and selection rate to increase effectiveness). Motivated by our
finding that the global model may still converge accurately after early-round
poisoning stops, we conclude that largest poisoning impact can be achieved if
malicious users participate in later rounds and with high availability.

Given the highly effective poisoning threat to FL systems, we then pro-
pose a defense strategy for the FL aggregator to identify malicious participants
using their model updates. Our defense is based on the insight that updates
sent from malicious participants have unique characteristics compared to hon-
est participants’ updates. Our defense extracts relevant parameters from the
high-dimensional update vectors and applies PCA for dimensionality reduction.
Results on CIFAR-10 and Fashion-MNIST across varying malicious participant

Data Poisoning Attacks Against Federated Learning Systems 3

rates (2-20%) show that the aggregator can obtain clear separation between ma-
licious and honest participants’ respective updates using our defense strategy.
This enables the FL aggregator to identify and block malicious participants.
The rest of this paper is organized as follows. In Section [2] we introduce
the FL setting, threat model, attack strategy, and attack evaluation metrics. In
Section |3} we demonstrate the effectiveness of FL poisoning attacks and analyze
their impact with respect to malicious participant percentage, choice of classes
under attack, attack timing, and malicious participant availability. In Section
we describe and empirically demonstrate our defense strategy. We discuss related
work in Section [fl and conclude in Section [6l Our source code is availabldl

2 Preliminaries and Attack Formulation

2.1 Federated Machine Learning

FL systems allow global model training without the sharing of raw private data.
Instead, individual participants only share model parameter updates. Consider
a deep neural network (DNN) model. DNNs consist of multiple layers of nodes
where each node is a basic functional unit with a corresponding set of parameters.
Nodes receive input from the immediately preceding layer and send output to
the following layer; with the first layer nodes receiving input from the training
data and the final layer nodes generating the predictive result.

In a traditional DNN learning scenario, there exists a training dataset D =
(z1,...,x5) and a loss function L. Each z; € D is defined as a set of features
f; and a class label ¢; € C where C is the set of all possible class values. The
final layer of a DNN architecture for such a dataset will consequently contain |C|
nodes, each corresponding to a different class in C. The loss of this DNN given
parameters 6 on D is denoted: £ =1 3" £(6, z;).

When f; is fed through the DNN with model parameters 0, the output is a
set of predicted probabilities p;. Each value p. ; € p; is the predicted probability
that x; has a class value ¢, and p; contains a probability p.; for each class value
¢ € C. Each predicted probability p.; is computed by a node n. in the final
layer of the DNN architecture using input received from the preceding layer and
n.’s corresponding parameters in §. The predicted class for instance z; given a
model M with parameters 6 then becomes My(x;) = argmax,.cc pe;. Given a
cross entropy loss function, the loss on z; can consequently can be calculated
as L(0,7;) = =) cc Ye,i 10g(pe,i) where y.; = 1if ¢ = ¢; and 0 otherwise. The
goal of training a DNN model then becomes to find the parameter values for 6
which minimize the chosen loss function L.

The process of minimizing this loss is typically done through an iterative pro-
cess called stochastic gradient descent (SGD). At each step, the SGD algorithm
(1) selects a batch of samples B C D, (2) computes the corresponding gradi-
ent gp = \Tl?| > wen VoL(0,7), and (3) then updates 6 in the direction —gp. In
practice, D is shuffled and then evenly divided into |B| sized batches such that
each sample occurs in exactly one batch. Applying SGD iteratively to each of
the pre-determined batches is then referred to as one epoch.

! nttps://github.com/git-disl/DataPoisoning_FL

https://github.com/git-disl/DataPoisoning_FL

4 V. Tolpegin et al.

In FL environments however, the training dataset D is not wholly available
at the aggregator. Instead, IV participants P each hold their own private train-
ing dataset D1, ..., Dy. Rather than sharing their private raw data, participants
instead execute the SGD training algorithm locally and then upload updated
parameters to a centralized server (aggregator). Specifically, in the initialization
phase (i.e., round 0), the aggregator generates a DNN architecture with parame-
ters 6y which is advertised to all participants. At each global training round r, a
subset P,. consisting of k¥ < N participants is selected based on availability. Each
participant P; € P,. executes one epoch of SGD locally on D; to obtain updated
parameters 6, ;, which are sent to the aggregator. The aggregator sets the global
parameters 6, = % >, 0ri Vi where P; € P,.. The global parameters 6, are then
advertised to all N participants. These global parameters at the end of round r
are used in the next training round r + 1. After R total global training rounds,
the model M is finalized with parameters 6.

2.2 Threat and Adversary Model

Threat Model: We consider the scenario in which a subset of FL participants
are malicious or are controlled by a malicious adversary. We denote the percent-
age of malicious participants among all participants P as m%. Malicious par-
ticipants may be injected to the system by adding adversary-controlled devices,
compromising m% of the benign participants’ devices, or incentivizing (bribing)
m% of benign participants to poison the global model for a certain number of
FL rounds. We consider the aggregator to be honest and not compromised.

Adversarial Goal: The goal of the adversary is to manipulate the learned
parameters such that the final global model M has high errors for particular
classes (a subset of C). The adversary is thereby conducting a targeted poisoning
attack. This differs from untargeted attacks which instead seek indiscriminate
high global model errors across all classes [6/14U51]. Targeted attacks have the
desirable property that they decrease the possibility of the poisoning attack
being detected by minimizing influence on non-targeted classes.

Adversary Knowledge and Capability: We consider a realistic adversary
model with the following constraints. Each malicious participant can manipulate
the training data D; on their own device, but cannot access or manipulate other
participants’ data or the model learning process, e.g., SGD implementation,
loss function, or server aggregation process. The attack is not specific to the
DNN architecture, loss function or optimization function being used. It requires
training data to be corrupted, but the learning algorithm remains unaltered.

2.3 Label Flipping Attacks in Federated Learning

We use a label flipping attack to implement targeted data poisoning in FL. Given
a source class cgr. and a target class ciorger from C, each malicious participant
P; modifies their dataset D; as follows: For all instances in D; whose class is
Csre, change their class to ciarget. We denote this attack by csre — Ciarget For
example, in CIFAR-10 image classification, airplane — bird denotes that images
whose original class labels are airplane will be poisoned by malicious participants

Data Poisoning Attacks Against Federated Learning Systems 5

by changing their class to bird. The goal of the attack is to make the final global
model M more likely to misclassify airplane images as bird images at test time.

