1902.10010v2 [cs.DC] 27 Apr 2020

arxXiv

Anonymity Preserving Byzantine
Vector Consensus

Christian Cachin*, Daniel Collins**, Tyler Crain***, and Vincent Gramolif

Abstract. Collecting anonymous opinions finds various applications rang-
ing from simple whistleblowing, releasing secretive information, to com-
plex forms of voting, where participants rank candidates by order of pref-
erences. Unfortunately, as far as we know there is no efficient distributed
solution to this problem. Previously, participants had to trust third par-
ties, run expensive cryptographic protocols or sacrifice anonymity. In
this paper, we propose a resilient-optimal solution to this problem called
AVCP, which tolerates up to a third of Byzantine participants. AVCP
combines traceable ring signatures to detect double votes with a reduc-
tion from vector consensus to binary consensus to ensure all valid votes
are taken into account. We prove our algorithm correct and show that it
preserves anonymity with at most a linear communication overhead and
constant message overhead when compared to a recent consensus base-
line. Finally, we demonstrate empirically that the protocol is practical by
deploying it on 100 machines geo-distributed in 3 continents: America,
Asia and Europe. Anonymous decisions are reached within 10 seconds
with a conservative choice of traceable ring signatures.

1 Introduction and related work

Consider a distributed survey where a group of mutually distrusting participants
wish to exchange their opinions about some issue. For example, participants may
wish to communicate over the Internet to rank candidates in order of preference
to change the governance of a blockchain. Without making additional trust as-
sumptions [2, 2] 42], one promising approach is to run a Byzantine consensus
algorithm [44], or more generally a vector consensus algorithm [I9, 26, £0] to
allow for arbitrary votes. In vector consensus, a set of participants decide on
a common vector of values, each value being proposed by one process. Unlike
interactive consistency [44], a protocol solving vector consensus can be executed
without fully synchronous communication channels, and as such is preferable for
use over the Internet. Unfortunately, vector consensus protocols tie each partic-
ipant’s opinion to its identity to ensure one opinion is not overrepresented in
the decision and to avoid double voting. There is thus an inherent difficulty in
solving vector consensus while preserving anonymity.

* University of Bern, cachin@inf .unibe.ch
** University of Sydney, dcol19436@uni.sydney.edu.au
*** University of Sydney, tycrain@gmail.com
T University of Sydney, vincent.gramoli@sydney.edu.au

In this paper, we introduce the anonymity-preserving vector consensus prob-
lem that prevents an adversary from discovering the identity of non-faulty par-
ticipants that propose values in the consensus and we introduce a solution called
Anonymised Vector Consensus Protocol (AVCP). To prevent the leader in some
Byzantine consensus algorithms [I5] from influencing the outcome of the vote
by discarding proposals, AVCP reduces the problem to binary consensus that is
executed without the need for a traditional leader [20].

We provide a mechanism to prevent Byzantine processes from double voting
whilst also decoupling their ballots from their identity. In particular, we adopt
traceable ring signatures [32, [38], which enable participants to anonymously
prove their membership in a set of participants, exposing a signer’s identity
if and only if they sign two different votes. This can disincentivise participants
from proposing multiple votes to the consensus. Alternatively, we could use link-
able ring signatures [45], but would not ensure that Byzantine processes are
held accountable when double-signing. We could also have used blind signatures
[14] [16], but this would have required an additional trusted authority.

We also identify interesting conditions to ensure anonymous communication.
Importantly, participants must propagate their signatures anonymously to hide
their identity. To this end, we could construct anonymous channels directly. How-
ever, these protocols require additional trusted parties, are not robust or require
O(n) message delays to terminate [I7, B85, 86l [AI]. Thus, we assume access to
anonymous channels, such as through publicly-deployed [25], [63] networks which
often require sustained network observation or large amounts of resources to de-
anonymise with high probability [34} [48]. Anonymity is ensured then as processes
do not reveal their identity via ring signatures and communicate over anonymous
channels. When correlation-based attacks on certain anonymous networks may
be viable [46] and for efficiency’s sake, processes may anonymously broadcast
their proposal and then continue the protocol execution over regular channels.
However, anonymous channels alone cannot ensure anonymity when combined
with regular channels as an adversary could infer identities through latency [3]
and message transmission ordering [52]. For example, an adversary may relate
late message arrivals from a single process over both channels to deduce the
identity of a slow participant. This is why, to ensure anonymity, the timing and
order of messages exchanged over anonymous channels should be statistically
independent (or computationally indistinguishable with a computational adver-
sary) from that of those exchanged over regular channels. In practice, one may
attempt to ensure that there is a low correlation by ensuring that message delays
over anonymous and regular channels are sufficiently randomised.

We construct our solution iteratively first by defining the anonymity-
preserving all-to-all reliable problem that may be of independent interest.
Here, anonymity and comparable properties to reliable broadcast [9] with n
broadcasters are ensured. By construction a solution to this problem with
Bracha’s reliable broadcast [7], AVCP can terminate after three regular and
one anonymous message delay. With this approach, our experimental results
are promising—with 100 geo-distributed nodes, AVCP generally terminates in

less than ten seconds. We remark that, to ensure confidentiality of proposals
until after termination, threshold encryption [23] 57], in which a set threshold
of participants must cooperate to decrypt any message, can be used at the cost
of an additional message delay.

Related constructions. We consider techniques without additional trusted
parties. Homomorphic tallying [2I] encodes opinions as values that are summed
in encrypted form prior to decryption. Such schemes that rely on a public bul-
letin board for posting votes [37] could use Byzantine consensus [44] and make
timing assumptions on vote submission to perform an election. Unfortunately,
homomorphic tallying is impractical when the pool of candidates is large and
impossible when arbitrary. Using a multiplicative homomorphic scheme [2§],
decryption work is exponential in the amount of candidates, and additive
homomorphic encryption like Paillier’s scheme [5I] incur large (RSA-size)
parameters and more costly operations. Fully homomorphic encryption [10, [33]
is suitable in theory, but at present is untenable for computing complex circuits
efficiently. Self-tallying schemes [37], which use homomorphic tallying, are not
appropriate as at some point all participants must be correct, which is untenable
with arbitrary (Byzantine) behaviour. Constructions involving mix-nets [I§]
allow for arbitrary ballot structure. However, decryption mix-nets are not a
priori robust to a single Byzantine or crash failure [I8], and re-encryption
mix-nets which use proofs of shuffle are generally slow in tallying [2, [43],
requiring hours to tally in larger elections since O(t) processes need to perform
proofs of shuffle [49] in sequence. DC-nets and subsequent variations [I7, [36]
are not sufficiently robust and generally require O(n) message delays for
an all-to-all broadcast. On multi-party computation, general techniques like
Yao’s garbled-circuits [60] incur untenable overhead given enough complexity
in the structure of ballots. Private-set intersection [30, 6I] can be efficient
for elections that require unanimous agreement, but do not generalise arbitrarily.

Roadmap. The paper is structured as follows. Section [2| provides preliminary
definitions and specifies the model. Section [3] presents protocols and definitions
required for our consensus protocol. Section 4] presents our anonymity-preserving
vector consensus solution. We consider the case where regular and anonymous
message channels are combined in Section [f] Section [6] benchmarks AVCP on
up to 100 geo-distributed located on three continents. Section [7] concludes. Ap-
pendix [A] proves the correctness of AVCP. Appendix [B] describes handling the
termination of binary consensus instances used in AVCP. Appendix [C] details
and proves correct AARBP, presented using a single anonymous broadcast per
process. Appendix |D| combines AVCP and threshold encryption, forming a vot-
ing scheme which is then analysed. Appendix [E] evaluates our other distributed
protocols and necessary cryptographic schemes.

2 Model

We assume the existence of a set of processes P = {p1,...,p,} (where |P| = n,
and the ith process is p;), an adversary A who corrupts ¢ < % processes in
P, and a trusted dealer D who generates the initial state of each process.
For simplicity of exposition, we assume that cryptographic primitives are
unbreakable. With concrete primitives that provide computational guarantees,
each party could be modelled as being able to execute a number of instructions
each message step bounded by a polynomial in a security parameter k [I3],
in which case the transformation of our proofs is straight forward given the
hardness assumptions required by the underlying cryptographic schemes.

Network: We assume that P consists of asynchronous, sequential processes that
communicate over reliable, point-to-point channels in an asynchronous network.
An asynchronous process is one that executes instructions at its own pace. An
asynchronous network is one where message delays are unbounded. A reliable
network is such that any message sent will eventually be delivered by the in-
tended recipient. We assume that processes can also communicate using reliable
one-way anonymous channels, which we soon describe.

Each process is equipped with the primitive “send M to p;”, which sends the
message M (possibly a tuple) to process p; € P. For simplicity, we assume that
p; can send a message to itself. A process receives a message M by invoking the
primitive “receive m”. Each process may invoke “broadcast M”, which is short-
hand for “for each p; € P do send M to p; end for”. Analogously, processes may
invoke “anon_send M to p;” and “anon_broadcast M” over anonymous channels,
which we characterise below.

Since reaching consensus deterministically is impossible in failure-prone
asynchronous message-passing systems [29], we assume that partial synchrony
holds among processes in P in Section[d] That is, we assume there exists a point
in time in protocol execution, the global stabilisation time (GST), unknown to
all processes, after which the speed of each process and all message transfer
delays are upper bounded by a finite constant [27].

Adversary: We assume that the adversary A schedules message delivery over
the regular channels, restricted to the assumptions of our model (such as partial
synchrony). For each send call made, A determines when the corresponding
receive call is invoked. A portion of processes— exactly ¢ < 7 members of
P—are initially corrupted by A and may exhibit Byzantine faults [44] over
the lifetime of a protocol’s execution. That is, they may deviate from the
predefined protocol in an arbitrary way. We assume A can see all computations
and messages sent and received by corrupted processes. A non-faulty process is
one that is not corrupted by A and therefore follows the prescribed protocol. A
can only observe anon_send and anon_receive calls made by corrupted processes.
A cannot see the (local) computations that non-faulty processes perform. We
do not restrict the amount or speed of computation that A can perform.

Anonymity assumption: Consider the following experiment. Suppose that
p; € P is non-faulty and invokes “anon_send m to p;”, where p; € P and is
possibly corrupted, and p; invokes anon_receive with respect to m. No process
can directly invoke send or invoke receive in response to a send call at any time.
p; is allowed to use anon_send to message corrupted processes if it is corrupted,
and can invoke anon_recv with respect to messages sent by corrupted processes.
Each process is unable to make oracle calls (described below), but is allowed
to perform an arbitrary number of local computations. p; then outputs a single
guess, g € {1,...,n} as to the identity of p;. Then for any run of the experiment,
Pr(i=g) < L.

As A can corrupt t processes, the anonymity set [22], i.e. the set of processes

p; is indistinguishable from, comprises n — ¢ non-faulty processes. Our definition
captures the anonymity of the anonymous channels, but does not consider the
effects of regular message passing and timing on anonymity. As such, we can
use techniques to establish anonymous channels in practice with varying levels
of anonymity with these factors considered.
Traceable ring signatures: Informally, a ring signature [32], [54] proves that
a signer has knowledge of a private key corresponding to one of many public
keys of their choice without revealing the corresponding public key. Hereafter,
we consider traceable ring signatures (or TRSs), which are ring signatures that
expose the identity of a signer who signs two different messages. To increase
flexibility, we can consider traceability with respect to a particular string called
an issue [59], allowing signers to maintain anonymity if they sign multiple times,
provided they do so each time with respect to a different issue.

We now present relevant definitions of the ring signatures which are analogous
to those of Fujisaki and Suzuki [32]. Let ID € {0,1}*, which we denote as a tag.
We assume that all processes may query an idealised distributed oracle, which
implements the following four operations:

1. o < Sign(i, ID, m), which takes the integer ¢ € {1,...,n}, tag ID € {0,1}*
and message m € {0,1}*, and outputs the signature o € {0, 1}*. We restrict
Sign such that only process p; € P may invoke Sign with first argument 7.

2. b < VerifySig(ID, m, o), which takes the tag ID, message m € {0,1}*, and
signature o € {0,1}*, and outputs a bit b € {0,1}. All parties may query
VerifySig.

3. out + Trace(ID,m,c,m’,o’), which takes the tag ID € {0,1}*, messages
m,m’ € {0,1}* and signatures 0,0’ € {0,1}*, and outputs out € {0,1}* U
{1,...,n} (possibly corresponding to a process p;). All parties may query
Trace.

4. xz < FindIndex(ID,m, o) takes a tag ID € {0,1}*, a message m € {0,1}*,
and a signature o € {0,1}*, and outputs a value = € {1,...,n}. FindIndex
may not be called by any party, and exists only for protocol definitions.

‘We describe the behaviour of the idealised distributed oracle:

— Signature correctness and unforgeability: VerifySig(ID,m,0) = 1 <=
there exists some process p; € P that previously invoked Sign(é, ID,m) and
obtained o as a response. Unforgeability is captured by the “=" claim.

— Traceability and entrapment-freeness: The function Trace behaves as
defined below <= o < Sign(i, ID,m) and o’ < Sign(i’, ID,m/'):

“indep” if i # ¢,
Trace(ID,m,o,m’,c') = { “linked” else if m = m’,

i otherwise (i =14 Am # m/).

