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Abstract

Probabilistic password strength meters have been proved to be
the most accurate tools to measure password strength. Unfor-
tunately, by construction, they are limited to solely produce an
opaque security estimation that fails to fully support the user
during the password composition. In the present work, we
move the first steps towards cracking the intelligibility barrier
of this compelling class of meters. We show that probabilistic
password meters inherently own the capability to describe
the latent relation between password strength and password
structure. In our approach, the security contribution of each
character composing a password is disentangled and used to
provide explicit fine-grained feedback for the user. Further-
more, unlike existing heuristic constructions, our method is
free from any human bias, and, more importantly, its feedback
has a probabilistic interpretation.

In our contribution: (1) we formulate interpretable probabilis-
tic password strength meters; (2) we describe how they can
be implemented via an efficient and lightweight deep learning
framework suitable for client-side operability.

1 Introduction

Accurately measuring password strength is essential to guar-
antee the security of password-based authentication systems.
Even more critical, however, is training users to select secure
passwords in the first place. One common approach is to rely
on password policies that list a series of requirements for
a strong password. This approach is limited or even harm-
ful [10]. Alternatively, Passwords Strength Meters (PSMs)
have been shown to be useful and are witnessing increasing
adoption in commercial solutions [15,26].

The first instantiations of PSMs were based on simple heuris-
tic constructions. Password strength was estimated via either
handcrafted features such as LUDS (which counts lower and

! An abridged version of this paper appears in the proceedings of the 25th
European Symposium on Research in Computer Security (ESORICS) 2020.
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Figure 1: Example of the character-level feedback mechanism
and password composition process induced by our meter. In
the figure, “iamsecure!" is the password initially chosen by
the user. Colors indicate the estimated character security:
red (insecure) — green (secure).

uppercase letters, digits, and symbols) or heuristic entropy def-
initions. Unavoidably, given their heuristic nature, this class of
PSMs failed to accurately measure password security [11,30].
More recently, thanks to an active academic interest, PSMs
based on more sound constructions and rigorous security def-
initions have been proposed. In the last decade, indeed, a
considerable research effort gave rise to more precise meters
capable of accurately measuring password strength [9,20,28].
However, meters have also become proportionally more
opaque and inherently hard to interpret due to the increas-
ing complexity of the employed approaches. State-of-the-art
solutions base their estimates on blackbox parametric prob-
abilistic models [9,20] that leave no room for interpretation
of the evaluated passwords; they do not provide any feedback
to users on what is wrong with their password or how to im-
prove it. We advocate for explainable approaches in password
meters, where users receive additional insights and become



cognizant of which parts of their passwords could straightfor-
wardly improve. This makes the password selection process
less painful since users can keep their passwords of choice
mostly unchanged while ensuring they are secure.

In the present work, we show that the same rigorous proba-
bilistic framework capable of accurately measuring password
strength can also fundamentally describe the relation between
password security and password structure. By rethinking the
underlying mass estimation process, we create the first in-
terpretable probabilistic password strength meter. Here, the
password probability measured by our meter can be decom-
posed and used to estimate further the strength of every single
character of the password. This explainable approach allows
us to assign a security score to each atomic component of the
password and determine its contribution to the overall security
strength. This evaluation is, in turn, returned to the user who
can tweak a few "weak" characters and consistently improve
the password strength against guessing attacks. Figure 1 il-
lustrates the selection process. In devising the proposed mass
estimation process, we found it ideally suited for being im-
plemented via a deep learning architecture. In the paper, we
show how that can be cast as an efficient client-side meter
employing deep convolutional neural networks. Our work’s
major contributions are: (i) We formulate a novel password
probability estimation framework based on undirected proba-
bilistic models. (ii) We show that such a framework can be
used to build a precise and sound password feedback mecha-
nism. (iii) We implement the proposed meter via an efficient
and lightweight deep learning framework ideally suited for
client-side operability.

2 Background and preliminaries

In this section, we offer an overview of the fundamental con-
cepts that are important to understand our contribution. Sec-
tion 2.1 covers Probabilistic Password Strength Meters. Next,
in Section 2.2, we cover structured probabilistic models that
will be fundamental in the interpretation of our approach. Fi-
nally, Section 2.3 briefly discusses relevant previous works
within the PSMs context.

2.1 Probabilistic Password Strength Meters
(PPSMs)

Probabilistic password strength meters are PSMs that base
their strength measure on an explicit estimate of password
probability. In the process, they resort to probabilistic mod-
els to approximate the probability distribution behind a set
of known passwords, typically, instances of a password leak.
Having an approximation of the mass function, strength es-
timation is then derived by leveraging adversarial reasoning.
Here, password robustness is estimated in consideration of
an attacker who knows the underlying password distribution,

and that aims at minimizing the guess entropy [19] of her/his
guessing attack. To that purpose, the attacker performs an op-
timal guessing attack, where guesses are issued in decreasing
probability order (i.e., high-probability passwords first). More
formally, given a probability mass function P(x) defined on
the key-space X, the attacker creates an ordering Xp(y) of X
such that:

Xp) = [xo,xl,...,x"} where Ve[ :P(xi) 2P(xi+]) . (D

During the attack, the adversary produces guesses by travers-
ing the list Xp(y). Under this adversarial model, passwords
with high probability are considered weak, as they will be
quickly guessed. Low-probability passwords, instead, are as-
sessed as secure, as they will be matched by the attacker only
after a considerable, possibly not feasible, number of guesses.

2.2 Structured Probabilistic Models

Generally, the probabilistic models used by PPSMs are prob-
abilistic structured models (even known as graphical mod-
els). These describe password distributions by leveraging a
graph notation to illustrate the dependency properties among
a set of random variables. Here, a random variable Xx; is de-
picted as a vertex, and an edge between x; and X; exists
whether x; and x; are statistically dependent. Structured prob-
abilistic models are classified according to the orientation
of edges. A direct acyclic graph (DAG) defines a directed
graphical model (or Bayesian Network). In this formalism,
an edge asserts a cause-effect relationship between two vari-
ables; that is, the state assumed from the variable x; is in-
tended as a direct consequence of those assumed by its parents
par(x;) in the graph. Under such a description, a topological
ordering among all the random variables can be asserted and
used to factorize the joint probability distribution of the ran-
dom variables effectively. On the other hand, an undirected
graph defines an undirected graphical model, also known
as Markov Random Field (MRF). In this description, the topo-
logical order among edges is relaxed, and connected variables
influence each other symmetrically. However, this comes at
the cost of giving up to any simple form of factorization of
the joint distribution.