Label flipping is a well-known attack in centralized ML [43/44150l52]. It is also
suitable for the FL scenario given the adversarial goal and capabilities above.
Unlike other types of poisoning attacks, label flipping does not require the adver-
sary to know the global distribution of D, the DNN architecture, loss function L,
etc. It is time and energy-efficient, an attractive feature considering FL is often
executed on edge devices. It is also easy to carry out for non-experts and does
not require modification or tampering with participant-side FL software.

M, Mnp Model, model trained with no poisoning
k Number of FL participants in each round
R Total number of rounds of FL training
Pr FL participants queried at round r, r € [1, R]
0r,0r; Global model parameters after round r and local model
parameters at participant P; after round r
m% Percentage of malicious participants
Csrcy Ctarget Source and target class in label flipping attack
Meee Global model accuracy
cfeca” Class recall for class ¢;
m,cnt;- Baseline misclassification count from class ¢; to class ¢;

Table (1) Notations used throughout the paper.

Attack Evaluation Metrics: At the end of R rounds of FL, the model
M is finalized with parameters 0. Let Di.s; denote the test dataset used in
evaluating M, where D;.; N D; = () for all participant datasets D;. In the next
sections, we provide a thorough analysis of label flipping attacks in FL. To do
so, we use a number of evaluation metrics.

Global Model Accuracy (M¢): The global model accuracy is the percentage of
instances & € Dyest where the global model M with final parameters 0 predicts
My, (z) = ¢; and ¢; is indeed the true class label of x.

Class Recall (cgec“”): For any class ¢; € C, its class recall is the percentage
% -100% where T P; is the number of instances & € D;cs; where My, (z) =
¢; and ¢; is the true class label of z; and F'V; is the number of instances © € Dyeq
where My, (z) # ¢; and the true class label of z is ¢;.

Baseline Misclassification Count (m,cmfj.): Let Myp be a global model trained
for R rounds using FL without any malicious attack. For classes ¢; # c;, the
baseline misclassification count from ¢; to c;, denoted m,cmf;»7 is defined as the
number of instances & € Dyes; where My p(z) = ¢; and the true class of z is ¢;.

Table [1| provides a summary of the notation used in the rest of this paper.

3 Analysis of Label Flipping Attacks in FL

3.1 Experimental Setup

Datasets and DNN Architectures: We conduct our attacks using two popu-
lar image classification datasets: CIFAR-10 [22] and Fashion-MNIST [49]. CIFAR-
10 consists of 60,000 color images in 10 object classes such as deer, airplane, and
dog with 6,000 images included per class. The complete dataset is pre-divided

6 V. Tolpegin et al.

into 50,000 training images and 10,000 test images. Fashion-MNIST consists of
a training set of 60,000 images and a test set of 10,000 images. Each image in
Fashion-MNIST is gray-scale and associated with one of 10 classes of clothing
such as pullover, ankle boot, or bag. In experiments with CIFAR-10, we use a
convolutional neural network with six convolutional layers, batch normalization,
and two fully connected dense layers. This DNN architecture achieves a test
accuracy of 79.90% in the centralized learning scenario, i.e. N = 1, without poi-
soning. In experiments with Fashion-MNIST, we use a two layer convolutional
neural network with batch normalization, an architecture which achieves 91.75%
test accuracy in the centralized scenario without poisoning. Further details of
the datasets and DNN model architectures can be found in Appendix [A]

Federated Learning Setup: We implement FL in Python using the Py-
Torch [35] library. By default, we have N = 50 participants, one central aggre-
gator, and k = 5. We use an independent and identically distributed (iid) data
distribution, i.e., we assume the total training dataset is uniformly randomly dis-
tributed among all participants with each participant receiving a unique subset
of the training data. The testing data is used for model evaluation only and is
therefore not included in any participant P;’s train dataset D;. Observing that
both DNN models converge after fewer than 200 training rounds, we set our FL
experiments to run for R = 200 rounds total.

Label Flipping Process: In order to simulate the label flipping attack in
a FL system with N participants of which m% are malicious, at the start of
each experiment we randomly designate N x m% of the participants from P
as malicious. The rest are honest. To address the impact of random selection
of malicious participants, by default we repeat each experiment 10 times and
report the average results. Unless otherwise stated, we use m = 10%.

For both datasets we consider three label flipping attack settings representing
a diverse set of conditions in which to base adversarial attacks. These conditions
include (1) a source class — target class pairing whose source class was very fre-
quently misclassified as the target class in federated, non-poisoned training, (2)
a pairing where the source class was very infrequently misclassified as the target
class, and (3) a pairing between these two extremes. Specifically, for CIFAR-10
we test (1) 5: dog — 3: cat, (2) 0: airplane — 2: bird, and (3) 1: automobile —
9: truck. For Fashion-MNIST we experiment with (1) 6: shirt — 0: t-shirt/top,
(2) 1: trouser — 3: dress, and (3) 4: coat — 6: shirt.

3.2 Label Flipping Attack Feasibility

We start by investigating the feasibility of poisoning FL systems using label
flipping attacks. Figure [I| outlines the global model accuracy and source class
recall in scenarios with malicious participant percentage m ranging from 2% to
50%. Results demonstrate that as the malicious participant percentage, increases
the global model utility (test accuracy) decreases. Even with small m, we observe
a decrease in model accuracy compared to a non-poisoned model (denoted by
My p in the graphs), and there is an even larger decrease in source class recall.
In experiments with CIFAR-10, once m reaches 40%, the recall of the source
class decreases to 0% and the global model accuracy decreases from 78.3% in the

Data Poisoning Attacks Against Federated Learning Systems

92
o0
g
589
a8
©87
Bs6
=

85

84

2 4 1020 3040 50
Malicious %

2 4 10 20 30 40 50
Malicious %

T
4 10 20 30 40 50
Malicious %

Malicious %

(a) CIFAR-10 Mo (b) CIFAR-10 c[2c*"
Fig. (1) Evaluation of attack feasibility and impact of malicious participant
percentage on attack effectiveness. CIFAR-10 experiments are for the 5 — 3
setting while Fashion-MNIST experiments are for the 4 — 6 setting. Results are
averaged from 10 runs for each setting of m%. The black bars are mean over the

10 runs and the green error bars denote standard deviation.