Traceability is captured by the “<” claim: if m = m’, then the messages
are linked, otherwise, the identity of the signing process p; = p;s is exposed.
Entrapment-freeness is captured by the “=" claim: loosely, processes cannot
be falsely accused of double-signing.

— Signature anonymity: Consider the following scenario. Let D be an ad-
versary.Let ¢ € {1,...,n} be the identifier of a non-faulty process. Sup-
pose that D is given a set of signatures of arbitrary length S = {oy,...}
such that, for each pair (o, 0y) = (Sign(¢, ID,, m), Sign(i, ID,, m,)), either
ID, = ID, and m; = m,, holds or ID, # ID, holds. D is allowed access
to the set .S, but not any of its previous computations, and may not com-
municate with other parties. Then, suppose that D is required to output a
value g € {1,...,n}, corresponding to its guess of the value of i, after per-
forming an arbitrary number of computations and oracle calls subject to the
restrictions described above. Then Pr(i = g) = ﬁ Signature anonymity
ensures that a process that signs with respect to a single message m per tag
ID maintains anonymity.

With respect to FindIndex(ID,m, o), i € {1,...,n} is outputted if and only
if o is the result of process p; having previously queried Sign(i, ID,m). The
unforgeability property implies signature uniqueness: If calls o < Sign (i, ID,m)
and o’ « Sign(j, ID,m’) are made, then o # ¢’ holds unless i = j and m = m/.

The concrete scheme proposed by Fujisaki and Suzuki [32] computationally
satisfies these properties in the random oracle model [4] provided the Decisional
Diffie-Hellman problem is intractable. It has signatures of size O(kn), where
k is the security parameter. To simplify the presentation, we assume that its
properties hold unconditionally in the following.

3 Communication primitives

In this section, we detail communication primitives that are invoked in our con-
sensus algorithm presented in Section [d In particular, we describe and present
a mechanism for processes to replace communication calls over regular channels
to ones over anonymous channels, we present the binary consensus problem,
and define the properties of anonymity-preserving all-to-all reliable broadcast,
an extension of reliable broadcast, initially described by Bracha [1].

3.1 Traceable broadcast

Suppose a process p wishes to anonymously message a given set of processes P.
By invoking anonymous communication channels, p can achieve this, but P\ {p}

is unable to verify that p resides in P, and so cannot meaningfully participate in
protocol execution. By using (traceable) ring signatures, p can verify its mem-
bership in P over anonymous channels without revealing its identity. To this
end, we outline a simple mechanism to replace the invocation of send and receive
primitives (over regular channels) with calls to ring signature and anonymous
messaging primitives anon_send and anon_receive.

State. Each process in P tracks msg_buf[], which maps a key (an ordered
list of strings) to a set of messages of the form (m,c), where o is the out-
put of a call to Sign. Each set is initially empty. Messages of the form
(ID, TAG,label,m, o) (where label = (I1,...,l;) for some k > 0) are deposited
as msg_buf[ID, TAG, label] < msg_buf[ID, TAG,label] U {m,o}.

Algorithm 1 Traceable broadcast
1: upon invocation of broadcast (ID, TAG, label, m)

2: o« Sign(i, T,m) > T = ID||TAG||l1]|| - - - ||lx, where label = (I1,. .., 1)
3: anon_broadcast (ID, TAG,label,m, o)

4: upon invocation of anon_receive (ID, TAG, label,m, o)

5. walid < (VerifySig(T,m,o) = 1)

6: if valid then

T: for each (m/,c’) € msg_buf [ID, TAG, label] do

8: if Trace(T,m,o,m’,0") # “indep” then

9: valid < false > Double-signing detected
10: break

11: msg_buf[ID, TAG, label] < msg_buf[ID, TAG,label] U {(m, o)}

12: if valid then

13: receive (ID, TAG, label, m)

Protocol. Suppose that a process p wishes to invoke broadcast with respect
to a tuple (ID, TAG,label,m) To replace broadcast (resp. send) calls, a pro-
cess first signs the value m with respect to string T = ID||TAG||l1]| ... ||lk
for some k > 0 (at line , outputting o. We assume every T in Algorithm
takes this form. Then, p invokes anon_broadcast (resp. anon_send) with respect
to (ID, TAG, label,m, o) (line [3)).

On receipt of a tuple (ID, TAG,label,; m, o) via anonymous channels, p first
checks that the signature o is well-formed (line [5). Given this, all message/sig-
nature pairs in the set msg_buf[ID, TAG, label] are compared to the received
tuple via Trace calls (line [8)). Irrespective of the outcome, the received tuple is
stored in msg_buf[| (line . Provided that the tuple is independent with re-
spect to the signer of all messages stored thus far in msg_buf[ID, TAG, label],
(ID, TAG,label,m) is considered receipt over regular channels (line [13)).

We now prove that the protocol is correct and ensures anonymity under the
assumptions of the model.

Lemma 1. Suppose p; € P is non-faully and invokes broadcast
(ID, TAG,label,m). Suppose p; has previously invoked broadcast an arbi-
trary number of times. Then, all non-faulty processes will eventually invoke
receive (ID, TAG, label,m). Moreover, p; preserves anonymity which is modelled
as follows, provided that p; does not invoke broadcast (ID, TAG,label,m) and
broadcast (ID’, TAG',label,m’) where (ID, TAG,label) = (ID', TAG', label’).
Suppose that an adversary A is allowed to output a single guess, g € {1,...,n}
as to the identity of p; a finite amount of time after invoking receive at a
corrupted process of its choice. A is then allowed to perform an arbitrary
number of computations and make oracle calls described in Section [9 before
outputting its guess. Then for any A, Pr(i=g) < ﬁ

Proof. Process p; invokes Sign(i, ID|| TAG||l1]| - - - ||l, m), producing the signa-
ture o (line[2). Then, p; invokes “anon_broadcast (i, ID||TAG||l1|| - - - ||, m, o)
(line [3)). By construction of the model, A is unable to observe the existence or
timing of p;’s call to anon_broadcast. By the anonymity assumption, A is not
able to produce a guess g # ﬁ when unable to make oracle calls, since it is
only aware that the ¢ processes it has corrupted are different from p;. By the
reliability of the network, A will eventually invoke anon_receive with respect to
m at one of its ¢ corrupted processes, as will every non-faulty process.

By signature correctness, each process will deduce that
VerifySig(ID|| TAG||l1|| - - - |llk, m,0) = 1 at line By definition of Sign,
A cannot invoke Sign (¢, ID||TAG||l1]| - - - ||k, m') nor produce a value o’ such

that VerifySig(ID||TAG||l1||- - - ||l,m/,0’) = 1 for any m’. This holds for
any tuple of the form (ID, TAG,ly,...,l;). Thus, every non-faulty process
will progress to line [7]] By traceability and entrapment-freeness, A cannot
produce (m’,c’) such that Trace(ID||TAG||l1]| - ||lk, m,o,m' 0’) # “indep”.
In particular, if m’ # m, then A cannot expose the identity of p; through a
Trace call, as Trace will never output ¢. Thus, every non-faulty process will
reach line By signature anonymity, and the fact that p; never signs with
respect to two tuples such that (ID', TAG' ly/,...,l}) = (ID, TAG,l1, ..., 1),

no previous computation or messages can aid A’s guess to be such that g # ——.
n—t

Hereafter, we assume that calls to primitives send and receive are handled by the
procedure presented in this subsection unless explicitly stated otherwise.

3.2 Binary consensus

Broadly, the binary consensus problem involves a set of processes reaching an
agreement on a binary value b € {0, 1}. We first recall the definitions that define
the binary Byzantine consensus (BBC) problem as stated in [20]. In the following,
we assume that every non-faulty process proposes a value, and remark that only
the values in the set {0,1} can be decided by a non-faulty process.

1. BBC-Termination: Every non-faulty process eventually decides on a value.
2. BBC-Agreement: No two non-faulty processes decide on different values.

3. BBC-Validity: If all non-faulty processes propose the same value, no other
value can be decided.

We present the safe, non-terminating variant of the binary consensus routine
from [20] in Algorithm 2} As assumed in the model (Section [2), the terminating
routine relies on partial synchrony between processes in P. The protocols execute
in asynchronous rounds.

Algorithm 2 Safe binary consensus routine

1: bin_propose(v):
2 est < v; r + 0;
3 repeat:
4: rr+1;
5: BV-broadcast(EST, r, est)
6: wait until (bin_values[r] # ()
7 broadcast (AUX, r, bin_values[r])
8: wait until (|values,| > n —t) A (val € bin_values[r] for all val € values,)
9: b« r (mod 2)
10: if val = w for all val € values, where w € {0,1} then
11: est < w;
12: if w =10 then
13: decide(v) if not yet invoked decide()
14: else
15: est < b

16: upon intial receipt of (AUX,r,b) for some b € {0,1} from process p;
17 walues,.append(b)

18: BV-broadcast(EST,r, v;):

19: broadcast (EST,r,v;)

20: upon receipt of (EST,r,v)

21: if (EST,r,v) received from (¢ 4 1) processes and not yet broadcast then
22: broadcast (EST,r,v)

23: if (EST,r,v) received from (2t 4+ 1) processes then
24: bin_values|r] < bin_values[r] U {v}

State. A process keeps track of a binary value est € {0,1}, corresponding to
a process’ current estimate of the decided value, arrays bin_values[l..], a round
number r (initialised to 0), an auxiliary binary value b, and lists of (binary)
values values,, r = 1,2, ..., each of which are initially empty.

Messages. Messages of the form (EST,r,b) and (AUX,r,b), where r > 1 and b €
{0, 1}, are sent and processed by non-faulty processes. Note that we have omitted
the dependency on a label label and identifier ID for simplicity of exposition.

BV-broadcast. To exchange FEST messages, the protocol relies on an all-to-
all communication abstraction, BV-broadcast [47], which satisfies the following
properties for a given round r > 1 that a process is executing:

— BV-Obligation: If at least (¢ + 1) non-faulty processes BV-broadcast the
same value v, then v will eventually be added to the set bin_values of each
non-faulty process.

— BV-Justification: If p is non-faulty and v € bin_values[r], then v must
have been BV-broadcast by a non-faulty process.

— BV-Uniformity: If v is added to a non-faulty process p’s bin_values[r] set,
then eventually v € bin_values[r] at every non-faulty process.

— BV-Termination: Eventually, bin_values[r] becomes non-empty for every
non-faulty process.

Primarily, BV-broadcast serves to filter values that are only proposed by
faulty processes (BV-Obligation and BV-Justification), to ensure progress (BV-
Termination), and to work towards agreement (BV-Uniformity). When a process
adds a value v € {0,1} to its array bin_values[r| for some r > 1, we say that v
was BV-delivered.

Functions. Let b € {0,1}. In addition to BV-broadcast and the communication
primitives in our model (Section, a process can invoke bin_propose(b) to begin
executing an instance of binary consensus with input b, and decide(b) to decide
the value b. In a given instance of binary consensus, these two functions may be
called exactly once. In addition, the function list.append(v) appends the value
v to the list lest.

Protocol description. Upon the invocation bin_propose(b), where b € {0,1}, a
process will enter a sequence of asynchronous rounds.

In a given round, a process will invoke BV-broadcast (line , broadcasting
its current estimate (line for the round r, which is est. In an instance of
BV-broadcast, after receiving a binary value from ¢ + 1 different processes, a
process will broadcast the value if not yet done (line . Eventually, a process
will BV-deliver a value v upon reception from 2t + 1 different processes, fulfilling
the condition at line In doing so, a process appends v to its set bin_values|r]
(line 24), and we note that bin_values[r] is not necessarily in its final form at
this point in time.

Since bin_values[r] is now a singleton set (after line [6]), non-faulty processes
will broadcast the value v contained in bin_values[r] (line [7). Then, processes
wait until they can form a list values, such that val € bin_values[r] for all
val € values, and values, is formed from at least n — ¢ (AUX, r, b) messages sent
by distinct processes that they have received (line . This ensures that enough
processes have sent messages to be able to (potentially) decide, and that only
values BV-broadcast previously are considered candidates for being decided.

Then, processes attempt to decide a value via local computation. b is set to
r (mod 2) (line[d), and then each process checks the following:

10

— If each element of values, is w, the estimate for the next round is set to w
(line [1T).

— Given the above, w is then decided if 7 (mod 2) = w, (lines [12] and [13). If
this does not hold, the value can be decided in the next round provided that
values, ; is uniform at line

— Else, values, contains both 0’s and 1’s (and bin_values[r] = {0,1}), and est
is set to be r (mod 2) (line[I5)), as a process cannot decide at this point.

Note that, upon invocation of decide(), processes still participate in the pro-
tocol, enabling other processes who may not have decided to decide. The inter-
ested reader may verify the correctness of this protocol, and the corresponding
terminating, partially-synchronous protocol in [20].

3.3 Anonymity-preserving all-to-all reliable broadcast

To reach eventual agreement in the presence of Byzantine processes without
revealing who proposes what, we introduce the anonymity-preserving all-to-all
reliable broadcast problem that preserves the anonymity of each honest sender
reliably broadcasting. In this primitive, all processes are assumed to (anony-
mously) broadcast a message, and all processes deliver messages over time. It
ensures that all honest processes always receive the same message from one spe-
cific sender while hiding the identity of any non-faulty sender.