2.3 Related Works

Here, we briefly review early approaches to the definition of
PSMs. We focus on the most influential works as well as to
the ones most related to ours.

Probabilistic PSMs: Originally thought for guessing at-
tacks [21], Markov model approaches have found natural ap-
plication in the password strength estimation context. Castel-
luccia et al. [9] use a stationary, finite-state Markov chain
as a direct password mass estimator. Their model computes
the joint probability by separately measuring the conditional



probability of each pair of n-grams in the observed passwords.
Melicher et al. [20] extended the Markov model approach by
leveraging a character/token level Recurrent Neural Network
(RNN) for modeling the probability of passwords. As dis-
cussed in the introduction, pure probabilistic approaches are
not capable of any natural form of feedback. In order to par-
tially cope with this shortcoming, a hybrid approach has been
investigated in [24]. Here, the model of Melicher et al. [20]
is aggregated with a series of 21 heuristic, hand-crafted feed-
back mechanisms such as detection of leeting behaviors or
common tokens (e.g., keyboard walks).

Even if harnessing a consistently different form of feedback,
our framework merges these solutions into a single and jointly
learned model. Additionally, in contrast with [24], our feed-
back has a concrete probabilistic interpretation as well as
complete freedom from any form of human bias. Interest-
ingly enough, our model autonomously learns some of the
heuristics hardwired in [24]. For instance, our model learned
that capitalizing characters in the middle of the string could
consistently improve password strength.

Token look-up PSMs: Another relevant class of meters is
that based on the token look-up approach. Generally speak-
ing, these are non-parametric solutions that base their strength
estimation on collections of sorted lists of tokens like leaked
passwords and word dictionaries. Here, a password is mod-
eled as a combination of tokens, and the relative security score
is derived from the ranking of the tokens in the known dic-
tionaries. Unlike probabilistic solutions, token-based PSMs
are able to return feedback to the user, such as an explana-
tion for the weakness of a password relying on the semantic
attributed to the tokens composing the password. A leading
member of token look-up meters is zxcvbn [31], which as-
sumes a password as a combination of tokens such as roken,
reversed, sequence repeat, keyboard, and date. This meter
scores passwords according to a heuristic characterization of
the guess-number [19]. Such score is described as the num-
ber of combinations of tokens necessary to match the tested
password by traversing the sorted tokens lists.

zxcvbn is capable of feedback. For instance, if one of the
password components is identified as “repeat", zxcvbn will
recommend the user to avoid the use of repeated characters
in the password. Naturally, this kind of feedback mechanism
inherently lacks generality and addresses just a few human-
chosen scenarios. As discussed by the authors themselves,
zxcvbn suffers from various limitations. By assumption, it is
unable to model the relationships among different patterns
occurring in the same passwords. Additionally, like other to-
ken look-up based approaches, it fails to coherently model
unobserved patterns and tokens.

Another example of token look-up approach is the one pro-
posed in [17]. Telepathwords discourages a user from choos-
ing weak passwords by predicting the next most probable
characters during the password typing. In particular, predicted

characters are shown to the user in order to dissuade him/her
from choosing them as the next characters in the password.
These are reported together with an explanation of why those
characters were predicted. However, as for zxcvbn, such feed-
back solely relies on hardwired scenarios (for instance, the use
of profanity in the password). Telepathwords is server-side
only.

3 Meter foundations

In this section, we introduce the theoretical intuition behind
the proposed meter. First, in Section 3.1, we introduce and
motivate the probabilistic character-level feedback mecha-
nism. Later, in Section 3.2, we describe how that mechanism
can be obtained using undirected probabilistic models.

3.1 Character-level strength estimation via
probabilistic reasoning

As introduced in Section 2.1, PPSMs employ probabilistic
models to approximate the probability mass function of an
observed password distribution, say P(x). Estimating P(x),
however, could be particularly challenging, and suitable
estimation techniques must be adopted to make the process
feasible. In this direction, a general solution is to factorize
the domain of the mass function (i.e., the key-space); that is,
passwords are modeled as a concatenation of smaller factors,
typically, decomposed at the character level. Afterward,
password distribution is estimated by modeling stochastic
interactions among these simpler components. More formally,
every password is assumed as a realization x = [x],...,x(]
of a random vector of the kind x = [x,...,X¢], where each
disjoint random variable x; represents the character at
position i in the string. Then, P(x) is described through
structured probabilistic models that formalize the relations
among those random variables, eventually defining a joint
probability distribution. In the process, every random
variable is associated with a local conditional probability
distribution (here, referred to as Q) that describes the
stochastic behavior of x; in consideration of the conditional
independence properties asserted from the underlying
structured model i.e., Q(x;)=P(x; | par(x;)). Eventually,
the joint measurement of probability is derived from the
aggregation of the marginalized local conditional probability
distributions, typically under the form P(x) = [T, Q(x;=x;).

As introduced in Section 2.1, the joint probability can be
employed as a good representative for password strength.
However, such a global assessment unavoidably hides much
fine-grained information that can be extremely valuable to a
password meter. In particular, the joint probability offers us
an atomic interpretation of the password strength, but it fails
at disentangling the relation between password strength and
password structure. That is, it does not clarify which factors
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(a) Common tokens. (b) Capitalize first/inner.

(C) Numeric last/inner. (d) Special last/inner.

Figure 2: In Panel (a), the model automatically highlights the presence of weak substrings by assigning high probabilities to the
characters composing them. Panels (b), (c), and (d) are examples of self-learned weak/strong password composition patterns. In
panel (b), the model assigns a high probability to the capitalization of the first letter (a common practice), whereas it assigns low
probability when the capitalization is performed on inner characters. Panel (c) and (d) report similar results for numeric and

special characters.

of an evaluated password are making that password insecure.
However, as widely demonstrated by non-probabilistic ap-
proaches [17,24, 31], users benefit from the awareness of
which part of the chosen password is easily predictable and
which is not. In this direction, we argue that the local condi-
tional probabilities that naturally appear in the estimation of
the joint one, if correctly shaped, can offer detailed insights
into the strength or the weakness of each factor of a password.
Such character-level probability assignments are an ex-
plicit interpretation of the relation between the structure
of a password and its security. The main intuition here is
that: high values of Q(x;) tell us that x; (i.e., the character
at position i in the string) has a high impact on increasing
the password probability and must be changed to make the
password stronger. Instead, characters with low conditional
probability are pushing the password to have low probability
and must be maintained unchanged. Figure 2 reports some
visual representations of such probabilistic reasoning. Each
segment’s background color renders the value of the local
conditional probability of the character. Red describes high
probability values, whereas green describes low probability
assignments. Such a mechanism can naturally discover weak
passwords components and explicitly guide the user to ex-
plore alternatives. For instance, local conditional probabilities
can spot the presence of predictable tokens in the password
without the explicit use of dictionaries (Figure 2a). These
measurements are able to automatically describe common
password patterns like those manually modeled from other
approaches [24], see Figures 2b, 2c and 2d. More importantly,
they can potentially describe latent composition patterns that
have never been observed and modeled by human beings.
In doing this, neither supervision nor human-reasoning is
required.