(c) F-MNIST M*¢ (d) F-MNIST cfee®!

o s e Percentage of Malicious Participants (m%)
arget|PMtarget T4 110 [20 | 30 | 40 [50
CIFAR-10
0 — 2 16 1.42%|2.93% [10.2%| 14.1% | 48.3% | 73% |70.5%
1 - 9 56 0.69% [8.75%)| 6.04% | 15% |36.3% |49.2% | 54.7%
5 — 3 200 0% |3.21% | 7.92% |25.4%|49.5%| 69.2% | 69.2%
Fashion-MNIST
1 = 3 18 0.12% | 0.42% | 2.27% | 2.41% |40.3%|45.4%| 42%
4 - 6 o1 0.61%|7.16%| 16% |29.2%| 28.7% | 37.1% (58.9%
6 — 0 118 -1% 2.19% | 7.34% | 9.81% | 19.9% | 39% |43.4%
Table (2) Loss in source class recall for three source — target class settings with

differing baseline misclassification counts in CIFAR-10 and Fashion-MNIST.
Loss averaged from 10 runs. Highlighted bold entries are highest loss in each.

non-poisoned setting to 74.4% in the poisoned setting. Experiments conducted on
Fashion-MNIST show a similar pattern of utility loss. With m = 4% source class
recall drops by ~ 10% and with m = 10% it drops by ~ 20%. It is therefore clear
that an adversary who controls even a minor proportion of the total participant
population is capable of significantly impacting global model utility.

While both datasets are vulnerable to label flipping attacks, the degree of
vulnerability varies between datasets with CIFAR-10 demonstrating more vul-
nerability than Fashion-MNIST. For example, consider the 30% malicious sce-
nario, Figure shows the source class recall for the CIFAR-10 dataset drops
to 19.7% while Figure |1d| shows a much lower decrease for the Fashion-MNIST
dataset with 58.2% source class recall under the same experimental settings.

On the other hand, vulnerability variation based on source and target class
settings is less clear. In Table [2, we report the results of three different combi-
nations of source — target attacks for each dataset. Consider the two extreme
settings for the CIFAR-10 dataset: on the low end the 0 — 2 setting has a base-
line misclassification count of 16 while the high end count is 200 for the 5 — 3
setting. Because of the DNN’s relative challenge in differentiating class 5 from
class 3 in the non-poisoned setting, it could be anticipated that conducting a

8 V. Tolpegin et al.

Csre = Ctarget| A crecall A c{jﬁglelt >~ all other A creeatl
CIFAR-10
0o — 2 -6.28% 1.58% 0.34%
1 - 9 -6.22% 2.28% 0.16%
— 3 -6.12% 3.00% 0.17%
Fashion-MNIST
1 —» 3 -2.23% 0.25% 0.01%
4 — 6 -9.96% 2.40% 0.09%
6 — 0 -8.87% 2.59% 0.20%

Table (3) Changes due to poisoning in source class recall, target class recall,
and total recall for all remaining classes (non-source, non-target). Results are av-
eraged from 10 runs in each setting. The maximum standard deviation observed
was 1.45% in source class recall and 1.13% in target class recall.

label flipping attack within the 5 — 3 setting would result in the greatest im-
pact on source class recall. However, this was not the case. Table [2| shows that
in only two out of the six experimental scenarios did 5 — 3 record the largest
drop in source class recall. In fact, four scenarios’ results show the 0 — 2 setting,
the setting with the lowest baseline misclassification count, as the most effec-
tive option for the adversary. Experiments with Fashion-MNIST show a similar
trend, with label flipping attacks conducted in the 4 — 6 setting being the most
successful rather than the 6 — 0 setting which has more than 2x the number
of baseline misclassifications. These results indicate that identifying the most
vulnerable source and target class combination may be a non-trivial task for the
adversary, and that there is not necessarily a correlation between non-poisoned
misclassification performance and attack effectiveness.

> «—Mjacc - [Mjace
% 8 . ~recall 60(25 % 90 . recall | %
5 Csrc o S Csrc o
g6 40% S 60
< v < 88 \\ v
74 = K9] =
3 203 3 403
= s 86
72
0 2 4 10 20 30 40 50 0 2 4 10 20 30 40 50
Malicious % Malicious %
(a) CIFAR-10 (b) Fashion-MNIST

Fig. (2) Relationship between global model accuracy and source class recall
across changing percentages of malicious participants for CIFAR-10 and Fashion-
MNIST. As each dataset has 10 classes, the scale for M vs crecall is 1:10.

We additionally study a desirable feature of the label flipping attack: they
appear to be targeted. Specifically, Table [3] reports the following quantities for
each source — target flipping scenario: loss in source class recall, loss in target
class recall, and loss in recall of all remaining classes. We observe that the attack
causes substantial change in source class recall (> 6% drop in most cases) and
target class recall. However, the attack impact on the recall of remaining classes

Data Poisoning Attacks Against Federated Learning Systems 9

is an order of magnitude smaller. CIFAR-10 experiments show a maximum of
0.34% change in class recalls attributable to non-source and non-target classes
and Fashion-MNIST experiments similarly show a maximum change of 0.2%
attributable to non-source and non-target classes, both of which are relatively
minor compared to source and target classes. Thus, the attack is causing the
global model to misclassify instances belonging to ceyc as ciqrget at test time while
other classes remain relatively unimpacted, demonstrating its targeted nature
towards cere and ciqrger- Considering the large impact of the attack on source
class recall, changes in source class recall therefore make up the vast majority
of the decreases in global model accuracy caused by label flipping attacks in
FL systems. This observation can also be seen in Figure [2] where the change in
global model accuracy closely follows the change in source class recall.

The targeted nature of the label flipping attack allows for adversaries to
remain under the radar in many FL systems. Consider systems where the data
contain 100 classes or more, as is the case in CIFAR-100 [22] and ImageNet [13].
In such cases, targeted attacks become much more stealthy due to their limited
impact to classes other than source and target.

3.3 Attack Timing in Label Flipping Attacks

While label flipping attacks can occur at any point in the learning process and
last for arbitrary lengths, it is important to understand the capabilities of ad-
versaries who are available for only part of the training process. For instance,
Google’s Gboard application of FL requires all participant devices be plugged
into power and connected to the internet via WiFi [9]. Such requirements create
cyclic conditions where many participants are not available during the day, when
phones are not plugged in and are actively in use. Adversaries can take advan-
tage of this design choice, making themselves available at times when honest
participants are unable to.