Let ID € {0,1}* be an identifier, a string that uniquely identifies an in-
stance of AARB-broadcast. Let m be a message, and o be the output of the call
Sign(i, T, m) for some ¢ € {1,...,n}, where T = f(ID,label) is as in Algorithm
Each process is equipped with two operations, “AARBP” and “AARB-deliver”.
AARBP[ID](m) is invoked once with respect to ID and any message m, de-
noting the beginning of a process’ execution of AARBP with respect to ID.
AARB-deliver[ID](m, o) is invoked between n — ¢t and n times over the proto-
col’s execution. When a process invokes AARB-deliver[ID](m, o), they are said
to “AARB-deliver” (m, o) with respect to ID. Let T' = f(ID, label) be as in Al-
gorithm [2| Then, given ¢t < 7, we define a protocol that implements anonymity-
preserving all-to-all reliable broadcast (AARB-broadcast) with respect to ID as
satisfying the following siz properties:

1. AARB-Signing: If a non-faulty process p; AARB-delivers a message with
respect to ID, then it must be of the form (m, o), where a process p; € P
invoked Sign(i, T, m) and obtained o as output.

2. AARB-Validity: Suppose that a non-faulty process AARB-delivers (m, o)
with respect to ID. Let ¢ = FindIndex(T,m,o) denote the output of an
idealised call to FindIndex. Then if p; is non-faulty, p; must have anonymously
broadcast (m, o).

3. AARB-Unicity: Consider any point in time in which a non-faulty pro-
cess p has AARB-delivered more than one tuple with respect to ID. Let
delivered = {(my,01),...,(my,07)}, where |delivered| = I, denote the set of
these tuples. For each ¢ € {1,...,l}, let out; = FindIndex(T,m;,o;) denote

11

the output of an idealised call to FindIndex. Then for all distinct pairs of
tuples {(m, 0;), (m;,0,)}, out; # out;.

4. AARB-Termination-1: If a process p; is non-faulty and invokes
AARBP[ID](m), all the non-faulty processes eventually AARB-deliver (m, o)
with respect to ID, where o is the output of the call Sign(i, T, m).

5. AARB-Termination-2: If a non-faulty process AARB-delivers (m, o) with
respect to ID, then all the non-faulty processes eventually AARB-deliver
(m, o) with respect to ID.

We require AARB-Signing to ensure that the other properties are meaning-
ful. Since messages are anonymously broadcast, properties refer to the index
of the signing process determined by an idealised call to FindIndex. In spirit,
AARB-Validity ensures if a non-faulty process AARB-delivers a message that
was signed by a non-faulty process p;, then p; must have invoked AARBP. Sim-
ilarly, AARB-Unicity ensures that a non-faulty process will AARB-deliver at
most one message signed by each process. We note that AARB-Termination-2
is critical for consensus, as without it, different processes may A ARB-deliver
different messages produced by the same process, as in the two-step algorithm
implementing no-duplicity broadcast [8, [63]. Finally, we state the anonymity
property:

6. AARB-Anonymity: Suppose that non-faulty process p; invokes
AARBP[ID](m) for some m and given ID, and has previously invoked an
arbitrary number of AARBP[ID;](m;) calls where ID # ID; for all such j.
Suppose that an adversary A is required to output a guess g € {1,...,n},
corresponding to the identity of p; after performing an arbitrary number of
computations, allowed oracle calls and invocations of networking primitives.
Then for any A, Pr(i = g) < —-.

n—t

Informally, AARB-Anonymity guarantees that the source of an anonymously
broadcast message by a non-faulty process is unknown to the adversary, in that
it is indistinguishable from n — ¢ (non-faulty) processes. AARBP can be im-
plemented by composing n instances of Bracha’s reliable broadcast algorithm,
which we describe and prove correct in Appendix [C]

4 Anonymity-preserving vector consensus

In this section, we introduce the anonymity-preserving vector consensus prob-
lem and present and discuss the protocol Anonymised Vector Consensus Proto-
col (AVCP) that solves it. We defer its proof to Appendix [Al The anonymity-
preserving vector consensus problem brings anonymity to the vector consensus
problem [26] where non-faulty processes reach an agreement upon a vector con-
taining at least n—t proposed values. More precisely, anonymised vector consen-
sus asserts that the identity of a process who proposes must be indistinguishable
from that of all non-faulty processes. As in AARBP, instances of AVCP are
identified uniquely by a given identifier ID. Fach process is equipped with two

12

operations. Firstly, “AVCP[ID](m)” begins execution of an instance of AVCP
with respect to ID and proposal m. Secondly, “AVC-decide[ID](V')” signals the
output of V' from the instance of AVCP identified by ID, and is invoked exactly
once per identifier. We define a protocol that solves anonymity-preserving vec-
tor consensus with respect to these operations as satisfying the following four
properties:

1. AVC-Anonymity: Suppose that non-faulty process p; invokes
AVCP[ID](m) for some m and given ID, and has previously invoked
an arbitrary number of AVCP[ID;](m;) calls where ID # ID; for all such j.
Suppose that an adversary A is required to output a guess g € {1,...,n},
corresponding to the identity of p; after performing an arbitrary number of
computations, allowed oracle calls and invocations of networking primitives.
Then for any A, Pr(i = g) < .

n—t
It also requires the original agreement and termination properties of vector con-
sensus to be ensured:

2. AVC-Agreement: All non-faulty processes that invoke AVC-decide[ID](V)
do so with respect to the same vector V for a given ID.

3. AVC-Termination: FEvery non-faulty process eventually invokes
AVC-decide[ID](V) for some vector V and a given ID.

It also requires a validity property that depends on a pre-determined, de-
terministic validity predicate valid() [12] 20] which we assume is common to all
processes. We assume that all non-faulty processes propose a value that satisfies
valid().

4. AVC-Validity: Consider each non-faulty process that invokes
AVC-decide[ID](V) for some V and a given ID. Each value v € V
must satisfy valid(), and |V| > n — t. Further, at least |V| — ¢ values
correspond to the proposals of distinct non-faulty processes.

4.1 AVCP

We present a reduction to binary consensus which may converge in four message
steps, as in the reduction to binary consensus in DBFT [20], at least one of which
must be performed over anonymous channels. We note that comparable prob-
lems [24], including agreement on a core set over an asynchronous network [5],
rely on such a reduction. The protocol is divided into two components. Firstly,
the reduction component (Algorithm reduces anonymity-preserving vector
consensus to binary consensus. Here, one instance of AARBP and n instances
of binary consensus are executed. But, since proposals are made anonymously,
processes cannot associate proposals with binary consensus instances a priori.
Consequently, processes start with n unlabelled binary consensus instances, and
label them over time with the hash digest of proposals they deliver (of the form
h € {0,1}*). To cope with messages sent and received in unlabelled binary con-
sensus instances, we require a handler component (Algorithm [)) that replaces
function calls made in binary consensus instances.

13

Functions. In addition to the communication primitives detailed in Section 2]
and the two primitives “AVCP” and “AVC-decide”, the following primitives may
be called: “inst.bin_propose(v)”, where inst is an instance of binary consensus
and v € {0,1}, begins execution of inst with initial value v, “AARBP” and
“AARB-deliver”, as in Section [3], “valid()” as described above, “m.keys()” (resp.
“m.values()”), which returns the keys (resp. values) of a map m, “item.key()”,
which returns the key of itemn in a map m, “s.pop()”, which removes and returns
a value from set s, and “H (v)”, a collision-resistant hash function which returns
h € {0,1}* based on v € {0,1}*.

State. Each process tracks the following variables: ID € {0,1}*, a common
identifier for a given instance of AVCP. proposals|], which maps labels of the form
I € {0,1}* to AARB-delivered messages of the form (m,o) € ({0,1}*,{0,1}*)
that may be decided, and is initially empty. decision_count, tracking the number
of binary consensus instances for which a decision has been reached, initialised to
0. decided _ones, the set of proposals for which 1 was decided in the corresponding
binary consensus instance, initialised to @. labelled[], which maps labels, which
are the hash digest h € {0, 1}* of AARB-delivered proposals, to binary consensus
instances, and is initially empty. unlabelled, a set of binary consensus instances
(initially of cardinality n) with no current label. ones[][], which maps two keys,
EST and AUX, to maps with integer keys r > 1 which map to a set of labels,
all of which are initially empty. counts|][], which maps two keys, EST and AUX,
to maps with integer keys r > 1 which map to an integer n € {0,...,n}, all of
which are initialised to 0.

Messages. In addition to messages propagated in AARBP, non-faulty pro-
cesses process messages of the form (ID,TAG,r,label,b), where TAG € {EST,
AUX}, r > 1, label € {0,1}* and b € {0,1}. A process buffers a message
(ID,TAG,r,label,b) until label labels an instance of binary consensus inst, at
which point the message is considered receipt in inst. The handler, described
below, ensures that all messages sent by non-faulty processes eventually corre-
spond to a label in their set of labelled consensus instances (i.e. contained in
labelled keys()). Similarly, a non-faulty process can only broadcast such a mes-
sage after labelling the corresponding instance of binary consensus. Processes
also process messages of the form (ID,TAG,r, ones), where TAG € { EST_-ONES,
AUX_ONES}, r > 1, and ones is a set of strings corresponding to binary con-
sensus instance labels.

Reduction. In the reduction, n (initially unlabelled) instances of binary consen-
sus are used, each corresponding to a value that one process in P may propose.
Each (non-faulty) process invokes AARBP with respect to ID and their value
m’ (line , anonymously broadcasting (m’,c’) therein. On AARB-delivery of
some message (m,o), an unlabelled instance of binary consensus is deposited
into labelled, whose key (label) is set to H(m || o) (line[10]). Proposals that fulfil
valid() are stored in proposals (line [12)), and inst.bin_propose(1) is invoked with
respect to the newly labelled instance inst = labelled[H (m || o)] if not yet done

14

Algorithm 3 AVCP (1 of 2): Reduction to binary consensus
1: AVCP[ID](m'):

2: AARBP[]D] (m') > anonymised reliable broadcast of proposal
3: wait until |decided,ones| >n—t > wait until n — t instances terminate with 1
4: for each inst € unlabelled U labelled.values() such that

5: inst.bin_propose() not yet invoked do

6: Invoke inst.bin,propose(O) > propose 0 in all binary consensus not yet invoked
7: wait until decision_count =n > wait until all n instances of binary consensus terminate
8: AVC-decide[ID](decided_ones)

9: upon invocation of AARB-deliver[ID](m, o)
10: labelled[H(m || 0)] < unlabelled.pop()

11: if vaIid(m7 0') then > deterministic, common validity function
12: proposals[H(m || 0)] < (m, o)
13: Invoke labelled[H (m || o)].bin_propose(1) if not yet invoked

14: upon inst deciding a value v € {0, 1}, where inst € labelled.values() U unlabelled

15: if v = 1 then > store proposals for which 1 was decided in the corresponding binary consensus
16: decided _ones < decided_ones U {proposals|inst.key()]}
17: decision_count < deciston_count + 1

(line . Upon termination of each instance (line , provided 1 was decided,
the corresponding proposal is added to decided_ones (line [16]). For either de-
cision value, decision_count is incremented (line . Once 1 has been decided
in n — t instances of binary consensus, processes will propose 0 in all instances
that they have not yet proposed in (line @ Note that upon AARB-delivery of
valid messages after this point, bin_propose(1) is not invoked at line Upon the
termination of all n instances of binary consensus (after line [7]), all non-faulty
processes decide their set of values for which 1 was decided in the corresponding
instance of binary consensus (line .

Handler. As proposals are anonymously broadcast, binary consensus instances
cannot be associated with process identifiers a priori, and so are labelled by
AARB-delivered messages. Thus, we require the handler, which overrides two of
the three broadcast calls in the non-terminating variant of the binary consensus
of [20] (Algorithm. We defer the reader to Appendix [B|for a description of the
non-terminating algorithm and the terminating variant that requires handling.
We now describe the handler (Algorithm. Let inst be an instance of binary
consensus. On calling inst.bin_propose(b) (b € {0,1}) (and at the beginning
of each round r > 1), processes invoke BV-broadcast (line [of Algorithm [2),
immediately calling “broadcast (ID,EST,r, label,b)” (line f Algorithm . If
b=1, (ID,EST,r,label, 1) is broadcast, and label is added to the set ones[EST][r]
(line . Note that, given AARB-Termination-2, all messages sent by non-faulty
processes of the form (ID,EST,r, label,1) will be deposited in an instance inst
labelled by label. Then, as the binary consensus routine terminates when all

15

Algorithm 4 AVCP (2 of 2): Handler of Algorithm

18: upon “broadcast (ID,EST,r, label,b)” in inst € labelled.values() U unlabelled
19: if b =1 then

20: broadcast (ID,EST,r, label, b)

21: ones[EST[r] < ones[EST|[r] U {inst.key()}

22: counts[ESTI[r] < counts[EST|[r] + 1

23: if counts[EST)[r] = n A |ones[EST][r]| < n then

24: broadcast (ID,EST-ONES, r,ones[EST][r])

25: upon “broadcast (ID,AUX,r, label,b)” in inst € labelled.values() U unlabelled
26: if b =1 then

27: broadcast (ID,AUX, r, label,b)

28: ones[AUX][r] < ones[AUX][r] U {inst.key()}

29: counts[AUX][r] < counts[AUX][r] + 1

30: if counts[AUX][r] =n A |ones[AUX][r]| < n then

31: broadcast (ID,AUX_ONES,r,ones[AUX][r])

32: upon receipt of (ID,TAG,r,ones) s.t. TAG € {EST_-ONES, AUX_ONES}
33: wait until one € labelled.keys() Yone € ones

34: if TAG = EST_ONES then

35: TEMP « EST

36: else TEMP < AUX

37: for each [€ labelled.keys() such that | ¢ ones do

38: deliver (ID,TEMP,r,1,0) in labelled[l]
39: for each inst € unlabelled do
40: deliver (ID,TEMP,r, L,0) in inst

non-faulty processes propose the same value, all processes will decide the value
1 in n — t instances of binary consensus (i.e. will pass line , after which they
execute bin_propose(0) in the remaining instances of binary consensus.