Unfortunately, existing PPSMs, by construction, leverage
arbitrary designed structured probabilistic models that make
inefficient to produce the required estimates. Hereafter, we
show that reshaping the mass estimation process will allow us
to implement the feedback mechanism described above. To
that purpose, we have to build a new probabilistic estimation
framework and simulate a complete, undirected models.
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Figure 3: Two graphical models describing different inter-
pretations of the generative probability distribution for pass-
words of length four. Graph (a) represents a Bayesian network.
Scheme (b) depicts a Markov Random Field.

3.2 An undirected description of password
distribution

To simplify our method’s understanding, we start with a de-
scription of the probabilistic reasoning of previous approaches.
Then, we fully motivate our solution by comparison with them.
In particular, we chose the state-of-the-art neural approach
proposed in [20] (henceforth, referred to as FLA) as a repre-
sentative instance, since it is the least biased as well as the
most accurate among the existing PPSMs.

FLA uses a recurrent neural network (RNN) to estimate pass-
word mass function at the character level. That model is au-
toregressive and assumes a stochastic process represented by
a Bayesian network like the one depicted in Figure 3a. The
description derived from a Bayesian Network implies a topo-
logical order among password characters. Here, characters
influence their local conditional probabilities only asymmetri-
cally; that is, the probability of x;;; is conditioned by x; but
not vice versa. In practice, for the local conditional probabil-
ities, this implies that the observation of the value assumed
from x;;| does not affect our belief in the value expected
from x;, yet the opposite does. The autoregressive nature of
this model eventually simplifies the joint probability estima-
tion; the local conditional probability of each character can
be easily computed as Q(x;) = P(x; | x1,...,X;_1), where
O(x;) explicates that the i’th character solely depends on the
characters that precede it in the string. Just as easily, the joint



probability factorizes in:

L 4

P(x) = HQ(X,-) = P(Xl)HP(Xi | X1,...X-1)

i=1 i=2

by chain rule.

Unfortunately, although this approach does simplify
the estimation process, the conditional probability Q(x;),
per se, does not provide a direct and coherent estimation
of the security contribution of the single character x; in
the password. This is particularly true for characters in
the first positions of the string, even more so for the first
character x|, which is assumed to be independent of any
other symbol in the password; its probability is the same
for any possible configuration of the remaining random
variables [xz,...,x¢]. Nevertheless, in the context of a sound
character-level feedback mechanism, the symbol x; must be
defined as “weak” or “strong” according to the complete
context defined by the entire string. For instance, given two
passwords y="‘aaaaaaa” and z="a####’, the probability
Q(x;="‘a’) should be different if measured on y or z. More
precisely, we expect Q(x; = ‘a’|y) to be much higher than
O(x1="‘a’|z), as observing y;7="“aaaaaa” drastically
changes our expectations about the possible values assumed
from the first character in the string. On the other hand,
observing zp 7 = "“######” tells us little about the event x; = ‘a’.
Yet, this interaction cannot be described through the Bayesian
network reported in Figure 3a, where Q(x; = ‘a’|y) eventually
results equal to Q(x; = ‘a’|z). The same reasoning applies to
trickier cases, as for the password x=*“(password)”. Here,
arguably, the security contribution of the first character ‘(’
strongly depends from the presence or absence of the last
character', i.e., x7= ‘)’. The symbol x; = ‘(’, indeed, can be
either a good choice (as it introduces entropy in the password)
or a poor one (as it implies a predictable template in the
password), but this solely depends on the value assumed from
another character in the string (the last one in this example).
It should be apparent that the autoregressive nature of the
model prevents the resulting local conditional probabilities
from being sound descriptors of the real character probability
as well as of their security contribution. Consequently, such
measures cannot be used to build the feedback mechanism
suggested in Section 3.1. The same conclusion applies
to other classes of PPSMs [9, 29] which add even more
structural biases on top of those illustrated by the model in
Figure 3a.

Differently, we base our estimation on an undirected and
complete” graphical model, as this represents a handier de-
scription of the password generative distribution. Figure 3b

!Even if not so common, strings enclosed among brackets or other special
characters often appear in password leaks.
2“Complete" in the graph-theory sense.
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Figure 4: Estimated local conditional probabilities for two
pairs of passwords. The numbers depicted above the strings
report the Q(x;) value for each character (rounding applied).

depicts the respective Markov Random Field (MRF) for pass-
words of length four. According to that description, the local
conditional probability of the character x; directly depends on
any other character in the string, i.e., the full context. In other
words, we model each variable x; as a stochastic function
of all the others. This intuition is better captured from the
evaluation of local conditional probability (Eq. 2).

P(Xi‘X,ur],...Xg) i=1
O(x;) =< P(x; | X1,...X;_1) i=/
P(X; | X1,y Xim 1, X 1,...Xg) 1 <i</

2
Henceforth, we use the notation Q(x;) to refer to the local con-
ditional distribution of the i’th character within the password
x. When x is not clear from the context, we write Q(x; | x)
to make it explicit. The notation Q(x;=s) or Q(s), instead,
refers to the marginalization of the distribution according to
the symbol s.