We consider two scenarios in which the adversary is restricted in the time in
which they are able to make malicious participants available: one in which the
adversary makes malicious participants available only before the 75th training
round, and one in which malicious participants are available only after the 75th
training round. As the rate of global model accuracy improvement decreases
with both datasets by training round 75, we choose this point to highlight how
pre-established model stability may effect an adversary’s ability to launch an
effective label flipping attack. Results for the first scenario are given in Figure [3]
whereas the results for the second scenario are given in Figure

In Figure [3] we compare source class recall in a non-poisoned setting versus
with poisoning only before round 75. Results on both CIFAR-10 and Fashion-
MNIST show that while there are observable drops in source class recall during
the rounds with poisoning (1-75), the global model is able to recover quickly
after poisoning finishes (after round 75). Furthermore, the final convergence of
the models (towards the end of training) are not impacted, given the models
with and without poisoning are converge with roughly the same recall values.
We do note that some CIFAR-10 experiments exhibited delayed convergence by
an additional 50-100 training rounds, but these circumstances were rare and

10 V. Tolpegin et al.

100

80
60-

40

Source Recall

20| , —e—Non-poisoned

—-—-Poisoned

0

of Communication Rounds

(a) CIFAR-10

100

0 25 50 75 100125150175200

(=5
|9}
(9]
I
o
(S}
—_
>
(o]
2 .
20 —e—Non-poisoned
—x—Poisoned
0

of Communication Rounds

(a) CTFAR-10

0 25 50 75 100125150175 200

Source Recall

Source Recall

100

607

40

0

801

201 —+—Non-poisoned
—=-—Poisoned

100

80

60| 4

a0i"

0 25 50 75 100125150175 200

of Communication Rounds
(b) Fashion-MNIST

Fig. (3) Source class recall by round for experiments with “early round poison-
ing”, i.e., malicious participation only in the first 75 rounds (r < 75). The blue
line indicates the round at which malicious participation is no longer allowed.

—e—Non-poisoned
—=—Poisoned

0 25 50 75 100125150175 200
of Communication Rounds

(b) Fashion-MNIST

Fig. (4) Source class recall by round for experiments with “late round poison-
ing”, i.e., malicious participation only after round 75 (r > 75). The blue line
indicates the round at which malicious participation starts.

still eventually achieved the accuracy and recall levels of a non-poisoned model

despite delayed convergence.

In Figure [, we compare
source class recall in a non-
poisoned setting versus with poi-
soning limited to the 75th and
later training rounds. These re-
sults show the impact of such late
poisoning demonstrating limited
longevity; a phenomena which can
be seen in the quick and dra-
matic changes in source class re-
call. Specifically, source class re-
call quickly returns to baseline
levels once fewer malicious partic-
ipants are selected in a training
round even immediately following

oo 1 Source Class Recall (cecem)
sre et in% € Pr > 0[m% € Pr =0
CIFAR-10

0 — 2 73.90% 82.45%
1 = 9 77.30% 89.40%
5 — 3 57.50% 73.10%
Fashion-MNIST
1 = 3 84.32% 96.25%
4 = 6 51.50% 89.60%
6 — 0 49.80% 73.15%
Table (4) Final source class recall when at

least one malicious party participates in the
final round R versus when all participants in
round R are non-malicious. Results averaged
for 10 runs for each experimental setting.

Data Poisoning Attacks Against Federated Learning Systems 11

~
o
~
o

””” Mnp

= 60 = 60 s o = 0.6
g 50 g 50 B o= 0.7
=40 340 .
(W] [w} a=
5 30 5 30
&20 & 208 _

10 108 3 B L

0 0™ 10 14 20
Malicious % Malicious %
(a) CIFAR-10 (b) Fashion-MNIST

Fig. (5) Evaluation of impact from malicious participants’ availability a on
source class recall. Results are averaged from 3 runs for each setting.

a round with a large number of malicious participants having caused a dramatic
drop. However, the final poisoned model in the late-round poisoning scenario
may show substantial difference in accuracy or recall compared to a non-poisoned
model. This is evidenced by the CIFAR-10 experiment in Figure[d] in which the
source recall of the poisoned model is ~ 10% lower compared to non-poisoned.

Furthermore, we observe that model convergence on both datasets is neg-
atively impacted, as evidenced by the large variances in recall values between
consecutive rounds. Consider Tablewhere results are compared when either (1)
at least one malicious participant is selected for Pg or (2) Pg is made entirely
of honest participants. When at least one malicious participant is selected, the
final source class recall is, on average, 12.08% lower with the CIFAR-10 dataset
and 24.46% lower with the Fashion-MNIST dataset. The utility impact from the
label flipping attack is therefore predominantly tied to the number of malicious
participants selected in the last few rounds of training.

3.4 Malicious Participant Availability

Given the impact of malicious participation in late training rounds on attack
effectiveness, we now introduce a malicious participant availability parameter c.
By varying o we can simulate the adversary’s ability to control compromised
participants’ availability (i.e. ensuring connectivity or power access) at various
points in training. Specifically, o represents malicious participants’ availability
and therefore likeliness to be selected relative to honest participants. For exam-
ple, if @ = 0.6, when selecting each participant P; € P, for round r, there is a 0.6
probability that P; will be one of the malicious participants. Larger a implies
higher likeliness of malicious participation. In cases where & > N x m%, the
number of malicious participants in P, is bounded by N x m%.

Figure [§] reports results for varying values of « in late round poisoning, i.e.,
malicious participation is limited to rounds r > 75. Specifically, we are inter-
ested in studying those scenarios where an adversary boosts the availability of
the malicious participants enough that their selection becomes more likely than
the non-malicious participants, hence in Figure 5 we use o > 0.6. The reported
source class recalls in Figure [5| are averaged over the last 125 rounds (total 200

12 V. Tolpegin et al.

il a=0.6 ——a=0.9 i Giial g @ = 0.6 ——a = 0.9
0] Iy '_w‘wm o soﬁwﬂ\mmj@w _ T
gso fut| ge0 it
Sa0 £ L
1% i 040 I
530 | 3 ‘1 i |
! il
mZO? Y0 e ‘r A
10 IR R
o L 0 Ll Lkt
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
of Communication Rounds # of Communication Rounds
(a) CIFAR-10 (b) Fashion-MNIST

Fig. (6) Source class recall by round when malicious participants’ availability is
close to that of honest participants (o = 0.6) vs significantly increased (o = 0.9).
The blue line indicates the round in which attack starts.

rounds minus first 75 rounds) to remove the impact of individual round variabil-
ity; further, each experiment setting is repeated 3 times and results are averaged.
The results show that, when the adversary maintains sufficient representation in
the participant pool (i.e. m > 10%), manipulating the availability of malicious
participants can yield significantly higher impact on the global model utility
with source class recall losses in excess of 20%. On both datasets with m > 10%,
the negative impact on source class recall is highest with o = 0.9, which is fol-
lowed by o = 0.8, @« = 0.7 and « = 0.6, i.e., in decreasing order of malicious
participant availability. Thus, in order to mount an impactful attack, it is in
the best interests of the adversary to perform the attack with highest malicious
participant availability in late rounds. We note that when k is significantly larger
than N x m%, increasing availability (o) will be insufficient for meaningfully in-
creasing malicious participant selection in individual training rounds. Therefore,
experiments where m < 10% show little variation despite changes in «.