Since these instances may not be labelled when a process wishes to broadcast
a value of the form (ID,EST,r,label,0), we defer their broadcast until “broadcast
(ID,EST,r,label,b)” is called in all n instances of binary consensus. At this point
(line 23)), (ID,EST-ONES,r, ones|EST][r]) is broadcast (line [24). A message of
the form (ID,EST_-ONES,r, ones) is interpreted as the receipt of zeros in all
instances not labelled by elements in ones (at lines and . This can only
be done once all elements of ones label instances of binary consensus (i.e., after
line[33). Note that if [ones[EST][r] = n|, then there are no zeroes to be processed
by receiving processes, and so the broadcast at line 24] can be skipped.

Handling “broadcast (ID,AUX,r,label,b)” calls (line [7] of Algorithm is
identical to the handling of initial “broadcast (ID,EST,r, label,b)” calls. Note
that the third broadcast in the original algorithm, where (ID,EST,r, label,b) is
broadcast upon receipt from ¢ + 1 processes if not yet done before (line of
Algorithm [2[(BV-Broadcast)), can only occur once the corresponding instance
of binary consensus is labelled. Thus, it does not need to be handled. From here,
we can see that messages in the handler are processed as if n instances of the
original binary consensus algorithm were executing.

16

Table 1: Comparing the complexity of AVCP and DBFT [20] after GST [27]

Complexity AVCP DBFT
Fault-free message complexity O(n?) O(n?)
Worst-case message complexity O(tn?) O(tn?)
Fault-free bit complexity O((S + ¢)n?) O(n?)
Worst-case bit complexity O((S + ¢)tn?) O(tn?)

4.2 Complexity and optimizations

Let k be a security parameter, S the size of a signature and c the size of a message
digest. We compare the message and communication complexity of AVCP with
DBFT [20], which, as written, can be easily altered to solve vector consensus. We
assume that AVCP is invoking the terminating variant of the binary consensus
of [20]. When counsidering complexity, we only count messages in the binary con-
sensus routines once the global stabilisation time (GST) has been reached [27].
Both fault-free and worst-case message complexity are identical between the two
protocols. We remark that there exist runs of AVCP where processes are faulty
with O(n3) message complexity, such as when a process has crashed. AVCP
mainly incurs greater communication complexity proportional to the size of the
signatures, which can vary from size O(k) [38, 58] to O(kn) [31]. If processes
make a single anonymous broadcast per run, the fault-free and worst-case bit
complexities of AVCP are lowered to O(Sn? + cn®) and O(Sn? + ctn?).

As is done in DBFT [20], we can combine the anonymity-preserving all-to-
all reliable broadcast of a message m and the proposal of the binary value 1
in the first round of a binary consensus instance. To this end, a process may
skip the BV-broadcast step in round 1, which may allow AVCP to converge
in four message steps, at least one of which must be anonymous. It may be
useful to invoke “broadcast TAG[r](b)”, where TAG € {EST,AUX} (lines[20]and
when the instance of binary consensus is labelled, rather than simply when
b =1 (i.e., the condition preceding these calls). Since it may take some time
for all n instances of binary consensus to synchronise, doing this may speed up
convergence in the “faster” instances.

5 Combining regular and anonymous channels

If processes only use anonymous channels to communicate, it is clear that their
anonymity is preserved provided that processes do not double-sign with ring
signatures for each message type. For performance and to prevent long-term
correlation attacks on certain anonymous networks [46], it may be of interest
to use anonymous message passing to propose a value, and then to use regular
channels for the rest of a given protocol execution. In this setting, the adver-
sary can de-anonymise a non-faulty process by observing message transmission
time [3] and the order in which messages are sent and received [52]. For example,

17

a single non-faulty process may be relatively slow, and so the adversary may
deduce that messages it delivers late over anonymous channels were sent by
that process. To cope, we make the following assumption about message passing:

Independence assumption: Consider processes in P who participate in k > 1
instances of some distributed protocol where messages are exchanged over both
regular and anonymous channels. Let X; be a random variable that maps all
invocations of send or receive by every process to the time that the operation
was called in instance i. Analogously, let Y; be a random variable, defined as
above, but with respect to invocations of anon_send and anon_receive. Then
Xq,..., Xg, Y1,..., Y, are mutually independent.

This ensures that the adversary cannot correlate the behaviour of a process over
regular channels with their behaviour over anonymous channels, and thus the
adversary cannot de-anonymise them. We show that AVCP and our protocol
solving anonymity-preserving all-to-all reliable broadcast satisfy their respective
definitions of anonymity under our assumption in Appendices [A] and [C]

Our assumption is quite general, and so achieving it in practice depends on
the latency guarantees of the anonymous channels, the speed of each process,
and the latency guarantees of the regular channels. One possible strategy could
be to use public networks like Tor [25] where message transmission time through
the network can be measuredﬂ Then, based on the behaviour of the anonymous
channels, processes can vary the timing of their own messages by introducing ran-
dom message delays [46] to minimise the correlation between random variables.
It may also be useful for processes to synchronise between protocol executions.
This prevents a process from being de-anonymised when they, for example, in-
voke anon_send in some instance when all other processes are executing in a
different instance.

6 Experiments

Benchmarks of distributed protocols were performed using Amazon EC2 in-
stances. We refer to each EC2 instance used as a node, corresponding to a process
in protocol descriptions. For each value of n (the number of nodes) chosen, we ran
experiments with an equal number of nodes from four regions: Oregon (us-west-
2), Ohio (us-east-2), Singapore (ap-southeast-1) and Frankfurt (eu-central-1).
The type of instance chosen was c4.xlarge, which provide 7.5GiB of memory,
and 4 vCPUs, i.e. 4 cores of an Intel Xeon E5-2666 v3 processor. We performed
between 50 and 60 iterations for each value of n and ¢ benchmarked. We vary n
incrementally, and vary ¢ both with respect to the maximum fault-tolerance (i.e.
t= L"?_lj), and also fix t = 6 for values of n = 20,40, ... All networking code,
and the application logic, was written in Python (2.7). As we have implemented
our cryptosystems in golang, we call our libraries from Python using ctypeaﬂ To

!'https://metrics.torproject.org/
2 https://docs.python.org/2/library/ctypes.html

18

https://metrics.torproject.org/
https://docs.python.org/2/library/ctypes.html

simulate reliable channels, nodes communicate over TCP. Nodes begin timing
once all connections have been established (i.e. after handshaking).

Our protocol, Anonymised Vector Consensus Protocol (AVCP), was imple-
mented on top of the existing DBFT [20] codebase, as was the case with AARBP.
We do not use the fast-path optimisation described in Section [4] but we hash
messages during reliable broadcast to reduce bandwidth consumption. We use
the most conservative choice of ring signatures, O(kn)-sized traceable ring sig-
natures [32], which require O(n) operations for each signing and verification
call, and O(n?) work for tracing overall. Each process makes use of a single
anonymous broadcast in each run of the algorithm. To simulate the increased
latency afforded by using publicly-deployed anonymous networks, processes in-
voke a local timeout for 750ms before invoking anon_broadcast, which is a regular
broadcast in our experiments.

AARBP vs AVCP DBFT vs AVCP
70001 . AARBP (t = max) —— DBFT Y
AVCP (t = max) AVCP /
6000 5000 >

—— AARBP (t = 6) /
—— AVCP (t = 6) -

w
o
S
S

time to decide (ms)
w B w
o o o
o o o
S & o
time to decide (ms)

2000
2000

1000

1000

20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
number of nodes (n) number of nodes (n)
(a) Comparing AARBP and AVCP (b) Comparing DBFT and AVCP

Fig. 1: Evaluating the cost of the anonymous broadcast (AARBP) in our solution
(AVCP) and the performance of our solution (AVCP) compared to an efficient
Byzantine consensus baseline (DBFT) without anonymity preservation

Figure [La] compares the performance of AARBP with that of AVCP. In gen-
eral, convergence time for AVCP is higher as we need at least three more message
steps for a process to decide. Given that the fast-path optimisation is used, re-
quiring 1 additional message step over AARBP in the good case, the difference
in performance between AVCP and AARBP would indeed be smaller.

Comparing AVCP with ¢t = max and ¢ = 6, we see that when ¢ = 6, con-
vergence is slower. Indeed, AVC-Validity states at least n — t values fulfilling
valid() are included in a process’ vector given that they decide. Consequently,
as t is smaller, n — t is larger, and so nodes will process and decide more values.
Although AARB-delivery may be faster for some messages, nodes generally have
to perform more TRS verification/tracing operations. As nodes decide 1 in more
instances of binary consensus, messages of the form (MsG,0,7,5 = {s1,---}) are
propagated where |S| is generally larger, slowing down decision time primarily
due to size of the message. We conjecture that nodes having to AARB-deliver all

19

values in S before processing such a message does not slow down performance,
as all nodes are non-faulty in our experiments.

Figure compares the performance of DBFT as a vector consensus vector
routine with AVCP. Indeed, the difference in performance between AVCP and
DBFT when n = 20 and n = 40 is primarily due to AVCP’s 750ms timeout.
As expected when scaling n, cryptographic operations result in worse scaling
characteristics for AVCP. As can be seen, DBFT performs relatively well. How-
ever, DBFT does not leverage anonymous channels, nor relies on ring signatures,
and so AVCP’s comparatively slow performance was expected. It is reassuring
that AVCP’s performance does not differ by an order of magnitude from that of
DBFT, given AVCP provides anonymity guarantees.

Overall, AVCP performs reasonably well. Interestingly, AVCP performs bet-
ter when t is set as the maximum possible value, and so is best used in practice
when maximising fault tolerance. Nevertheless, converging when n = 100 takes
between 5 and 7 seconds, depending on ¢, which is practically reasonable.

7 Conclusion

In this paper, we have presented modular and efficient distributed protocols
which allow identified processes to propose values anonymously. Importantly,
anonymity-preserving vector consensus ensures that the proposals of non-faulty
processes are not tied to their identity, which has applications in electronic
voting. We proposed definitions of anonymity in the context of Byzantine
fault-tolerant computing and corresponding assumptions to mitigate the de-
anonymisation of identified processes. In terms of future work, it is of interest
to evaluate anonymity in different formal models [39] 55] and with respect to
various practical attack vectors [52]. It will be useful also to formalise anonymity
under more practical assumptions so that the timing of anonymous and regular
message passing do not correlate highly. In addition, a reduction to a random-
ized [I3] binary consensus algorithm would remove the dependency on the weak
coordinator, a form of leader used in each round of the binary consensus algo-
rithm we rely on [20].

20

1]
2]

3]

Bibliography

The ristretto group. https://ristretto.group/, 2018. Accessed: 2018-
11-03.

Ben Adida. Helios: Web-based open-audit voting. In Proceedings of the
17th Conference on Security Symposium, SS’08, pages 335-348, Berkeley,
CA, USA, 2008. USENIX Association.

Adam Back, Ulf Méller, and Anton Stiglic. Traffic analysis attacks and
trade-offs in anonymity providing systems. In International Workshop on
Information Hiding, pages 245—257. Springer, 2001.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proceedings of the 1st ACM
conference on Computer and communications security, pages 62—73. ACM,
1993.

Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure com-
putations with optimal resilience (extended abstract). In Proceedings of the
Thirteenth Annual ACM Symposium on Principles of Distributed Comput-
ing, PODC 94, pages 183-192, New York, NY, USA, 1994. ACM.

Daniel J Bernstein. Curve25519: new diffie-hellman speed records. In Inter-
national Workshop on Public Key Cryptography, pages 207-228. Springer,
2006.

Gabriel Bracha. Asynchronous byzantine agreement protocols. Information
and Computation, 75(2):130 — 143, 1987.

Gabriel Bracha and Sam Toueg. Resilient consensus protocols. In Pro-
ceedings of the second annual ACM symposium on Principles of distributed
computing, pages 12-26. ACM, 1983.

Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast
protocols. Journal of the ACM (JACM), 32(4):824-840, 1985.

Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) lwe. SIAM Journal on Computing, 43(2):831—
871, 2014.

Eric Brier and Marc Joye. Weierstraf} elliptic curves and side-channel at-
tacks. In International Workshop on Public Key Cryptography, pages 335—
345. Springer, 2002.

Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Se-
cure and efficient asynchronous broadcast protocols. In Proceeding of the
21st Annual International Cryptology Conference on Advances in Cryptol-
ogy (CRYPTO), pages 524-541, 2001.

Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in
Constantinople: Practical asynchronous Byzantine agreement using cryp-
tography. Journal of Cryptology, 18(3):219-246, 2005.