Eventually, such undirected formalization intrinsically
weeds out all the limitations observed for the previous es-
timation process (i.e., the Bayesian network in Figure 3a).
Now, every local measurement is computed within the con-
text offered by any other symbol in the string. In the ex-
ample, y="aaaaaaa” | z="ass#”, indeed, the local condi-
tional probability of the first character can be now backward-
influenced from the context offered from the subsequent part
of the string. This is clearly observable from the output of an
instance of our meter reported in Figure 4a, where the value
of Q(x; = ‘a’) drastically varies between the two cases, i.e., y
and z. As expected, we have Q(x;="‘a’ly) > Q(x;="a’|z)
verified in the example. A similar intuitive result is reported
in Figure 4b, where the example x=*“(password)” is consid-
ered. Here, the meter first scores the string X' =“(password ”,
then it scores the complete password x="“(password)”. In
this case, we expect that the presence of the last character ‘)’
would consistently influence the conditional measurement of
the first bracket in the string. Such expectation is perfectly
captured from the reported output, where appending at the
end of the string the symbol )’ increases the probability of
the first bracket of a factor ~ 15.

However, obtaining these improvements does not come
for free. Indeed, under the MRF construction, the produc-
tory over the local conditional probabilities (better defined




as potential functions or factors within this context) does
not provide the exact joint probability distribution of x. In-
stead, such product results in a unnorr_nalized version of it:
P(x) o< [T, O(x;) = P(x) with P(x) = @. In the equation, Z
is the partition function. This result follows from the Hammer-
sley—Clifford theorem [16]. Nevertheless, the unnormalized
joint distribution preserves the core properties needed to the
meter functionality. Most importantly, we have that:

Va,x' @ P(x) > P(X) & P(x) > P(xX) . 3

That is, if we sort a list of passwords according to the true
joint P(x) or according to the unnormalized version P(x), we
obtain the same identical ordering. Consequently, no devia-
tion from the adversarial interpretation of PPSMs described
in Section 2.1 is implied. Indeed, we have Xp(x) = Xpy) for
every password distribution, key-space, and suitable sorting
function. Furthermore, the joint probability distribution, if
needed, can be approximated using suitable approximation
methods, as discussed in Appendix A. Alternatively, we
can use the energy-based models framework to capture the
proposed procedure.

It is important to highlight that, although we present our
approach under the character-level description, our method
can be directly applied to n-grams or tokens without any
modification.

3.2.1 Details on the password feedback mechanism and
further applications

Joint probability can be understood as a compatibility score
assigned to a specific configuration of the MRF; it tells us
the likelihood of observing a sequence of characters during
the interaction with the password generative process. On a
smaller scale, a local conditional probability measures the
impact that a single character has in the final security score.
Namely, it indicates how much the character contributes to
the probability of observing a certain password x. Within
this interpretation, low-probabilities characters push the joint
probability of x to be closer to zero (secure), whereas high-
probability characters (i.e., Q(x;) < 1) make no significant
contribution to lowering the password probability (insecure).
Therefore, users can strengthen their candidate passwords by
substituting high-probability characters with suitable lower-
probability ones (e.g., Figure 1).

Unfortunately, users’ perception of password security has
been shown to be generally erroneous [25], and, without
explicit guidelines, it would be difficult for them to select
suitable lower-probability substitutes. To address this limita-
tion, one could adopt our approach based on local conditional
distributions as an effective mechanism to help users select
secure substitute symbols. Indeed, V;Q(x;) are able to clar-
ify which symbol is a secure substitute and which is not for

each character x; of x. In particular, a distribution Q(x;), de-
fined on the whole alphabet X, assigns a probability to every
symbol s that the character x; can potentially assume. For a
symbol s € £, the probability Q(x;=s) measures how much
the event x; =s is probable given all the observable characters
in x. Under this interpretation, a candidate, secure substitution
of x; is a symbol with very low Q(x;=s) (as this will lower
the joint probability of x). In particular, every symbol s s.t.
O(x;=s) < Q(x;=x;) given x is a secure substitution for x;.
Table 1 better depicts this intuition. The Table reports the
alphabet sorted by Q(x;) for each x; in the example password
x="“PaSsWOrD!”. The bold symbols between parenthesis in-
dicate x;. Within this representation, all the symbols below
the respective x; for each x; are suitable substitutions that im-
prove password strength. This intuition is empirically proven
in Section 5.2. It is important to note that the suggestion
mechanism must be randomized to avoid any bias in the final
password distribution.? To this end, one can provide the user
with k£ random symbols among the pool of secure substitu-

tions, i.e., {s| Q(x;i=s) < O(x;=x;)}.

Table 1: First seven entries of the ordering imposed on X from
the local conditional distribution for each character of the
password x=“PaSsWOrD!”

Rark | ~sSOWODE | PeSSWOD! | PaesWOrD! | PaSeWODI | PaselrD! | PaSsWorD! | PSsWOuD! | PassWre! | PaSsworde
0 {P} A s S w (o] R d 1

1 S {a} {s} {s} Wi o {r} {D} S

2 P @ c A # {0} N t 2

3 B 3 n T f I 0 m s

4 C 4 t E k i L 1 3

s M I d H 1 # D k I

6 1 1 r o F A n e 5

7 c 5 X $ 3 @ X r 9

8 s 0 $ 1 0 S f 4

In summary, in this section, we presented and motivated an
estimation process able to unravel the feedback mechanism
described in Section 3.1. Maintaining a purely theoretical fo-
cus, no information about the implementation of such method-
ology has been offered to the reader. Next, in Section 4, we
describe how such a meter can be shaped via an efficient deep
learning framework.

4 Meter implementation

In this section, we present a deep-learning-based implemen-
tation of the estimation process introduced in Section 3.2.
Here, we describe the model and its training process. Then,
we explain how the trained network can be used as a building
block for the proposed password meter.

Model training. From the discussion in Section 3.2, our
procedure requires the parametrization of an exponentially

3That is, if weak passwords are always perturbed in the same way, they
will be easily guessed.



large number of interactions among random variables. Thus,
any tabular approach, such as the one used from Markov
Chains or PCFG [29], is a priori excluded for any real-world
case. To make such a meter feasible, we reformulate the under-
lying estimation process so that it can be approximated with
a neural network. In our approach, we simulate the Markov
Random Field described in Section 3.2 using a deep convo-
lutional neural network trained to compute Q(x;) (Eq. 2) for
each possible configuration of the structured model. In doing
S0, we train our network to solve an inpainting-like task de-
fined over the textual domain. Broadly speaking, inpainting is
the task of reconstructing missing information from mangled
inputs, mostly images with missing or damaged patches [32].
Under the probabilistic perspective, the model is asked to
return a probability distribution over all the unobserved
elements of x, explicitly measuring the conditional prob-
ability of those concerning the observable context. There-
fore, the network has to disentangle and model the semantic
relation among all the factors describing the data (e.g., char-
acters in a string) to reconstruct input instances correctly.
Generally, the architecture and the training process used for in-
painting tasks resemble an auto-encoding structure [8]. In the
general case, these models are trained to revert self-induced
damage carried out on instances of a train-set X. At each
training step, an instance x € X is artificially mangled with an
information-destructive transformation to create a mangled
variation %. Then, the network, receiving X as input, is opti-
mized to produce an output that most resembles the original
x; that is, the network is trained to reconstruct x from x.