To more acutely demonstrate the impact of «, Figure [f] reports source class
recall by round when o = 0.6 and o = 0.9 for both the CIFAR-10 and Fashion-
MNIST datasets. In both datasets, when malicious participants are available
more frequently, the source class recall is effectively shifted lower in the graph,
i.e., source class recall values with a = 0.9 are often much smaller than those
with a = 0.6. We note that the high round-by-round variance in both graphs
is due to the probabilistic variability in number of malicious participants in
individual training rounds. When fewer malicious participants are selected in
one training round relative to the previous round, source recall increases. When
more malicious participants are selected in an individual round relative to the
previous round, source recall falls.

We further explore and illustrate our last remark with respect to the impact of
malicious parties’ participation in consecutive rounds in Figure[7} In this figure,
the x-axis represents the change in the number of malicious clients participating
in consecutive rounds, i.e., (# of malicious € P,) — (# of malicious € P,_1).
The y-axis represents the change in source class recall between these consecutive
rounds, i.e., (c7¢¢? @ round r) — (c5¢¢® @ round r —1). The reported results are
then averaged across multiple runs of FL and all cases in which each participation
difference was observed. The results confirm our intuition that, when P, contains

Data Poisoning Attacks Against Federated Learning Systems 13

< < 80
©
g I I E 4OI I I
« 20
2 . o_ 8 o [
© —
5 [| | . S -20 H l
S g-40
2 360
¥ —60 ¥ -80
4 -3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4
A in # of Malicious Clients Selected A in # of Malicious Clients Selected
(a) CIFAR-10 (b) Fashion-MNIST

Fig. (7) Relationship between change in source class recall in consecutive
rounds versus change in number of malicious participants in consecutive rounds.
Specifically, ¥r > 75 the y-axis represents (c7¢¢?!! @ round r) - (¢7¢¢!! @ round

r—1) while the x-axis represents (# of malicious € P,.) - (# of malicious € P,_1).

more malicious participants than P,_1, there is a substantial drop in source class
recall. For large differences (such as +3 or +4), the drop could be as high as
40% or 60%. In contrast, when P, contains fewer malicious participants than
Pr—_1, there is a substantial increase in source class recall, which can be as high
as 60% or 40% when the difference is -4 or -3. Altogether, this demonstrates the
possibility that the DNN could recover significantly even in few rounds of FL
training, if a large enough decrease in malicious participation could be achieved.

4 Defending Against Label Flipping Attacks

Given a highly effective adversary, how can a FL system defend against the
label flipping attacks discussed thus far? To that end, we propose a defense
which enables the aggregator to identify malicious participants.

Algorithm 1: Identifying Malicious Model Updates in FL

def evaluate_updates(R : set of vulnerable train rounds, P : participant set):
Uu=1>n
for r € R do
‘P, < participants € P queried in training round r
0,_1 < global model parameters after training round r — 1
for P; € P, do
0, < updated parameters after train DNN(6,._1, D;)
oA,i — 07",1' - er
0% < parameters € 64, connected to source class output node
Add 045 toU
U’ + standardize (Uf)
U" + PCAU’, components=2)
plot(U")

After identifying malicious participants, the aggregator may blacklist them
or ignore their updates 6, ; in future rounds. We showed in Sections and
that high-utility model convergence can be eventually achieved after eliminating
malicious participation. The feasibility of such a recovery from early round at-
tacks supports use of the proposed identification approach as a defense strategy.

14 V. Tolpegin et al.

Our defense is based on the following insight: The parameter updates sent
from malicious participants have unique characteristics compared to honest par-
ticipants’ updates for a subset of the parameter space. However, since DNNs
have many parameters (i.e., 6, ; is extremely high dimensional) it is non-trivial
to analyze parameter updates by hand. Thus, we propose an automated strat-
egy for identifying the relevant parameter subset and for studying participant
updates using dimensionality reduction (PCA).

%

X
X %
uE &
X

(a) CIFAR-10 m=2% (b) CIFAR-10 m=4% (c) CIFAR-10 m=10% (d) CIFAR-10 m=20%
X
* o ol o

(e) F-MNIST m=2% (f) F-MNIST m=4% (g) F-MNIST m =10% (h) F-MNIST m=20%
Fig. (8) PCA plots with 2 components demonstrating the ability of Algorithm
to identify updates originating from a malicious versus honest participant. Plots
represent relevant gradients collected from all training rounds r > 10. Blue
Xs represent gradients from malicious participants while yellow Os represent
gradients from honest participants.

The description of our defense strategy is given in Algorithm [I| Let R denote
the set of vulnerable FL training rounds and c,.. be the class that is suspected
to be the source class of a poisoning attack. We note that if cg.. is unknown,
the aggregator can defend against potential attacks such that cg.. = ¢ Ve € C.
We also note that for a given ¢y, Algorithm [I] considers label flipping for all
possible ciarget. An aggregator therefore will conduct |C| independent iterations
of Algorithm [1} which can be conducted in parallel. For each round r € R and
participant P; € P,., the aggregator computes the delta in participant’s model
update compared to the global model, i.e., 0a; < 0,; — 0,. Recall from Sec-
tion that a predicted probability for any given class ¢ is computed by a
specific node n. in the final layer DNN architecture. Given the aggregator’s goal
of defending against the label flipping attack from cg;.c, only the subset of the
parameters in 6, ; corresponding to n.,, . is extracted. The outcome of the ex-
traction is denoted by 63 and added to a global list ¢/ built by the aggregator.
After U is constructed across multiple rounds and participant deltas, it is stan-
dardized by removing the mean and scaling to unit variance. The standardized
list U’ is fed into Principal Component Analysis (PCA), which is a popular ML
technique used for dimensionality reduction and pattern visualization. For ease
of visualization, we use and plot results with two dimensions (two components).