Jean Camp, Michael Harkavy, J. D. Tygar, and Bennet Yee. Anonymous
atomic transactions. In In Proceedings of the 2nd USENIX Workshop on
Electronic Commerce (Nov.), USENIX Assoc, 1996.

https://ristretto.group/

[15]
[16]
[17]
(18]

[19]

[20]

[25]

[26]

[27]

(28]

[29]

Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In
OSDI, volume 99, pages 173-186, 1999.

David Chaum. Blind signatures for untraceable payments. In Advances in
cryptology, pages 199-203. Springer, 1983.

David Chaum. The dining cryptographers problem: Unconditional sender
and recipient untraceability. Journal of cryptology, 1(1):65-75, 1988.
David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84-90, February 1981.

Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. From consen-
sus to atomic broadcast: Time-free byzantine-resistant protocols without
signatures. The Computer Journal, 49(1):82-96, 2006.

Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. DBFT: ef-
ficient leaderless Byzantine consensus and its application to blockchains. In
Proceedings of the 17th IEEE International Symposium on Network Com-
puting and Applications, NCA 2018, pages 1-8, 2018.

Ronald Cramer, Matthew Franklin, Berry Schoenmakers, and Moti Yung.
Multi-authority secret-ballot elections with linear work. In International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 72—83. Springer, 1996.

George Danezis and Claudia Diaz. A survey of anonymous communication
channels. Technical report, Technical Report MSR-TR-2008-35, Microsoft
Research, 2008.

Yvo Desmedt. Threshold cryptosystems. In International Workshop on the
Theory and Application of Cryptographic Techniques, pages 1-14. Springer,
1992.

Panos Diamantopoulos, Stathis Maneas, Christos Patsonakis, Nikos Chon-
dros, and Mema Roussopoulos. Interactive consistency in practical, mostly-
asynchronous systems. In Parallel and Distributed Systems (ICPADS), 2015
IEEFE 21st International Conference on, pages 752-759. IEEE, 2015.
Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 15th Conference on USENIX
Security Symposium - Volume 18, SSYM’04, pages 21-21, Berkeley, CA,
USA, 2004. USENIX Association.

Assia Doudou and André Schiper. Muteness failure detectors for consensus
with byzantine processes. Technical report, in Proceedings of the 17th ACM
Symposium on Principle of Distributed Computing, (Puerto), 1997.
Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM), 35(2):288—
323, 1988.

Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEFE transactions on information theory, 31(4):469—
472, 1985.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM, 32(2):374-382,
April 1985.

22

[30]

[31]

[32]

33]

[34]

[35]

Michael J Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In International conference on the theory
and applications of cryptographic techniques, pages 1-19. Springer, 2004.
Eiichiro Fujisaki. Sub-linear size traceable ring signatures without random
oracles. In IEICE Transactions on Fundamentals of Electronics Communi-
cations and Computer Sciences, volume E95.A, pages 393-415, 04 2011.
Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In Tat-
suaki Okamoto and Xiaoyun Wang, editors, Public Key Cryptography —
PKC 2007, pages 181-200, Berlin, Heidelberg, 2007. Springer Berlin Hei-
delberg.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing,
pages 169-178, 2009.

Yossi Gilad and Amir Herzberg. Spying in the dark: Tcp and tor traffic
analysis. In Simone Fischer-Hiibner and Matthew Wright, editors, Privacy
Enhancing Technologies, pages 100-119, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson. Universal
re-encryption for mixnets. In Tatsuaki Okamoto, editor, Topics in Cryp-
tology — CT-RSA 2004, pages 163-178, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

Philippe Golle and Ari Juels. Dining cryptographers revisited. In Interna-
tional Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 456-473. Springer, 2004.

Jens Groth. Efficient maximal privacy in boardroom voting and anony-
mous broadcast. In Ari Juels, editor, Financial Cryptography, pages 90-104,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

Ke Gu, Xinying Dong, and Linyu Wang. Efficient traceable ring signature
scheme without pairings. Advances in Mathematics of Communications,
page 0, 2019.

Joseph Y Halpern and Kevin R O’Neill. Anonymity and information hiding
in multiagent systems. Journal of Computer Security, 13(3):483-514, 2005.
Mike Hamburg. Decaf: Eliminating cofactors through point compression.
In Annual Cryptology Conference, pages 705-723. Springer, 2015.

Markus Jakobsson. A practical mix. In International Conference on
the Theory and Applications of Cryptographic Techniques, pages 448—461.
Springer, 1998.

Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-Resistant Elec-
tronic Elections, pages 37—63. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2010.

O. Kulyk, S. Neumann, M. Volkamer, C. Feier, and T. Koster. Electronic
voting with fully distributed trust and maximized flexibility regarding ballot
design. In 201/ 6th International Conference on Electronic Voting: Verify-
ing the Vote (EVOTE), pages 1-10, Oct 2014.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine gen-
erals problem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 4(3):382-401, 1982.

23

[45]

Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spontaneous
anonymous group signature for ad hoc groups. In Huaxiong Wang, Josef
Pieprzyk, and Vijay Varadharajan, editors, Information Security and Pri-
vacy, pages 325-335, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.
Nick Mathewson and Roger Dingledine. Practical traffic analysis: Extending
and resisting statistical disclosure. In International Workshop on Privacy
Enhancing Technologies, pages 17-34. Springer, 2004.

Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free
asynchronous binary Byzantine consensus with ¢ < n/3, O(n?) messages,
and O(1) expected time. Journal of the ACM (JACM), 62(4):31, 2015.
Steven J. Murdoch and George Danezis. Low-cost traffic analysis of Tor.
In Proceedings of the 2005 IEEE Symposium on Security and Privacy, SP
’05, pages 183-195, Washington, DC, USA, 2005. IEEE Computer Society.
C Andrew Neff. A verifiable secret shuffle and its application to e-voting. In
Proceedings of the 8th ACM conference on Computer and Communications
Security, pages 116-125, 2001.

Nuno Ferreira Neves, Miguel Correia, and Paulo Verissimo. Solving vector
consensus with a wormhole. IEEFE Transactions on Parallel and Distributed
Systems, 16(12):1120-1131, 2005.

Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In International conference on the theory and applications of
cryptographic techniques, pages 223-238. Springer, 1999.

Jean-Francois Raymond. Traffic analysis: Protocols, attacks, design issues,
and open problems. In Designing Privacy Enhancing Technologies, pages
10-29. Springer, 2001.

Michel Raynal. Reliable Broadcast in the Presence of Byzantine Processes,
pages 61-73. Springer International Publishing, Cham, 2018.

Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In
Colin Boyd, editor, Advances in Cryptology — ASIACRYPT 2001, pages
552-565, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

Andrei Serjantov and George Danezis. Towards an information theoretic
metric for anonymity. In International Workshop on Privacy Enhancing
Technologies, pages 41-53. Springer, 2002.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613,
November 1979.

Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems
against chosen ciphertext attack. Journal of Cryptology, 15(2):75-96, Jan
2002.

Patrick P. Tsang and Victor K. Wei. Short linkable ring signatures for e-
voting, e-cash and attestation. In Robert H. Deng, Feng Bao, HweeHwa
Pang, and Jianying Zhou, editors, Information Security Practice and Expe-
rience, pages 48-60, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
Patrick P. Tsang, Victor K. Wei, Tony K. Chan, Man Ho Au, Joseph K.
Liu, and Duncan S. Wong. Separable linkable threshold ring signatures.
In Anne Canteaut and Kapaleeswaran Viswanathan, editors, Progress in
Cryptology - INDOCRYPT 2004, pages 384-398, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

24

[60] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986), pages
162-167. IEEE, 1986.

[61] Qingsong Ye, Huaxiong Wang, and Josef Pieprzyk. Distributed private
matching and set operations. In International Conference on Information
security practice and experience, pages 347-360. Springer, 2008.

[62] Tsz Hon Yuen, Joseph K Liu, Man Ho Au, Willy Susilo, and Jianying Zhou.
Efficient linkable and/or threshold ring signature without random oracles.
The Computer Journal, 56(4):407-421, 2013.

[63] Bassam Zantout and Ramzi Haraty. I2p data communication system. In
Proceedings of ICN, pages 401-409. Citeseer, 2011.

A Analysis of AVCP

In this appendix, we prove that the properties of anonymity-preserving vec-
tor consensus (AVC), presented in Section are satisfied by our protocol
Anonymised Vector Consensus Protocol (AVCP) (Algorithms 3| and [4] in Sec-

tion .

Lemma 2. In AVCP, for each identifier ID, a non-faulty process’ data structure
“labelled[]” is such that |labelled .values()| < n. Further, no two binary consensus
instances are labelled by the same value .

Proof. For the first part of the lemma, recall that an instance inst is only moved
to labelled at line [10| upon AARB-delivery of (m, o). By AARB-Unicity, a non-
faulty process will AARB-deliver at most one tuple (m, o) for every process p;
s.t. o < Sign(i, ID,m). Since |P| = n, at most n instances inst will thus be
moved to labelled.

For the second part of the lemma, recall that we assume signature unique-
ness. Thus, every tuple (m, o) anonymously broadcast by a non-faulty process
is unique. Moreover, any duplicate tuple (m, o), even if broadcast by a faulty
process, cannot be AARB-delivered twice (checked at line . Thus, by the
collision-resistance of H, H(m || o) # H(m' || ¢’) for any two distinct tuples
(m,o) and (m’,o0’) that are AARB-delivered. Since each instance is labelled by
H(m || o') for some tuple (m, o), it follows that no two instances will conflict in
label.

Lemma 3. Consider AVCP. Let p be a non-faulty process. Then, given that the
“for” loop on lines and[{0 is ezecuted as an atomic operation, all instances
in unlabelled.values() will always contain the same set of messages.

Proof. At the protocol’s outset, all instances of binary consensus are in labelled,
where no messages have been received. The only place that messages are de-
posited to unlabelled instances is at lines and where messages are de-
posited into all members of unlabelled. Finally, note that instances can only
moved out of unlabelled, which occurs at line [T0]

25

Lemma 4. In AVCP, a non-faulty process p sends a message of the form
(ID,TAG,r,label,b), then there locally exists an instance of binary consensus
inst such that labelled[label] = inst.

Proof. Suppose p sends (ID,EST,r, label,b). If b = 1, then one of three scenarios
holds: (i) r = 1 and p has invoked inst.bin_propose(1) where labelled|[label] =
inst, (ii) r > 1, p has received t 4+ 1 messages of the form (ID,EST,r, label,b)
and has not yet broadcast (ID,EST,r, label,b), or (iii) their value est was set to
b =1 at the end of the previous round of binary consensus. In case (i), note that
bin_propose(1) (at line is executed after inst is labelled (at line [10). Note
that in both cases (ii) and (iii), p must have processed messages of the form
(ID,EST,r,label,1). As described in the text, these messages are only processed
after the AARB-delivery of the corresponding message (m,o) where label =
H(m || o) and some instance inst is labelled by label (at line[L0). If b = 0, only
case (ii) needs to be considered, since the other broadcast call is handled by the
handler (Algorithm . Here, b = 1 must have been initially broadcast, which
is described by cases (i) and (iii). Suppose p sends (ID,AUX,r, label,b). Note
that b # 0, since the handler handles this case. Thus, we consider b = 1. b must
have been BV-delivered (line |§| of Algorithm , requiring p to have processed
messages of the form (ID,EST,r, label,b), which requires some instance to be
labelled by label to do. This exhausts the possibilities.

Lemma 5. Consider AVCP. Letr > 1 be an integer. Then, all messages sent by
non-faulty processes of the form (ID,TAG,r, label,b) where TAG € {EST, AUX}
and b € {0,1}, and (ID,TAG, r,ones) where TAG € {EST-ONES, AUX_ONES}
and b € {0,1}, are eventually deposited into the corresponding binary consensus
instances of a non-faulty process.

Proof. Let p be the recipient of a message in the above forms. We first con-
sider messages of the form (ID,TAG, r, label,b) where TAG € {EST, AUX} and
b € {0,1}. By Lemma [4] the non-faulty sender of such a message must have
AARB-delivered some message (m, o) such that label = H(m || o). By AARB-
Termination-2, p will eventually AARB-deliver (m, o) and subsequently label an
instance of binary consensus which is uniquely defined by label (Lemma. Thus,
p will eventually process (ID,TAG,r,label,b) in instance inst = labelled[label].
Consider messages of the form (ID,TAG,r,ones) where TAG € {EST_-ONES,
AUX_ONES} and b € {0,1}. Since the sender is non-faulty, every element of
ones (i.e. every label) must correspond to a message that was AARB-delivered
by the sender. By AARB-Termination-2, p will eventually AARB-deliver these
messages, label instances of binary consensus (at line and thus progress be-
yond line Thus, p will deposit 0 in all instances not labelled by elements of
ones (at lines [3§ and 7 which is the prescribed behaviour.

Lemma 6. In AVCP, every non-faulty process reaches line [, i.e. decides 1 in
n —t instances of binary consensus.

Proof. Given at most t faulty processes, at least n — t non-faulty processes in-
voke AARBP at line [2| broadcasting a value that satisfies valid() by assumption.