In our approach, we train a network to infer missing characters
in a mangled password. In particular, we iterate over a pass-
word leak (i.e., our train-set) by creating mangled passwords
and train the network to recover them. The mangling operation
is performed by removing a randomly selected character from
the string. For example, the train-set entry x="“iloveyou” is
transformed in ¥="“iloveyou" if the 5’th character is selected
for deletion, where the symbol ‘e’ represents the “empty char-
acter”. A compatible proxy-task has been previously used
in [22] to learn a suitable password representation for guess-
ing attacks.

We chose to model our network with a deep residual struc-
ture arranged to create an autoencoder. The network follows
the same general Context Encoder [23] architecture defined
in [22] with some modifications. To create an information
bottleneck, the encoder connects with the decoder through a
latent space junction obtained through two fully connected
layers. We observed that enforcing a latent space, and a prior
on that, consistently increases the meter effectiveness. For
that reason, we maintained the same regularization proposed
in [22]; a maximum mean discrepancy regularization that
forces a standard normal distributed latent space. The final
loss function of our model is reported in Eq. 4. In the equa-
tion, Enc and Dec refer to the encoder and decoder network

respectively, s is the softmax function applied row-wise”, the
distance function d is the cross-entropy, and mmd refers to
the maximum mean discrepancy.

E, z[d(x, s(Dec(Enc(%)))] + oE, .y (o1 [mmd(z, Enc(%))]

“)
Henceforth, we refer to the composition of the encoder and
the decoder as f(x) = s(Dec(Enc(x))). We train the model
on the widely adopted RockYou leak [7] considering an 80/20
train-test split. From it, we filter passwords presenting fewer
than 5 characters. We train different networks considering
different maximum password lengths, namely, 16, 20, and 30.
In our experiments, we report results obtained with the model
trained on a maximum length equal to 16, as no substantial
performance variation has been observed among the different
networks. Eventually, we produce three neural nets with dif-
ferent architectures; a large network requiring 36MB of disk
space, a medium-size model requiring 18MB, and a smaller
version of the second that requires 6.6MB. These models can
be potentially further compressed using the same quantization
and compression techniques harnessed in [20].°

Model inference process. Once the model is trained, we
can use it to compute the conditional probability Q(x;) (Eq. 2)
for each i and each possible configuration of the MRF. This
is done by querying the network f using the same mangling
trick performed during the training. The procedure used to
compute Q(x;) for x is summarized in the following steps:

1. We substitute the i’th character of x with the empty char-
acter ’®’, obtaining a mangled password *.

2. Then, we feed X to a network that outputs a probability
distribution over X of the unobserved random variable

x; i.e., Q(x;).

3. Given Q(x;), we marginalize out x;, obtaining the proba-
bility:
O(xi) = P(xj=x; | %).

For instance, if we want to compute the local conditional prob-
ability of the character ‘e’ in the password x = “iloveyou”, we
first create ¥ ="“iloveyou" and use it as input for the net, obtain-
ing Q(xs), then we marginalize that (i.e., Q(xs = ‘e”)) getting
the probability P(xs5= ‘e’ | X). From the probabilistic point of
view, this process is equivalent to fixing the observable vari-
ables in the MRF and querying the model for an estimation
of the single unobserved character.

At this point, to cast both the feedback mechanism defined
in Section 3.1 and the unnormalized joint probability of the
string, we have to measure Q(x;) for each character x; of the

4The Decoder outputs ¢ estimations; one for each input character. There-
fore, we apply the softmax function separately on each of those to create ¢
probability distributions.

5The code, pre-trained models, and other materials related to our
work are publicly available at: https://github.com/pasquini-dario/
InterpretablePPSM.
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Figure 5: Graphical depiction of the complete inference process for the password x=*“lovel”. The function f refers to the trained

autoencoder and the symbol ’e’ refers to the deleted character.

tested password. This is easily achieved by repeating the infer-
ence operation described above for each character comprising
the input string. A graphical representation of this process
is depicted in Figure 5. It is important to highlight that the
¢ required inferences are independent, and their evaluation
can be performed in parallel (i.e., batch level parallelism),
introducing almost negligible overhead over the single infer-
ence. Additionally, with the use of a feed-forward network,
we avoid the sequential computation that is intrinsic in recur-
rent networks (e.g., the issue afflicting [20]), and that can be
excessive for a reactive client-side implementation. Further-
more, the convolutional structure enables the construction of
very deep neural nets with a limited memory footprint.

In conclusion, leveraging the trained neural network, we
can compute the potential of each factor/vertex in the Markov
Random Field (defined as local conditional probabilities in
our construction). As a consequence, we are now able to cast
a PPSM featuring the character-level feedback mechanism
discussed in Section 3.1. Finally, in Section 5, we empirically
evaluate the soundness of the proposed meter.

5 Evaluation

In this section, we empirically validate the proposed estima-
tion process as well as its deep learning implementation. First,
in Section 5.1, we evaluate the capability of the meter of ac-
curately assessing password strength at string-level. Next, in
Section 5.2, we demonstrate the intrinsic ability of the lo-
cal conditional probabilities of being sound descriptors of
password strength at character-level.

5.1 Measuring meter accuracy

In this section, we evaluate the accuracy of the proposed
meter at estimating password probabilities. To that purpose,
following the adversarial reasoning introduced in Section 2.1,
we compare the password ordering derived from the meter
with the one from the ground-truth password distribution. In
doing so, we rely on the guidelines defined in [15] for our
evaluation. In particular, given a test-set (i.e., a password leak),
we consider a weighted rank correlation coefficient between
ground-truth ordering and that derived from the meter. The
ground-truth ordering is obtained by sorting the unique entries
of the test-set according to the frequency of the password
observed in the leak. In the process, we compare our solution

with other fully probabilistic meters. A detailed description
of the evaluation process follows.