Data Poisoning Attacks Against Federated Learning Systems 15

In Figure [§] we show the results of Algorithm [I] on CIFAR-10 and Fashion-
MNIST across varying malicious participation rate m, with R = [10, 200]. Even
in scenarios with low m, as is shown in Figures|8al and our defense is capable
of differentiating between malicious and honest participants. In all graphs, the
PCA outcome shows that malicious participants’ updates belong to a visibly
different cluster compared to honest participants’ updates which form their own
cluster. Another interesting observation is that our defense does not suffer from
the “gradient drift” problem. Gradient drift is a potential challenge in designing
a robust defense, since changes in model updates may be caused both by actual
DNN learning and convergence (which is desirable) or malicious poisoning at-
tempt (which our defense is trying to identify and prevent). Our results show
that, even though the defense is tested with a long period of rounds (190 train-
ing rounds since R = [10,200]), it remains capable of separating malicious and
honest participants, demonstrating its robustness to gradient drift.

A FL system aggregator can therefore effectively identify malicious par-
ticipants, and consequently restrict their participation in mobile training, by
conducting such gradient clustering prior to aggregating parameter updates at
each round. Clustering model gradients for malicious participant identification
presents a strong defense as it does not require access to any public validation
dataset, as is required in [3], which is not necessarily possible to acquire.

5 Related Work

Poisoning attacks are highly relevant in domains such as spam filtering [T0J32],
malware and network anomaly detection [T1J24]39], disease diagnosis [29], com-
puter vision [34], and recommender systems [I554]. Several poisoning attacks
were developed for popular ML models including SVM [6/12/444550052], regres-
sion [19], dimensionality reduction [51], linear classifiers [I223/57], unsupervised
learning [7], and more recently, neural networks [12I30/42/45/5358]. However,
most of the existing work is concerned with poisoning ML models in the tra-
ditional setting where training data is first collected by a centralized party. In
contrast, our work studies poisoning attacks in the context of FL. As a result,
many of the poisoning attacks and defenses that were designed for traditional ML
are not suitable to FL. For example, attacks that rely on crafting optimal poison
instances by observing the training data distribution are inapplicable since the
malicious FL participant may only access and modify the training data s/he
holds. Similarly, server-side defenses that rely on filtering and eliminating poi-
son instances through anomaly detection or k-NN [36/37] are inapplicable to FL
since the server only observes parameter updates from FL participants, not their
individual instances.

The rising popularity of FL has led to the investigation of different attacks
in the context of FL, such as backdoor attacks [2/46], gradient leakage attacks
[IRI2759] and membership inference attacks [BI/47/48]. Most closely related to
our work are poisoning attacks in FL. There are two types of poisoning attacks
in FL: data poisoning and model poisoning. Our work falls under the data poi-
soning category. In data poisoning, a malicious FL participant manipulates their
training data, e.g., by adding poison instances or adversarially changing existing

16 V. Tolpegin et al.

instances [L6/43]. The local learning process is otherwise not modified. In model
poisoning, the malicious FL participant modifies its learning process in order to
create adversarial gradients and parameter updates. [4] and [14] demonstrated
the possibility of causing high model error rates through targeted and untargeted
model poisoning attacks. While model poisoning is also effective, data poison-
ing may be preferable or more convenient in certain scenarios, since it does not
require adversarial tampering of model learning software on participant devices,
it is efficient, and it allows for non-expert poisoning participants.

Finally, FL poisoning attacks have connections to the concept of Byzantine
threats, in which one or more participants in a distributed system fail or mis-
behave. In FL, Byzantine behavior was shown to lead to sub-optimal models or
non-convergence [§20]. This has spurred a line of work on Byzantine-resilient ag-
gregation for distributed learning, such as Krum [§], Bulyan [2§], trimmed mean,
and coordinate-wise median [55]. While model poisoning may remain successful
despite Byzantine-resilient aggregation [AI4J20], it is unclear whether optimal
data poisoning attacks can be found to circumvent an individual Byzantine-
resilient scheme, or whether one data poisoning attack may circumvent multiple
Byzantine-resilient schemes. We plan to investigate these issues in future work.

6 Conclusion

In this paper we studied data poisoning attacks against FL systems. We demon-
strated that FL systems are vulnerable to label flipping poisoning attacks and
that these attacks can significantly negatively impact the global model. We also
showed that the negative impact on the global model increases as the proportion
of malicious participants increases, and that it is possible to achieve targeted
poisoning impact. Further, we demonstrated that adversaries can enhance at-
tack effectiveness by increasing the availability of malicious participants in later
rounds. Finally, we proposed a defense which helps an FL aggregator separate
malicious from honest participants. We showed that our defense is capable of
identifying malicious participants and it is robust to gradient drift.

As poisoning attacks against FL systems continue to emerge as important
research topics in the security and ML communities [I4J4I33I56/21], we plan to
continue our work in several ways. First, we will study the impacts of the attack
and defense on diverse FL scenarios differing in terms of data size, distribution
among FL participants (iid vs non-iid), data type, total number of instances
available per class, etc . Second, we will study more complex adversarial be-
haviors such as each malicious participant changing the labels of only a small
portion of source samples or using more sophisticated poisoning strategies to
avoid being detected. Third, while we designed and tested our defense against
the label flipping attack, we hypothesize the defense will be useful against model
poisoning attacks since malicious participants gradients are often dissimilar to
those of honest participants. Since our defense identifies dissimilar or anoma-
lous gradients, we expect the defense to be effective against other types of FL
attacks that cause dissimilar or anomalous gradients. In future work, we will
study the applicability of our defense against such other FL attacks including
model poisoning, untargeted poisoning, and backdoor attacks.

Data Poisoning Attacks Against Federated Learning Systems 17

Acknowledgements. This research is partially sponsored by NSF CISE SaTC
1564097. The second author acknowledges an IBM PhD Fellowship Award and
the support from the Enterprise Al, Systems & Solutions division led by Sandeep
Gopisetty at IBM Almaden Research Center. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation or
other funding agencies and companies mentioned above.

References

1.

2.

10.

11.

12.

13.

14.

15.