26

By AARB-Termination-1, every message anonymously broadcast by a non-faulty
process is eventually AARB-delivered by all non-faulty processes. Suppose a non-
faulty process p labels an instance of consensus inst by one of these messages. By
Lemmal5] all messages sent by non-faulty processes associated with inst are even-
tually processed by p. Then, all non-faulty processes will invoke bin_propose(1) in
at least n—t instances of binary consensus (i.e. while blocked at line . Consider
the first n — t instances of consensus for which a decision is made at. By the
intrusion tolerance of binary consensus, no coalition of faulty processes can force
0 to be a valid value in these consensus instances, since all non-faulty processes
must invoke bin_propose(1) in them. Then, by BBC-Agreement, BBC-Validity
and BBC-Termination, all non-faulty processes will eventually decide 1 in n —¢
BIN_CONS instances. Thus, all non-faulty processes eventually reach line [6]

We now prove that AVC-Validity holds.

Theorem 1. AVCP satisfies AVC-Validity, which is stated as follows. Consider
each non-faulty process that invokes AVC-decide[ID](V') for some V and a given
ID. Each value v € V must satisfy valid(), and |V| > n — t. Further, at least
|V| = t values correspond to the proposals of distinct non-faulty processes.

Proof. Let p be a non-faulty process. By construction of the binary consensus
algorithm, p must process messages of the form (ID,TAG,r, label,b) where TAG
€ {EST, AUX} and b € {0,1} to reach a decision. By Lemma |5, p must have
AARB-delivered the corresponding message (m, o) such that label = H(m || o)
before deciding. That is, proposals must have been populated with the corre-
sponding message (m,o) at line[12] and valid() must be true for (m, o), checked
previously at line By Lemma [f] p eventually decides 1 in n — ¢ instances
of binary consensus. Upon each decision, the corresponding message is added to
V = decided_ones (at line. For the latter component of the definition, we note
that ARB-Unicity ensures that each value in V' contains a signature produced
by a different process. So, given V is decided, at most ¢ of the corresponding
signatures could have been produced by faulty processes.

Lemma 7. Consider AVCP. Fix r > 1. Given that a non-faulty process p in-
vokes ‘broadcast (ID,EST,r,label,b)” or “broadcast (ID,AUX,r, label,b)” in all
n instances of binary consensus, then all non-faulty processes interpret the corre-
sponding messages sent by p as if p were executing the original binary consensus
algorithm.

Proof. Without loss of generality, suppose p invokes “broadcast
(ID,EST,r,label,b)” in all n instances of binary consensus. For every in-
stance inst such that b = 1, p broadcasts (ID,EST,r, label,b) (at line which
is identical to the behaviour in the original algorithm. Note that p does not
broadcast (ID,EST,r, label,b) here when b = 0. By Lemma {4} p must have
labelled inst with label. Thus, p adds label to ones[EST][r] (at line[21)). Once n
invocations of “broadcast (ID,EST,r, label,b)” have been executed, ones[EST][r]
is sent to all non-faulty processes. By Lemma [f] all non-faulty processes deposit

27

0 in all instances not labelled by elements of ones[EST][r], corresponding to
all broadcasts not performed by p previously. In this sense, this behaviour is
equivalent to having broadcast all values (ID,EST,r, label,b) where b = 0.

Theorem 2. AVCP ensures AVC-Termination. That is, every non-faulty pro-
cess eventually invokes AVC-decide[ID](V') for some vector V and a given ID.

Proof. Consider a non-faulty process p. By Lemmal6] p reaches line [6] with n —¢
values in their local array decided_ones. At this point, p invokes bin_propose(0) in
all other instances of binary consensus. Since all n instances are thus executed, p
will eventually invoke “broadcast (ID,EST, r, label,b)” in all n instances of binary
consensus. By Lemma [7] non-faulty processes interpret p’s corresponding mes-
sages as if p were executing the original binary consensus algorithm. Similarly,
p will eventually invoke “broadcast (ID,AUX,r, label,b)” in all n instances.

Note that DBFT [20] is guaranteed termination with n instances of binary
consensus as each instance is guaranteed to terminate due to BBC-Termination.
It remains to show that AVCP preserves BBC-Termination for all n instances of
consensus. Lemma 11 in [20] states that, at some point after which the global sta-
bilistation time (GST) is reached, any execution of the original binary consensus
routine eventually executes in synchronous steps. Note that in our construction,
the slowest binary consensus instance is no slower than if n instances of the
original binary consensus routine were executing. For example, in AVCP, a mes-
sage of the form (EST_ONES,r,ones) is sent after n invocations of “broadcast
(ID,EST,r,label,b)” are performed for a given r. Then, Lemma [7| implies that
messages sent by non-faulty processes remain unchanged as in an execution of
n instances of the original binary consensus routine. Thus, Lemma 11 holds for
the slowest instance of consensus. Since all other instances are faster, they too
are synchronised, and so Lemma 11 holds for them also. By Lemma 9 in [20],
which asserts that BBC-Termination holds for an instance of binary consensus,
it follows that each non-faulty process will decide a value in the n instances of
consensus in AVCP. At this point, p immediately invokes AVC-decide with re-
spect to ID and decided_ones (at line . Since p was arbitrary (but non-faulty),
it follows that AVC-Termination holds.

Theorem 3. AVCP ensures AVC-Agreement. That is, all non-faulty processes
that invoke AVC-decide[ID](V') do so with respect to the same vector V for a
given ID.

Proof. Consider two non-faulty processes, p; and p; that have decided (AVC-
Termination). Suppose that p; has decided decided_ones. Each value in
decided_ones must have been AARB-delivered to p; in order to decide 1 in
the corresponding instances of binary consensus (Lemma . By AARB-Unicity
and AARB-Termination-2, p; will AARB-deliver all values in decided_ones. By
Lemma [6] all non-faulty processes eventually decide 1 in n — ¢ instances of bi-
nary consensus. Consequently, p; and p; participate in all n instances of binary
consensus which by Lemma [7] is equivalent to participating in n instances of
binary consensus as per the original algorithm. Then, by BBC-Agreement, p;

28

decides 1 in an instance of binary consensus if and only if p; decides 1 in that
instance. Consequently, each corresponding value, which have all been AARB-
delivered prior to deciding 1 in each instance of binary consensus (Lemma will
be added to p;’s local array decided_ones’. Thus, decided_ones’ = decided_ones.

Theorem 4. AVCP ensures AVC-Anonymity under the assumptions of our
model (Section @) and the three conditions described in Section @ AVC-
Anonymity is stated as follows: Suppose that non-faulty process p; invokes
AVCP[ID](m) for some m and given ID, and has previously invoked an arbi-
trary number of AVCP[ID;](m;) calls where ID # ID; for all such j. Suppose
that the adversary A is required to output a guess g € {1,...,n}, corresponding to
the identity of p; after performing an arbitrary number of computations, allowed
oracle calls and invocations of networking primitives. Then Pr(i =g) = ﬁ
Proof. We note that each process invokes AARBP exactly once at the beginning
of any execution of AVCP. In the case all communication is performed over
anonymous channels, it suffices to observe that no process sends more than one
message of a given type across many executions of AVCP. Then, from the proof
of correctness of traceable broadcast (Lemma , it follows that A is unable to
output a guess g s.t. g # ﬁ In the case that all communication except for
the initial broadcasting is performed over reliable channels, the proof of AVC-
Anonymity follows from the proof of AARB-Anonymity (Lemma E[)

B Ensuring termination in binary consensus

The terminating algorithm (Figure 2 in [20]) uses in each round an additional
broadcast, which is performed by a rotating coordinator. This message contains
the header COORD_VALUE. Note that ¢ € {1,...,n} denotes the index of the
process p; who is locally executing instructions, and that these instructions are
executed after bin_values[r] # 0 (i.e. after line [6] of Algorithm [2)).

Algorithm 5 Additional broadcast in Figure 2 of [20]

1: coord < (r—1) (mod n) +1

2: if 4 = coord then

3w = bin_values|r]

4: broadcast (COORD_VALUE, r,w)

This broadcast call can be handled exactly as in the logic beginning at lines
and [25| of the handler (Algorithm , provided that for a given round r, the
coordinator is common across all n instances of consensus. No other communi-
cation steps are added in the terminating algorithm.

In the non-terminating binary consensus algorithm, a process executes in-
definitely after invoking decide(). The terminating variant, by contrast, imposes

29

certain conditions upon termination, which are checked at the end of each round
r. In the context of the following algorithm excerpt, a process that invokes the
instruction halt discontinues executing instructions in the binary consensus in-
stance that halt was called in, and drops all related messages.

Algorithm 6 Termination conditions in Figure 2 of [20]

if decide() invoked in round r then
wait until bin_values[r] = {0,1}
else
if decide() invoked in round r — 2 then halt

It is shown in [20] that, given that some non-faulty process decides in round
r, all non-faulty processes will decide by round r + 2. Note that a process may
invoke decide() in different rounds in different instances of binary consensus.
Thus, a process may invoke halt in some, but not all, instances of binary con-
sensus. Suppose that a process has invoked halt in k instances of binary con-
sensus, where 1 < k < n, in some round r. Then, broadcasting a message with
header EST_-ONES in the handler (Algorithm , say, will be impossible, since
counts[EST|[r] will never be incremented to n.

To cope with this problem, we define a new termination condition. Let 7,42
be the largest round number of the n instances of binary consensus that a given
process decides in. Then, that process can invoke halt at the end of round 7,4, +
2.

C AARBP

In this appendix, we first present Anonymised All-to-all Reliable Broadcast Pro-
tocol. Notably, the protocol as presented terminates in after single anonymous
message step and two regular message steps. We then show that it satisfies each
property of the anonymity-preserving all-to-all reliable broadcast problem de-
scribed in Section [Bl

C.1 Protocol

State and messages. Each process tracks ID, which identifies an instance
of AARB-broadcast. For each ID, each process tracks two buffers: m_buffer,
corresponding to messages that they may AARB-deliver, and m_delivered, cor-
responding to all messages that they have AARB-delivered; both are initially
set to (). For a given instance of AARBP identified by ID, all messages sent by
non-faulty processes must contain ID. Similarly, messages must contain one of
three headers: INIT, corresponding to the initial broadcast of a process’ proposal,
ECHO, corresponding to an acknowledgement of the INIT message, or READY,

30

corresponding to an acknowledgement that enough processes have received the
message to ensure eventual, safe AARB-delivery.

Protocol. We now present AARBP (Algorithm .

Algorithm 7 AARBP

1: AARBP[ID](m'):

2: o' «+ Sign(i, ID,m’)

3: anon_broadcast (ID,INIT,m’,o")

4: upon initial receipt of (ID,INIT, m,o)

5: walid < (VerifySig(ID, m,0) = 1)

6: if valid then

T for each (m™,0") € m_buffer U m_delivered do

8: if Trace(ID,m,o,m",c*) # “indep” then

9: valid < false > Double-signing detected
10: break

11: m_buffer <— m_buffer U {(m,o)}

12: if valid then

13: broadcast (ID,ECHO, m, o)

14: upon receipt (ID,ECHO, m, o) from L"T“j + 1 proc.
15: if (ID,READY,m,o) not yet broadcast then
16: broadcast (ID,READY, m, o)

17: upon receipt (ID,READY, m,c) from (¢t + 1) proc.
18: if (ID,READY,m,o) not yet broadcast then
19: broadcast (ID,READY, m, o)

20: upon receipt (ID,READY, m,o) from (2t + 1) proc.
21: if (m, o) ¢ m_delivered then

22: m_delivered < m_delivered U {(m, o)}
23: m_buffer < m_buffer \ {(m, o)}
24: AARB-deliver[ID](m, o)

To begin, each process p; broadcasts (ID,INIT,m', o’) over anonymous chan-
nels (line [3]), where ¢’ + Sign (i, ID,m’). Upon first receipt of each message of
the form (ID,INIT, m, o), a process checks the following (line :

— Whether the signature o is well-formed as per VerifySig, verifying the
signer’s membership in P (line [5).

— Whether any message in m_buffer U m_delivered is not independent from
m via Trace, ensuring AARB-Unicity as m is discarded if double-signing is

detected (lines [7] to [10)).

31

Then, given that (m, o) passes the above checks, (ID,ECHO, m, o) is broadcast
(line. Note that this broadcast, and all subsequent broadcasts with respect to
(m, o), are performed over regular (reliable, non-anonymous) channels of com-
munication. To mitigate de-anonymisation, the signer of m performs the same
message processing and message propagation as all other non-faulty processes.

The rest of the protocol proceeds as per Bracha’s reliable broad-
cast [7]: If processes receive (ID,ECHO,m,o) from more than 2F* differ-
ent processes, they broadcast (ID,READY,m o) (lines 116]). If processes
receive (ID,READY,m,c) from ¢ + 1 different processes, they broadcast
(ID,READY,m, o) if not yet done (lines [[7H19). This ensures convergence and
implies that at least one non-faulty process must have sent (ID,READY, m, o)
to the receiving process. Once processes have received (ID,READY, m, o) from
2t+1 different processes, they AARB-deliver (m, o) with respect to ID if not yet
done (line. At this point, at least £+ 1 non-faulty processes must have broad-
cast (ID,READY, m, o). Thus, all non-faulty processes will eventually broadcast
(ID,READY, m,o) at line [19if not yet done.