Test-set. For modeling the ground-truth password distribu-
tion, we rely on the password leak discovered by 4iQ in the
Dark Web [1] on 5th December 2017. It consists of the ag-
gregation of ~ 250 leaks, consisting of 1.4 billion passwords
in total. In the cleaning process, we collect passwords with
length in the interval 5 — 16, obtaining a set of ~ 4- 108 unique
passwords that we sort in decreasing frequency order. Fol-
lowing the approach of [15], we filter out all the passwords
with a frequency lower than 10 from the test-set. Finally, we
obtain a test-set composed of 107 unique passwords that we
refer to as Xgc. Given both the large number of entries and
the heterogeneity of sources composing it, we consider Xgc
an accurate description of real-world passwords distribution.

Tested Meters. In the evaluation process, we compare our
approach with other probabilistic meters. In particular:

e The Markov model [13] implemented in [3] (the same
used in [15]). We investigate different n-grams configu-
rations, namely, 2-grams, 3-grams and 4-grams that we
refer to as MM,, MM3 and MMy, respectively. For their
training, we employ the same train-set used for our me-
ter.

* The neural approach of Melicher et al. [20]. We use
the implementation available at [4] to train the main
architecture advocated in [20], i.e., an RNN composed
of three LSTM layers of 1000 cells each, and two fully
connected layers. The training is carried out on the same
train-set used for our meter. We refer to the model as
FLA.

Metrics. We follow the guidelines defined by Golla and
Diirmuth [15] for evaluating the meters. We use the weighted
Spearman correlation coefficient (ws) to measure the accuracy
of the orderings produced by the tested meters, as this has
been demonstrated to be the most reliable correlation metric
within this context [15]. This metric is defined as
wtm) — DDl Dom =)
VWit = 5)2] f wi(m — ;)]

where t and m are the sequence of rank assigned to the test-
set from the ground-truth distribution and the tested meter,




Table 2: Rank correlation coefficient computed between Xgc
and the tested meters.

ours ours ours

H MM, MM; MM, FLA (large) (middle) (small)

Weighted || 150 0170 0193 0217 | 0207 0203  0.199
Spearman 1
Required 1IMB 94MB 8.8GB 60MB | 36MB  18MB  6.6MB
Disk Space |

respectively, and where the bar notation (e.g., f) expresses the
weighted mean in consideration of the sequence of weights w.
The weights are computed as the normalized inverse of the
ground-truth ranks (Eq. 5).

1

w1
Yigi
In this metric, the weighting increases the relevance of weak
passwords (i.e., the ones with small ranks) in the score com-
putation; that is, the erroneous placing of weak passwords
(i.e., asserting a weak password as strong) is highly penalized.
Unlike [15], given the large cardinality and diversity of this
leak, we directly use the ranking derived from the password
frequencies in Xgc as ground-truth. Here, passwords with
the same frequency value have received the same rank in the
computation of the correlation metric.

Results. Table 2 reports the measured correlation coeffi-
cient for each tested meter. In the table, we also report the
required storage as auxiliary metric.

Our meters, even the smallest, achieve higher or comparable
score than the most performant Markov Model, i.e., MMy. On
the other hand, our largest model cannot directly exceed the
accuracy of the state-of-the-art estimator FLA, obtaining only
comparable results. However, FLA requires more disk space
than ours. Indeed, interestingly, our convolutional implemen-
tation permits the creation of remarkably lightweight meters.
As a matter of fact, our smallest network shows a comparable
result with MMy requiring more than a magnitude less disk
space.

In conclusion, the results confirm that the probability esti-
mation process defined in Section 3.2 is indeed sound and
capable of accurately assessing password mass at string-level.
The proposed meter shows comparable effectiveness with the
state-of-the-art [20], whereas, in the large setup, it outper-
forms standard approaches such as Markov Chains. Never-
theless, we believe that even more accurate estimation can
be achieved by investigating deeper architectures and/or by
performing hyper-parameters tuning over the model.

5.2 Analysis of the relation between local
conditional probabilities and password
strength

In this section, we test the capability of the proposed meter to
correctly model the relation between password structure and

password strength. In particular, we investigate the ability of
the measured local conditional probabilities of determining
the tested passwords’ insecure components.

Our evaluation procedure follows three main steps. Starting
from a set of weak passwords X:

1. We perform a guessing attack on X in order to estimate
the guess-number of each entry of the set.

2. For each password x € X, we substitute n characters of x
according to the estimated local conditional probabilities
(i.e., we substitute the characters with highest Q(x;)),
producing a perturbed password *.

3. We repeat the guessing attack on the set of perturbed
passwords and measure the variation in the attributed
guess-numbers.

Hereafter, we provide a detailed description of the evalua-
tion procedure.

Passwords sets. The evaluation is carried out considering
a set of weak passwords. In particular, we consider the first
10* most frequent passwords of the Xpc set.

Password perturbations. In the evaluation, we consider
three types of password perturbation:

(1) The first acts as a baseline and consists of the substitu-
tion of random positioned characters in the passwords with
randomly selected symbols. Such a general strategy is used
in [24] and [14] to improve the user’s password at composi-
tion time. The perturbation is applied by randomly selecting n
characters from x and substituting them with symbols sampled
from a predefined character pool. In our simulations, the pool
consists of the 25 most frequent symbols in Xpc (i.e., mainly
lowercase letters and digits). Forcing this character-pool aims
at preventing the tested perturbation procedures to create
artificially complex passwords such as strings containing ex-
tremely uncommon unicode symbols. We refer to this pertur-
bation procedure as Baseline.

(2) The second perturbation partially leverages the local con-
ditional probabilities induced by our meter. Given a password
x, we compute the conditional probability Q(x;) for each char-
acter in the string. Then, we select and substitute the character
with maximum probability, i.e., argmax,, O(x;). The symbol
we use in the substitution is randomly selected from the same
pool used for the baseline perturbation (i.e., top-25 frequent
symbols). When 7 is greater than one, the procedure is re-
peated sequentially using the perturbed password obtained
from the previous iteration as input for the next step. We refer
to this procedure as Semi-Meter.

(3) The third perturbation extends the second one by exploit-
ing the local conditional distributions. Here, as in the Semi-
Meter-based, we substitute the character in x with the highest
probability. However, rather than choosing a substitute sym-
bol in the pool at random, we select that according to the



Table 3: Strength improvement induced by different pertur-
bations. The last two rows of the table report the AGI ratio
between the two meter-based approaches and the baseline.