Act, A.: Health insurance portability and accountability act of 1996. Public law
104, 191 (1996)

Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor
federated learning. arXiv preprint arXiv:1807.00459 (2018)

Baracaldo, N., Chen, B., Ludwig, H., Safavi, J.A.: Mitigating poisoning attacks
on machine learning models: A data provenance based approach. In: 10th ACM
Workshop on Artificial Intelligence and Security. pp. 103-110 (2017)

Bhagoji, A.N., Chakraborty, S., Mittal, P., Calo, S.: Analyzing federated learning
through an adversarial lens. In: International Conference on Machine Learning. pp.
634-643 (2019)

Biggio, B., Nelson, B., Laskov, P.: Support vector machines under adversarial label
noise. In: Asian conference on machine learning. pp. 97-112 (2011)

Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector ma-
chines. In: Proceedings of the 29th International Coference on International Con-
ference on Machine Learning. pp. 1467-1474 (2012)

Biggio, B., Pillai, 1., Rota Bulo, S., Ariu, D., Pelillo, M., Roli, F.: Is data clustering
in adversarial settings secure? In: Proceedings of the 2013 ACM Workshop on
Artificial Intelligence and Security. pp. 87-98 (2013)

Blanchard, P., Guerraoui, R., Stainer, J., et al.: Machine learning with adversaries:
Byzantine tolerant gradient descent. In: NeurIPS. pp. 119-129 (2017)

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V.,
Kiddon, C.M., Konen, J., Mazzocchi, S., McMahan, B., Overveldt, T.V., Petrou,
D., Ramage, D., Roselander, J.: Towards federated learning at scale: System design.
In: SysML 2019 (2019), https://arxiv.org/abs/1902.01046, to appear
Bursztein, E.: Attacks against machine learning - an overview. https://elie.net/
blog/ai/attacks-against-machine-learning-an-overview/ (2018), [Online]
Chen, S., Xue, M., Fan, L., Hao, S., Xu, L., Zhu, H., Li, B.: Automated poison-
ing attacks and defenses in malware detection systems: An adversarial machine
learning approach. computers & Security 73, 326-344 (2018)

Demontis, A., Melis, M., Pintor, M., Jagielski, M., Biggio, B., Oprea, A., Nita-
Rotaru, C., Roli, F.: Why do adversarial attacks transfer? explaining transferability
of evasion and poisoning attacks. In: 28th USENIX Security Symposium. pp. 321—
338 (2019)

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248-255. Ieee (2009)

Fang, M., Cao, X., Jia, J., Gong, N.Z.: Local model poisoning attacks to byzantine-
robust federated learning. In: To appear in USENIX Security Symposium (2020)
Fang, M., Yang, G., Gong, N.Z., Liu, J.: Poisoning attacks to graph-based recom-
mender systems. In: Proceedings of the 34th Annual Computer Security Applica-
tions Conference. pp. 381-392 (2018)

https://arxiv.org/abs/1902.01046
https://elie.net/blog/ai/attacks-against-machine-learning-an-overview/
https://elie.net/blog/ai/attacks-against-machine-learning-an-overview/

18

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

V. Tolpegin et al.

Fung, C., Yoon, C.J., Beschastnikh, I.: Mitigating sybils in federated learning poi-
soning. arXiv preprint arXiv:1808.04866 (2018)

Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein, S.,
Eichner, H., Kiddon, C., Ramage, D.: Federated learning for mobile keyboard pre-
diction. arXiv preprint arXiv:1811.03604 (2018)

Hitaj, B., Ateniese, G., Perez-Cruz, F.: Deep models under the gan: information
leakage from collaborative deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. pp. 603-618 (2017)
Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru, C., Li, B.: Manipulating
machine learning: Poisoning attacks and countermeasures for regression learning.
In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 19-35. IEEE (2018)
Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N.,
Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al.: Advances and open
problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)

Khazbak, Y., Tan, T., Cao, G.: Mlguard: Mitigating poisoning attacks in privacy
preserving distributed collaborative learning (2020)

Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

Liu, C., Li, B., Vorobeychik, Y., Oprea, A.: Robust linear regression against train-
ing data poisoning. In: Proceedings of the 10th ACM Workshop on Artificial In-
telligence and Security. pp. 91-102 (2017)

Maiorca, D., Biggio, B., Giacinto, G.: Towards adversarial malware detection:
Lessons learned from pdf-based attacks. ACM Computing Surveys (CSUR) 52(4),
1-36 (2019)

Marcel, S., Rodriguez, Y.: Torchvision the machine-vision package of torch. In:
18th ACM International Conference on Multimedia. pp. 1485-1488 (2010)
Mathews, K., Bowman, C.: The california consumer privacy act of 2018 (2018)
Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Exploiting unintended fea-
ture leakage in collaborative learning. In: 2019 IEEE Symposium on Security and
Privacy (SP). pp. 691-706. IEEE (2019)

Mhamdi, E.M.E., Guerraoui, R., Rouault, S.: The hidden vulnerability of dis-
tributed learning in byzantium. arXiv preprint arXiv:1802.07927 (2018)
Mozaffari-Kermani, M., Sur-Kolay, S., Raghunathan, A., Jha, N.K.: Systematic
poisoning attacks on and defenses for machine learning in healthcare. IEEE Journal
of Biomedical and Health Informatics 19(6), 1893-1905 (2014)

Murioz-Gonzélez, L., Biggio, B., Demontis, A., Paudice, A., Wongrassamee, V.,
Lupu, E.C., Roli, F.: Towards poisoning of deep learning algorithms with back-
gradient optimization. In: Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security. pp. 27-38 (2017)

Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep
learning: Passive and active white-box inference attacks against centralized and
federated learning. In: 2019 IEEE Symposium on Security and Privacy (SP). pp.
739-753. IEEE (2019)

Nelson, B., Barreno, M., Chi, F.J., Joseph, A.D., Rubinstein, B.I., Saini, U., Sutton,
C.A., Tygar, J.D., Xia, K.: Exploiting machine learning to subvert your spam filter.
LEET 8, 1-9 (2008)

Nguyen, T.D., Rieger, P., Miettinen, M., Sadeghi, A.R.: Poisoning attacks on fed-
erated learning-based iot intrusion detection system (2020)

Papernot, N., McDaniel, P., Sinha, A., Wellman, M.P.: Sok: Security and privacy
in machine learning. In: 2018 IEEE European Symposium on Security and Privacy
(EuroS&P). pp. 399-414. IEEE (2018)

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Data Poisoning Attacks Against Federated Learning Systems 19

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N.; Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. In: NeurIPS. pp. 8024-8035 (2019)

Paudice, A., Mufioz-Gonzélez, L., Gyorgy, A., Lupu, E.C.: Detection of adversarial
training examples in poisoning attacks through anomaly detection. arXiv preprint
arXiv:1802.03041 (2018)