Complexity. Whilst Bracha’s protocol [7] requires three message steps to con-
verge, AARBP requires an initial, anonymous message step and two (regular)
message steps. Both AARBP and n invocations of Bracha’s protocol have a mes-
sage complexity of O(n?). If we consider unsigned messages to be of size O(1),
then each message propagated in AARBP is of size O(kn), the size of a TRS
as in [32] where k is a security parameter. Thus, the bit complexity of all-to-all
AARBP is O(kn*) (as opposed to O(n?) in all-to-all reliable broadcast [7]). To
reduce the bit complexity when some messages are delivered in order, we can
hash ECHO and READY messages [12]. Consequently, communication complex-
ity can be reduced to O((c + k)n3).

We consider cryptographic overhead as if Fujisaki and Suzuki’s TRS
scheme [32] were used. In AARBP, each process signs one message (O(n) work),
verifies up to n messages (O(n?) work), and perform tracing upon receipt of
each INIT message (up to n). Tracing requires O(n?) work naively and O(n?)
expected work if signatures are stored in and accessed using hash tables.

C.2 Proof of correctness

We now prove that AARBP satisfies each property of the anonymity-preserving
all-to-all reliable broadcast problem.

Remark 1. Let m,n,t be positive integers s.t. n > 3t. We have:

n—t n—t

+1).

Thus, we refer to “L"T_t "T_t processes” inter-

changeably.

| 4+ 1 processes” and “more than

Lemma 8. AARBP ensures AARB-Signing. That is, if a non-faulty process p;
AARB-delivers a message with respect to ID, then it must be of the form (m, o),
where a process p; € P invoked Sign(i, ID, m) and obtained o as output.

32

Proof. Suppose p is non-faulty and AARB-delivers a message msg. We aim to
show that msg = (m, o), where o <+ Sign(i, ID, m) was called by some process p;.
For a non-faulty process to broadcast (ID,READY,msg), they must have either
received (ID,READY, msg) from ¢ + 1 different processes or (ID,ECHO,msg)
from | %+t | +1 different processes. Since t+1 > ¢, there exists a non-faulty process
p’ that must have broadcast (ID,READY, msg) on receipt of (ID,ECHO, msg)
from |24]+1 different processes to ensure that msg was AARB-delivered to any
process. Similarly, since L%‘HJ + 1 > t, there exists a non-faulty process p” that
must have broadcast (ID,EFCHO, msg) to ensure (ID,READY, msg) was broad-
cast by a non-faulty process. Process p” must have checked that msg = (m, o)
(implicitly) and that VerifySig(ID, m,o) = 1 holds (at line [5]). By signature un-
forgeability, VerifySig(ID, m,c) = 1 implies that o < Sign(i, ID, m) was called
by some process p;. Thus, the property holds.

Lemma 9. AARBP ensures AARB-Anonymity under the assumptions of the
model (Section @) and those made in Section @ AARB-Anonymity is stated
as follows. Suppose that non-faulty process p; invokes AARBP[ID](m) for
some m and giwven ID, and has previously invoked an arbitrary number of
AARBP[ID;](m;) calls where ID # ID; for all such j. Suppose that the adversary
A is required to output a guess g € {1,...,n}, corresponding to the identity of p;
after performing an arbitrary number of computations, allowed oracle calls and
invocations of networking primitives. Then Pr(i = g) = ﬁ

Proof. We proceed by contradiction. Let p; be a non-faulty process that partic-
ipates in the scenario described in the definition of AARB-Anonymity. Suppose
that A is able to output g such that Pr(i = g) # ﬁ Now, in AARBP, process
p; invokes Sign(i, ID,m), producing the signature o (line [2). Then, p; invokes
“anon_broadcast (ID,INIT,m,c)” (line[3)). By Lemmal[i] (Section [3)) and the sym-
metry between Algorithm [T and AARBP, A must utilise some combination of
regular communication, its message history and previous computation to output
gst. Pr(i=g)# 1.

Firstly, we remark that A cannot view the local state or computations of non-
faulty processes by assumption, and so cannot, for example, view their calls to
Sign. Note that (non-faulty) processes propagate messages over regular (reliable)
channels after their initial invocation of anon_broadcast (such as at line [13). By
assumption, A has no inherent knowledge of when anon_send or anon_receive calls
are made by non-faulty processes. Indeed, A may observe when non-faulty pro-
cesses respond to anon_receive calls via messages they send over regular channels,
and when A’s corrupted processes invoke any message passing primitive. Thus,
under the assumptions of Section [2] alone, it is conceivable that an adversary
could correlate timing information regarding message passing over regular chan-
nels and anonymous channels in a given protocol execution to de-anonymise p;.
As the network is asynchronous, the timing and relative order in which messages
are sent and received by processes in AARBP[ID] could be arbitrary. The inde-
pendence assumption (Section [5)) assumes, however, that the order and timing
of message delivery over anonymous channels is statistically independent from

33

that of regular channels in a particular protocol execution. Note that this inde-
pendence holds for the timing and ordering of messages sent of any number of
processes during any stage of the protocol. In particular, this accounts for the
behaviour of non-faulty processes in response to messages received from Byzan-
tine processes of whom A is free to control. Consequently, A gains no information
about the identity of p; through correlation, and so A could not have produced g
such that Pr(i = g) # nl_ ; using this strategy. Since the independence assump-
tion also considers timing and message ordering between instances of AARBP,
it follows that A cannot de-anonymise p; by considering many executions. This

exhausts A’s conceivable strategies to de-anonymise p; under our model.

Lemma 10. AARBP ensure AARB-Termination-1. That is, if a process p;
is non-faulty and invokes AARBP[ID](m), all the non-faulty processes eventu-
ally AARB-deliver (m, o) with respect to ID, where o is the output of the call
Sign(i, ID,m).

Proof. Suppose that the non-faulty process p; invokes AARBP with respect to
identifier ID and message m. So, p; anonymously broadcasts (ID,INIT,m,c),
where o = Sign(i, ID,m). Since the network is reliable, all non-faulty processes
eventually receive (ID,INIT, m,o) (and indeed all messages broadcast by non-
faulty processes). At line |5, VerifySig is queried with respect to (m,o). By
signature correctness, VerifySig(ID, m,0) = 1 is guaranteed, since p; invoked
o « Sign(i, ID,m). So, all non-faulty processes proceed to line [7] By trace-
ability and entrapment-freeness, no non-faulty process could have received a
message (m’,o’) such that Trace(ID,m,o,m’,c’) # “indep”. Consequently, all
non-faulty processes reach line with value wvalid s.t. valid = true. Thus, all
non-faulty processes (of which there are at least n — t) reach line broadcast-
ing (ID,ECHO, m, o). Since n —t > "T'H, every non-faulty process will eventu-
ally receive more than "TH (ID,ECHO, m, o) messages, fulfilling the predicate
at line More than ”TH > t 4+ 1 non-faulty processes will not have broad-
cast (ID,READY,m,o), and so will do so (at line . Thus, all honest pro-
cesses will eventually receive ¢t + 1 (ID,READY, m,o) messages, broadcasting
(ID,READY,m, o) there if not yet done. Then, since n —t > 2t + 1, line
will eventually be fulfilled for each non-faulty process. Thus, every non-faulty
process will AARB-deliver (m, o) at line as required.

Lemma 11. AARBP ensures AARB-Validity, which is stated as follows. Sup-
pose that a non-faulty process AARB-delivers (m, o) with respect to ID. Let
i = FindIndex(ID, m, o) denote the output of an idealised call to FindIndex. Then
if p; s non-faulty, p; must have anonymously broadcast (m, o).

Proof. Let p; be non-faulty. From the protocol specification, p; must have in-
voked o « Sign(i, ID, m). By definition of Sign, no other process could have
produced such a value of o. By traceability and entrapment-freeness, no other
process can produce a tuple (m’, ¢’) such that Trace(ID,m, o, m’,o’) # “indep”.
Consequently, no process can produce a message that prevents non-faulty pro-
cesses from propagating (ID,ECHO, m, o) messages. Thus, since p; is non-faulty,
and therefore followed the protocol, p; must have anonymously broadcast (m, o).

34

Remark 2. No non-faulty process will broadcast more than one message of the
form (ID,ECHO, m’,o') where ¢’ is such that ¢’ = Sign(z, ID,m’) for any mes-
sage m’.

Proof. This follows from the proof of Lemma [0} if non-faulty process p
receives another message (m,o) s.t. o <« Sign(z,ID,m) for any m, then
Trace(ID, m,o,m’,0’) # “indep”, and so p will not reach line

Lemma 12. In AARBP, if p; AARB-delivers (m, o) with respect to ID, where
o <« Sign(z,ID,m), and p; AARB-delivers (m’,o’) with respect to ID, where
o' + Sign(x, ID,m’), then (m,o) = (m/, o).

Proof. For p; (resp. p;) to have AARB-delivered (m, o) (resp. (m’,0")), p; (vesp.
p;) must have broadcast (ID,READY, m, o) (vesp. (ID,READY,m',¢")). Then,
one of two predicates (at lines [14] and must have been true for each process.
That is, p; (resp. p;) must have received either:

1. (ID,ECHO,m,0) (resp. (ID,ECHO,m’,0")) from |2f*| different processes,
or
2. (ID,READY, m,o0) (vesp. (ID,READY,m’,c’)) from (¢ + 1) different pro-

cesses.

We first prove the following claim: if (ID,READY, m,o) is broadcast by p;,
and (ID,READY,m/,c¢’) is broadcast by p;, then (m,o) = (m',o’). Suppose
that both processes fulfill condition (1), receiving ECHO messages from sets of
processes P and P’ respectively, where p; broadcasts (ID,READY, m,o) and p;
broadcasts (ID,READY,m’,0’). Assume that (m, o) # (m/,o’). Then:

|[POP'|=|P|+|P|—|PUP
> [P+ [P = n,

t
>2(n;—)—n:t7

= |[PNP|>t+1.

Therefore, PN P’ must contain at least one correct process, say p.. By Remark
p. must have sent the same FCHO message for some message to both processes,
and so p; and p; must have received the same message (ID,ECHO,m,o) =
(ID,ECHO,m’,c"), contradicting the assumption that (m, o) # (m/,o’). Thus,
they must broadcast the same READY message.

Suppose now that at least one process broadcasts READY due to condi-
tion (2) being fulfilled. Without loss of generality, assume exactly one process p
broadcasts READY on this basis. Then, p must have received a READY mes-
sage from at least one correct process (since out of ¢ + 1 processes, at least 1
must be non-faulty), say p,. Either p, received READY from at least one correct
process, say pp, or it satisfied condition (1). By continuing the logic (and since
|P| is finite), there must exist a process p(;) that fulfilled condition (1). Then,

35

by the correctness of processes p(1), - - ., Pb, Pa; READY messages sent by p; and
p; must be the same, completing the proof.

Therefore, p; broadcasting (ID,READY,m,c), and p; broadcasting
(ID,READY,m’, o) implies (m,o) = (m’,0’) given that p; and p,; are non-
faulty.

We now directly prove the lemma. If p; AARB-delivers (m,o), it re-
ceived (ID,READY,m,o) from (2t 4+ 1) different processes, and thus received
(ID,READY, m, o) from at least one non-faulty process. Similarly, if p; AARB-
delivers (m’,o’), it must have received (ID,READY, m’ ,o") from at least one
non-faulty process. It follows from the previous claim that all non-faulty pro-
cesses broadcast the same READY message. Thus, p; and p; AARB-deliver the
same tuple.

Lemma 13. AARBP ensures AARB-Termination-2. That is, if a non-faulty
process AARB-delivers (m,o) with respect to ID, then all the non-faulty pro-
cesses eventually AARB-deliver (m, o) with respect to ID.

Proof. By Lemma all non-faulty processes that AARB-deliver a message
(m',0") s.t. o’ + Sign(z, ID,m') AARB-deliver (m, o). Then, p; must have re-
ceived the message (ID,READY, m,o) from (2t + 1) processes (line 20)), at least
t + 1 of which must be non-faulty. These ¢ + 1 processes must have broad-
cast (ID,READY, m,c) (at line or , and so every non-faulty process
will eventually receive (¢ + 1) (ID,READY, m,o) messages, and thus broad-
cast (ID,READY,m, o) at some point. Given there are n —t > 2t + 1 non-faulty
processes, each non-faulty process eventually receives (ID,READY, m,o) from
at least 2t + 1 processes. Therefore, every non-faulty process will AARB-deliver
(m, o).

Lemma 14. AARBP ensures AARB-Unicity, which is stated as follows. Con-
sider any point of time in which a non-faulty process p has AARB-delivered
more than one tuple with respect to ID. Let delivered = {(my,01),...,(my,01)},
where |delivered| =1, denote the set of these tuples. For each i € {1,...,1}, let
out; = FindIndex(ID,m;, 0;) denote the output of an idealised call to FindIndex.
Then for all distinct pairs of tuples {(m;,0;), (mj,0;)}, out; # out;.

Proof. We proceed by contradiction. Without loss of generality, suppose that p
AARB-delivers two tuples (m,o) and (m/,¢’) such that FindIndex(ID,m,o) =
FindIndex(ID,m’,o’). Then, AARB-Termination-2 implies that all non-faulty
processes will eventually AARB-deliver (m, o) and (m/,o’). But, Lemma [12] as-
serts that FindIndex(ID,m,o) = FindIndex(ID,m’,c’), a contradiction. Thus,
for each ¢ € {l.n}, p AARB-delivers at most one tuple (m,o) such that
FindIndex(ID,m, o) = 1.

Theorem 5. AARBP (Algorithm m in Section @ satisfies the properties of
AARB-Broadcast.