‘ n=1 ‘ n=2 ‘ n=73
Baseline (PNP) |  0.022 0.351 0.549
Semi-Meter (PNP) |  0.036 0.501 0.674
Fully-Meter (PNP) |  0.066 0.755 0.884
Baseline (AGI) | 3.0-10'0 | 3.6-10'! | 5.6-10"!
Semi-Meter (AGI) | 4.6-10'0 | 5.1-10'' | 6.8-10"!
Fully-Meter (AGI) | 8.2-10'° | 7.7-10'! | 8.9-10"!
Semi-Meter / Baseline (AGI) 1.530 1.413 1.222
Fully-Meter / Baseline (AGI) | 2.768 2.110 1.588

distribution Q(x;), where i is the position of the character to
be substituted. In particular, we choose the symbol the mini-
mize Q(x;), i.e., argmin .y Q(x;=s), where ¥’ is the allowed
pool of symbols. We refer to this method as Fully-Meter.

Guessing Attack. We evaluate password strength using the
min-auto strategy advocated in [27]. Here, guessing attacks
are simultaneously performed with different guessing tools,
and the guess-number of a password is considered the min-
imum among the attributed guess-numbers. In performing
such attacks, we rely on the combination of three widely
adopted solutions, namely, HashCat [2], PCFG [6,29] and the
Markov chain approach proposed in [5, 13]. For tools requir-
ing a training phase, i.e., OMEN and PCFG, we use the same
train-set used for our model (i.e., 80% of RockYou). Similarly,
for HashCat, we use the same data set as input dictionary®
and generated? as rules set. During the guesses generation,
we maintain the default settings of each implementation. We
limit each tool to produce 10'° guesses. The total size of the
generated guesses is ~ 3TB.

Metrics. In the evaluation, we are interested in measuring
the increment of password strength caused by an applied per-
turbation. We estimate that value by considering the Average
Guess-number Increment (henceforth, referred to as AGI);
that is, the average delta between the guess-number of the
original password and the guess-number of the perturbed pass-
word:

AGI(X) = ﬁ ’70[g(i") - g(x)]

where g is the guess-number, and &' refers to the perturbed
version of the i’th password in the test set. During the com-
putation of the guess-numbers, it is possible that we fail to
guess a password. In such a case, we attribute an artificial
guess-number equals to 10'? to the un-guessed passwords.
Additionally, we consider the average number of un-guessed
passwords as an ancillary metrics; we refer to it with the
name of Percentage Non-Guessed Passwords (PNP) and com-

6In this case, passwords are unique and sorted in decreasing frequency.
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pute it as:

1

ml{xi |g(x) # L A g(#) =1},

PNP(X) =
where g(x) = L when x is not guessed during the guessing
attack.

Results. We perform the tests over three values of z (i.e., the
number of perturbed characters), namely, 1, 2, and 3. Re-
sults are summarized in Table 3. The AGI caused by the two
meter-based solutions is always greater than that produced
by random perturbations. On average, that is twice more ef-
fective with respect to the Fully-Meter baseline and about
35% greater for the Semi-Meter. The largest relative benefit
is observable when n = 1, i.e., a single character is modified.
Focusing on the Fully-Meter approach, indeed, the guidance
of the local conditional probabilities permits a guess-number
increment 2.7 times bigger than the one caused by a random
substitution in the string. This advantage drops to ~ 1.5 when
n = 3, since, after two perturbations, passwords tend to be
already out of the dense zone of the distribution. Indeed, at
n = 3 about 88% of the passwords perturbed with the Fully-
Meter approach cannot be guessed during the guessing attack
(i.e., PNP). This value is only ~ 55% for the baseline. More
interestingly, the results tell us that substituting two (n = 2)
characters following the guide of the local conditional prob-
abilities causes a guess-number increment greater than the
one obtained from three (n = 3) random perturbations. As
a matter of fact, the AGI for the Fully-Meter perturbation is
~7.6-10" for n = 2 whereas is ~ 5.7 - 10'! for the baseline
when n = 3.

In the end, these results confirm that the local conditional dis-
tributions are indeed sound descriptors of password security
at the structural level.

Limitations. Since the goal of our evaluation was mainly to
validate the soundness of the proposed estimation process, we
did not perform user studies and we did not evaluate human-
related factors such as password memorability although we
recognize their importance.

6 Conclusion

In this paper, we showed that it is possible to construct in-
terpretable probabilistic password meters by rethinking the
underlying password mass estimation. We presented an undi-
rected probabilistic interpretation of the password generative
process that can be used to build precise and sound password
feedback mechanisms. Moreover, we demonstrated that such
an estimation process could be instantiated via a lightweight
deep learning implementation. We validated our undirected
description and deep learning solution by showing that our
meter achieves comparable accuracy with other existing ap-
proaches while introducing a unique character-level feedback
mechanism that generalizes any heuristic construction.
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Appendix
A Estimating guess-numbers

Within the context of PPSMs, a common solution to approxi-
mate guess-numbers [19] is using the Monte Carlo method
proposed in [12]. With a few adjustments, the same approach
can be applied to our meter. In particular, we have to derive an
approximation of the partition function Z. This can be done
by leveraging the Monte Carlo method as follows:

Z~N-E[P(x)] (6)
where N is the number of possible configurations of the MRF
(i.e., the cardinality of the key-space), and x is a sample from
the posterior distribution of the model. Samples from the
model can be obtained in three ways: (1) sampling from the
latent space of the autoencoder (as done in [22]), (2) per-
forming Gibbs sampling from the autoencoder, or (3) using
a dataset of passwords that follow the same distribution of
the model. Once we have an approximation of Z, we can use
Px)

it to normalize every joint probability, i.e., P(x) = and
then apply the method in [12]. Alternatively, we could adopt
a more articulate solution as in [18]. In any event, the estima-
tion of the partition function Z is performed only once and
can be done offline.

B Model Architectures and hyper-parameters

In this section, we detail the technical aspects of our deep
learning implementation.