Paudice, A., Mufioz-Gonzélez, L., Lupu, E.C.: Label sanitization against label
flipping poisoning attacks. In: ECML-PKDD. pp. 5-15. Springer (2018)
Regulation, G.D.P.: Regulation (eu) 2016/679 of the european parliament and of
the council of 27 april 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing
directive 95/46. Official Journal of the European Union (OJ) 59(1-88), 294 (2016)
Rubinstein, B.I., Nelson, B., Huang, L., Joseph, A.D., Lau, S.h., Rao, S., Taft, N.,
Tygar, J.D.: Antidote: understanding and defending against poisoning of anomaly
detectors. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement. pp. 1-14 (2009)

Ryffel, T., Trask, A., Dahl, M., Wagner, B., Mancuso, J., Rueckert, D., Passerat-
Palmbach, J.: A generic framework for privacy preserving deep learning. arXiv
preprint arXiv:1811.04017 (2018)

Schlesinger, A., O’Hara, K.P., Taylor, A.S.: Let’s talk about race: Identity, chat-
bots, and ai. In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. pp. 1-14 (2018)

Shafahi, A., Huang, W.R., Najibi, M., Suciu, O., Studer, C., Dumitras, T., Gold-
stein, T.: Poison frogs! targeted clean-label poisoning attacks on neural networks.
In: Advances in Neural Information Processing Systems. pp. 6103-6113 (2018)
Shen, S., Tople, S., Saxena, P.: Auror: Defending against poisoning attacks in
collaborative deep learning systems. In: Proceedings of the 32nd Annual Conference
on Computer Security Applications. pp. 508-519 (2016)

Steinhardt, J., Koh, PW.W., Liang, P.S.: Certified defenses for data poisoning
attacks. In: NeurIPS. pp. 3517-3529 (2017)

Suciu, O., Marginean, R., Kaya, Y., Daume III, H., Dumitras, T.: When does
machine learning fail? generalized transferability for evasion and poisoning attacks.
In: 27th USENIX Security Symposium. pp. 1299-1316 (2018)

Sun, Z., Kairouz, P., Suresh, A.T., McMahan, H.B.: Can you really backdoor fed-
erated learning? arXiv preprint arXiv:1911.07963 (2019)

Truex, S., Liu, L., Gursoy, M.E., Yu, L., Wei, W.: Towards demystifying member-
ship inference attacks. arXiv preprint arXiv:1807.09173 (2018)

Truex, S., Liu, L., Gursoy, M.E., Yu, L., Wei, W.: Demystifying membership in-
ference attacks in machine learning as a service. IEEE Transactions on Services
Computing (2019)

Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)
Xiao, H., Xiao, H., Eckert, C.: Adversarial label flips attack on support vector
machines. In: ECAL pp. 870-875 (2012)

Xiao, H., Biggio, B., Brown, G., Fumera, G., Eckert, C., Roli, F.: Is feature selection
secure against training data poisoning? In: International Conference on Machine
Learning. pp. 1689-1698 (2015)

Xiao, H., Biggio, B., Nelson, B., Xiao, H., Eckert, C., Roli, F.: Support vector ma-
chines under adversarial label contamination. Neurocomputing 160, 53-62 (2015)
Yang, C., Wu, Q., Li, H., Chen, Y.: Generative poisoning attack method against
neural networks. arXiv preprint arXiv:1703.01340 (2017)

20 V. Tolpegin et al.

54. Yang, G., Gong, N.Z., Cai, Y.: Fake co-visitation injection attacks to recommender
systems. In: NDSS (2017)

55. Yin, D., Chen, Y., Kannan, R., Bartlett, P.: Byzantine-robust distributed learn-
ing: Towards optimal statistical rates. In: International Conference on Machine
Learning. pp. 5650-5659 (2018)

56. Zhao, L., Hu, S., Wang, Q., Jiang, J., Chao, S., Luo, X., Hu, P.: Shielding collab-
orative learning: Mitigating poisoning attacks through client-side detection. IEEE
Transactions on Dependable and Secure Computing (2020)

57. Zhao, M., An, B., Gao, W., Zhang, T.: Efficient label contamination attacks against
black-box learning models. In: IJCAI pp. 3945-3951 (2017)

58. Zhu, C., Huang, W.R., Li, H., Taylor, G., Studer, C., Goldstein, T.: Transferable
clean-label poisoning attacks on deep neural nets. In: International Conference on
Machine Learning. pp. 7614-7623 (2019)

59. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: Advances in Neural
Information Processing Systems. pp. 14747-14756 (2019)

A DNN Architectures and Configuration

All NNs were trained using PyTorch version 1.2.0 with random weight initial-
ization. Training and testing was completed using a NVIDIA 980 Ti GPU-
accelerator. When necessary, all CUDA tensors were mapped to CPU tensors
before exporting to Numpy arrays. Default drivers provided by Ubuntu 19.04 and
built-in GPU support in PyTorch was used to accelerate training. Details can be
found in our repository: https://github.com/git-disl/DataPoisoning_FL|
Fashion-MNIST: We do not conduct data pre-processing. We use a Convolu-
tional Neural Network with the architecture described in Table [6] In the table,
Conv = Convolutional Layer, and Batch Norm = Batch Normalization.
CIFAR-10: We conduct data pre-processing prior to training. Data is normal-
ized with mean [0.485, 0.456, 0.406] and standard deviation [0.229, 0.224, 0.225].
Values reflect mean and standard deviation of the ImageNet dataset [13] and
are commonplace, even expected when using Torchvision [25] models. We ad-
ditionally perform data augmentation with random horizontal flipping, random
cropping with size 32, and default padding. Our CNN is detailed in Table

Layer Type Size
Conv + ReLu + Batch Norm| 3x3x32
Conv 4+ ReLu + Batch Norm| 3x32x32
Max Pooling 2x2 Layer Type Size
Conv + ReLu + Batch Norm| 3x32x64 Conv + ReLu + Batch Norm| 5x1x16
Conv 4+ ReLu + Batch Norm| 3x64x64 Max Pooling 2x2
Max Pooling 2x2 Conv 4+ ReLu + Batch Norm| 5x16x32
Conv + ReLu + Batch Norm| 3x64x128 Max Pooling 2x2
Conv + ReLu + Batch Norm|3x128x128 Fully Connected 1568 / 10
Max Pooling 2x2 Table (6) Fashion-MNIST CNN.
Fully Connected 2048
Fully Connected + Softmax | 128 / 10

Table (5) CIFAR-10 CNN.

https://github.com/git-disl/DataPoisoning_FL

	Data Poisoning Attacks AgainstFederated Learning Systems