Architectures As previously described, we base our networks
on a resnet structure. We use a bottleneck residual block com-
posed of three mono-dimensional convolutional layers as the
atomic building block of the networks. A graphical descrip-
tion of that is depicted in Figure 6. We construct three different
networks with different sizes (intended as the number of train-
able parameters). We determine the size of the networks by
varying the number of residual blocks, the kernel size of the
convolutional layers in the blocks, and the number of filters.
The three architectures are reported in Tables 5, 6 and 7.
Training process Table 4 reports the used hyper-parameters.
During the training, we apply label smoothing, which is con-
trolled from the parameter €. We found our models taking



\ — Fully-meter on the three values of n. The example passwords
L — Il - Il T I (first column) are sampled from Xpc. Figure 7 reports addi-
e e | tional examples of the feedback mechanism. The depicted
I L I i passwords have been randomly sampled from the tail of the
[ | [ormmmmmmemmse | [ we | [ oo e ] RockYou leak.

Figure 6: Depiction of: ResblockBneck1D[fn=Is, ks=(a,b)]

Table 4: Hyper-parameters used to train our AE

Hyper-parameter

Value

o

Batch size
Learning rate
Optimizer

Train Epochs

10
3024
0.0001
Adam
small=10

medium=5

large=5
0.05

particular advantage from large batch-sizes. We limit that to
3072 for technical limitations; however, we believe that bigger
batches could further increment the quality of the password

estimation.

Table 5: Small architecture.

covld[3, 128, same, linear]
ResblockBneck1D[fn=128, ks=(
ResblockBneck1D[fn=128, ks=(
ResblockBneck1D[fn=128, ks=(3,
ResblockBneck1D[fn=128, ks=(3,
3,
€

)

3
3,
3,
3,

ResblockBneck1D[fn=128, ks=
ResblockBneckl1D[fn=128, ks=
Flatten

FullyConnected[128, linear]

Dl
1l
1]
Dl
1l
1l

)

FullyConnected[MaxPasswordLength -

Reshape[MaxPasswordLength, 128]
ResblockBneck1D[fn=128, ks=(3,1
ResblockBneck1D[fn=128, ks=(3,
ResblockBneck1D[fn=128, ks=(3
ResblockBneck1D[fn=128, ks=(3,
ResblockBneck1D[fn=128, ks=(3,
ResblockBneck1D[fn=128, ks=(3,
Flatten

128, linear]

FullyConnected[MaxPasswordLength - AlphabetCardinality, linear]

C

Supplementary resources

This Section reports additional resources. Table 8 reports ex-
amples of password perturbation performed using the method
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Table 6: Medium architecture.

covld[5, 128, same, linear]
ResblockBneck1D[fn=128, ks=(
ResblockBneck1D[fn=128, ks=(5,
ResblockBneck1D[fn=128, ks=(
ResblockBneck1D[fn=128, ks=(
ResblockBneck1D[fn=128, ks=(
ResblockBneck1D[fn=128, ks=(
Flatten

FullyConnected[80, linear]
FullyConnected[MaxPasswordLength -
Reshape[MaxPasswordLength, 1 28]

128, linear]

Flatten

FullyConnected[MaxPasswordLength - AlphabetCardinality, linear]

Table 7: Large architecture.

covld[5, 128, same, linear]
ResblockBneck1D[fn=200, ks=(5,3
ResblockBneck1D[fn=200, ks=(5,3
ResblockBneck1D[fn=200, ks=(5,3
ResblockBneck1D[fn=200, ks=(5,3
ResblockBneck1D[fn=200, ks=(5,3
(5,3
(5.3
(5,3

ResblockBneck1D[fn=200, ks=
ResblockBneckl1D[fn=200, ks=
ResblockBneckl1D[fn=200, ks=
Flatten

FullyConnected[80, linear]
FullyConnected[MaxPasswordLength -
Reshape[MaxPasswordLength, 128]

128, linear]

ResblockBnecklD[fn= 2()0,ks—(5,3)] Flatten

FullyConnected[MaxPasswordLength - AlphabetCardinality, linear)




Table 8: Examples of password perturbation automatically
produced by the method Fully-meter. Symbols in bold are
the ones substituted by the meter.

X n=1 n=2 n=3
heaven?7 2eaven? 2eavln? 2e9vIn7
corvette corvltte cSrvltte cSrvlttb
mariah m3riah m3uiah u3uiah
373737 373731 t73731 t737ul

veronical vsronical vsron5cal vsrsnScal
arianal ariaoal 3riaoal 3r6aoal
goodgirl goodgir3 g9odgir3 u9odgir3
cheer c9eer c9ehr c9yhr
mahalko mlhalko mlh8lko mlh8lkt
19981998 19981n98 u9981n98 u9%081n98
123456aa i23456aa i234r6aa i23nr6aa
helena heleaa hdleaa hdicaa
montanal monta2al mo3ta2al mo3aa2al
vancouver vancouvmr | va9couvmr | va9co6évmr
fuck12 fhck12 fhckin fhc81n
patriots1 pat9iots1 pat9iotil pSt9iotil
evelynl evedynl 6vedynl 6vedynr
pancho panc2o pa6c2o 9a6c20
malibu mSlibu mSyibu mSyib6
ilovemysel || ilo0emysel | iioO0emysel | iio0emys8l
galatasaray || galatasardy | galat6ésardy | g8lat6sardy
tootsiel toStsiel to5ts9el to5tn9el
sayangku saya8gku s3ya8gku s3ya8gk8
moneyman || moSeyman | moSeymdn | uoSeymdn
theboss th9boss th9bos4 th9bts4
112211 012211 0l1221u 0e221u
k12345 k123y5 k120y5 kn2oy5
alexis 9lexis 9lrxis 9lrxos
princess7 princ4ss7 prihcdss7 prrhcdss7
rooster1 roo3terl roo3tlrl r6o03tlrl
junel5 junml15 junmrS jlnmr5
samurail Qamurail Oamu0ail Oemu0ail
surferl s9rferl s9rfnrl s9rfnr3
lokomotiv Ihkomotiv Ihkomot6v lhko8ot6v
rfn.irf rfn.i5f 5fn.i5f Sen.i5f
melisa mtlisa mtlisl mtl6sl
minime 3inime 3inimt 3iiimt
peaceout peaaeout 8eaaeout 8eaaeolt
louise lodise Irdise Irdisr
Liverpool Livehpool Livehp2ol | Li6ehp2ol
147896 1d7896 1d78y6 1d78yy
aditya adltya 4dltya 4dltyi
qwerty13 qwmrtyl3 | qwmr9y13 | qwmr9yu3
070809 i70809 i708d9 i7r8d9
emmanuell || emm9nuell | emm9nueil | eOm9nueil
beautiful2 belutiful2 belutifll2 | belutnfll2
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Figure 7: Additional examples of the feedback mechanism.
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