Proof. From Lemmas [8] [0] and it follows that all properties of
AARB-Broadcast are satisfied.

36

D Composing threshold encryption and AVCP

Threshold encryption [23] [67] typically involves a set of processes who have
a common encryption key and an individual share of the decryption key who
must collaborate to decrypt any message. A k-out-of-n threshold encryption
scheme requires the joint collaboration of k processes to decrypt any encrypted
value. Importantly, k—1 or less processes are unable to determine any additional
information about a given encrypted value in collaboration. Generally, the keying
material can be reused in the sense that many values can be decrypted without
compromising the security of the scheme.

AVCP assumes that ¢ processes may be Byzantine faulty. Thus, by setting
the decryption threshold to ¢ + 1, a coalition of ¢ malicious processes are unable
to deduce the contents of encrypted values until a non-faulty process initiates
threshold decryption. Consequently, a protocol that ensures that the contents of
all non-faulty process’ proposals to an instance of AVCP is not revealed until
after termination can be designed as follows:

1. All processes encrypt their proposal under a pre-determined public key.
2. All processes invoke AVCP with input as their encrypted value.
3. Upon termination, all processes initiate threshold decryption.

In this appendix, we realise and analyse this protocol.

D.1 Preliminaries

We assume that the assumptions made by AVCP, including those made in our
model (Section, hold true. In particular, the dealer generates the initial state,
including the values of n and ¢. As such, the decryption threshold for the instance
of threshold encryption is set to k = ¢ + 1. As done in characterising traceable
ring signatures in Section [J] we assume processes have access to a distributed
oracle which handles cryptographic operations, rather than explicitly referring
to keying material as is done in practice. In addition to the queries described in
Section [2] we assume that the distributed oracle handles queries of the following
functions:

1. ¢ < Enc(ID,m), which takes identifier ID € {0,1}* and message m € {0,1}*
as input, and outputs the ciphertext ¢ € {0,1}*. All parties (even those not
in P) may query Enc.

2. b « VerifyEnc(ID, ¢), which takes identifier ID and ciphertext ¢ as input,
and outputs a bit b € {0,1}. All parties may query VerifyEnc.

3. o < ShareGen(i, ID, c), which takes integer ¢ € {1..n}, identifier ID and
ciphertext ¢ as input, and outputs the decryption share o € {0,1}*. We
restrict the interface ShareGen such that only process p; € P may invoke
ShareGen with first argument 1.

4. b + VerifyShare(ID, ¢,), which takes identifier ID, ciphertext ¢ and decryp-
tion share o as input, and outputs a bit b € {0,1}. All parties may query
VerifyShare.

37

5. m < Dec(ID, ¢, X)), which takes the identifier ID, ciphertext ¢ and set X' =
{o1,...,01} of k decryption shares, and outputs the plaintext m € {0, 1}*.
All parties may query Dec.

These definitions are inspired by those used in defining Shoup and Gennaro’s
non-interactive threshold encryption scheme [57]. The behaviour of calls to the
above functions satisfies the following properties:

— Encryption correctness and non-malleability: VerifyEnc(ID,c) = 1
<= there exists a party which previously invoked Enc(ID,m) and obtained ¢
as a response. Non-malleability is captured by the “=" claim, which ensures
that any correct encryption was produced by a call to Enc. In particular,
non-malleability implies that combining any value and an encryption (e.g.
via concatenation) will not produce another valid encryption.

— Share correctness and unforgeability: VerifyShare(ID,c,0) = 1 <
there exists process p; € P that previously invoked ShareGen(i, ID, c¢) and
obtained o as a result.

— Decryption correctness and decryption security: Dec(ID, ¢, X)) = m,
where m was the input to a previous call to Enc(ID, m) <= the following
conditions are met:

1. ¢ + Enc(ID, m) was called by some party.

2. ¥ = {o1,...,01} (|| = k), where for each distinct pair 0;,0; € X,
distinct processes p;,p; € P respectively called o; < ShareGen(s, ID, c)
and o; < ShareGen(j, ID, c).

The “«<” claim captures decryption correctness. The “=" claim captures
security, ensuring that k£ valid shares produced by distinct processes are
required for decryption.

— Encryption hiding: Suppose ¢ < Enc(ID,m) is called by a party p.
Then, m can only be obtained by either p revealing m or a wvalid call
m < Dec(ID, ¢, X)) being made.

D.2 Arbitrary Ballot Election (ABE)

At a high level, processes first perform AVCP with respect to their proposal
which is encrypted under the threshold encryption scheme. Then, processes
perform threshold decryption, which requires an additional message delay for
termination. We call this algorithm an Arbitrary Ballot Election (ABE), since
processes can propose arbitrary values and are ensured of certain properties that
are defined in the context of electronic voting. We describe and prove these hold
in the next subsection.

Functions. Each process has access to the distributed oracle and in addition to
all functions invoked AVCP (Section[d]). For a given tuple (m, o) we assume that
the predicate valid() in AVCP returns true only if VerifyEnc(ID,m) = 1. That is,
m was the result of a query to Enc(ID,msg) for some msg € {0, 1}*.

38

State. Each process tracks the variables ID, a string uniquely identifying an
instance of ABE, has-broadcast, a Boolean that is initially false, unique-encs and
plaintexts, sets of messages m € {0, 1}* that are initially empty, and partial-decs,
which maps ciphertexts to sets of decryption shares, each of which are initially
empty.

Messages. In addition to messages propagated in AVCP (which includes mes-
sages from AARBP), messages of the form (DECS, ID, encs) are propagated,
where encs is a map, each value of which is a singleton set.

Algorithm 8 Arbitrary ballot election (ABE)

1: ABE(m):

2: ¢+ Enc(ID,m)

3: encs < AVCP[ID](m)
4

for each (disjoint) set of values M = {(m1,01),...,(mx,01)} C encs s.t. my =
... =m; do
5: unique-encs <— unique-encs U {m1}
6: return decryption(unique-encs)
7: decryption(encs):
8: for each c in encs do
9: o < ShareGen(i, ID, c)
10: partial-decsc] « {o}

11: broadcast (DECS, ID, partial-decs)
12: has-broadcast < true

13: upon receipt of (DECS, ID, decs’)
14: if (partial-decs.keys() = decs’.keys()) A (VerifyShare(ID,c, decs’[c]) = 1 for all
c € decs’.keys()) then

15: wait until has-broadcast = true

16: for each (c, o) € partial-decs’ do

17: partial-decs|c] < partial-decs[c] U {o}

18: if |partial-decs|c]| = k for all ¢ € partial-decs.keys() then
19: for each c € partial-decs.keys() do

20: plaintexts < plaintexts U {Dec(ID, c, partial-decsc])}
21: return plaintexts

Protocol description. Each process begins with the plaintext m to propose to
consensus. Processes encrypt m under Enc, producing the ciphertext ¢ (line .
Processes propose their encrypted value to an instance of AVCP identified by ID.
Since valid() checks that VerifyEnc(ID, m) = 1 for a given tuple (m, o), encs will
thus contain well-formed encryptions (AVC-Validity) of processes’ proposals.
Now, AVCP guarantees that signatures, rather than the contents of mes-
sages, are unique. So, it is conceivable that a process will mount a replay attack,

39

which aims to disrupt an election by mimicking the input of some process. Since
values are encrypted under a common instantiation of threshold encryption, it
is desirable to prevent this attack. Consequently, we require that non-faulty pro-
cesses prepend a sufficiently large sequence of random bits to their plaintext. For
simplicity, we assume that each sequence that a non-faulty proposes derives is
unique. So, non-unique encrypted messages are discarded (lines [4 and , result-
ing in the set unique-encs. At this point, threshold decryption is performed with
respect to each element of unique-encs (line @ For each (encrypted) value that
a process decided, a decryption share is produced. Then, processes broadcast
each share and the corresponding ciphertext used to produce it.

Processes do not process shares that they have received from other processes
until they have broadcast their shares, ensuring termination for all non-faulty
processes. In practice, processes can process shares provided they delay termina-
tion until after they have broadcast. Upon receipt of a (potential) set of shares,
processes check that the ciphertexts received match theirs. Given this holds, they
check that all shares are well-formed. At this point, processes store these shares
in encs. Once a process has received k shares for every ciphertext in unique-encs,
each ciphertext is decrypted, and the resulting plaintexts are returned.

D.3 Analysis
We prove a number of properties hold:

Lemma 15. ABFE satisfies termination. That is, all non-faulty processes even-
tually complete protocol execution.

Proof. At the protocol’s outset, all non-faulty processes produce a value c s.t.
¢ < Enc(ID, m) was called for some m € {0,1} (line[2). Then, processes execute
AVCP with respect to the identifier ID, where every non-faulty process pro-
poses a valid ciphertext ¢ (line . On AARB-delivery of each value, a process’
call to valid() will return true by encryption correctness, as it must be the case
VerifyEnc(ID, ¢) = 1 for such a ¢. By AVC-Termination, AVC-Validity and AVC-
Agreement, all non-faulty processes eventually terminate AVCP with the same
set of values, each of which satisfies valid(). By AVC-Agreement, all non-faulty
processes will obtain the same set unique-encs (after line|5)). Then, all non-faulty
processes will produce decryption shares for each value in unique-encs via calls
to ShareGen, which are guaranteed to be broadcast as no non-faulty process can
terminate until the condition at line [L5]is fulfilled. On receipt of a set of decryp-
tion shares (line[I3) (with identical corresponding ciphertexts) from a non-faulty
process, by share correctness each share o will satisfy VerifyShare(ID,c,0) = 1
for the corresponding ciphertext c. Thus, a non-faulty process will eventually
receive k = t 4+ 1 valid decryption shares for each unique value that was decided
by AVCP. Thus, they can call Dec with respect to each set of shares (line
which by decryption correctness will pass, and thus the process will return the
corresponding plaintexts.

40

Comparable definitions to anonymity-preserving vector consensus (Section
regarding agreement, validity and anonymity follow straightforwardly from the
fact that AVCP satisfies AVC-Agreement, AVC-Validity and AVC-Anonymity,
respectively.

Lemma 16. ABFE satisfies public verifiability. That is, any third party can ob-
tain the result of the election after termination.

Proof. By termination and agreement, all non-faulty processes eventually agree
on the same set of plaintext values. Then, a third party can request these values
from all processes. On receipt of ¢t + 1 identical sets of values, the third party
can deduce that the set of values corresponds to the election result.

Lemma 17. ABFE satisfies weak privacy. That is, a value proposed by a mon-
faulty process is only revealed after AVCP has terminated for a non-faulty pro-
cess.

Proof. Each non-faulty process p proposes a value ¢ s.t. ¢ < Enc(ID,m) was
invoked for some m € {0,1}* (line . Encryption hiding implies that m can
only be revealed if either p reveals m, which p does not in the protocol, or if
a valid call to Dec is made. By decryption security, Dec will only return m if
provided k = t+1 valid decryption shares. Now, no non-faulty process broadcasts
a decryption share until after it terminates AVCP. Thus, a coalition of ¢ faulty
processes cannot decrypt m via Dec, which is the only conceivable way for them
to obtain m in the model.

Lemma 18. ABF satisfies eligibility. That is, only processes in P may propose
a ballot that is decided.

Proof. By assumption, non-faulty processes only process messages sent over reg-
ular channels from processes in P. But, any party may anonymously broadcast
a value v. AARBP satisfies AVC-Signing. That is, all AARB-delivered messages
are of the form (m, o), where o < Sign(i, ID, m). By assumption on the inter-
face of Sign, only a process in P may call Sign. By construction of AVCP, only
messages that are AARB-delivered are decided by non-faulty processes. Thus,
no non-faulty process will decide a value v in AVCP from any party outside of
P.

Lemma 19. ABEFE satisfies non-reusability. That is, at most one encrypted ballot
signed by a particular process can be decided in the election.

Proof. By construction of AVCP, only messages that are AARB-delivered are
decided by non-faulty processes. By AARB-Unicity, no non-faulty process will
AARB-deliver more than one tuple (m, o) such that a process p; invoked o +
Sign(i, ID,m).

41

E Further experiments

In this section, we present experimental results of our implementations of cryp-
tographic and distributed protocols. To determine their influence in cost over
our distributed protocols, we benchmark two cryptographic protocols which our
distributed protocols rely on, namely Fujisaki’s traceable ring signature (TRS)
scheme [32] and Shoup and Gennaro’s threshold encryption scheme [57]. With
this information, we then benchmark and evaluate our three distributed proto-
cols: Anonymised All-to-all Reliable Broadcast Protocol (AARBP), Anonymised
Vector Consensus Protocol (AVCP), and our election scheme, Arbitrary Ballot
Election (ABE).

E.1 Cryptography

Benchmarks of standalone cryptographic constructions were performed on a lap-
top with an Intel i5-7200U (quad-core) processor clocked at 3.1GHz and 8GB
of memory. The operating system used was Ubuntu 18.04. Each cryptosystem
was implemented in golang. All cryptographic schemes were implemented using
Curve25519 [6]. To simulate a prime-order group we use the Ristretto technique
[1], derived from the Decaf approach [40], via go—ristrettﬂ All cryptographic
operations rely on constant-time arithmetic operations to prevent side-channel
attacks [I1]. Each data point represents a minimum of 100 and a maximum of
10000 iterations.

Ring signatures To confirm that the implementation is competitive, we com-
pare it to an implementation of Lui et al.’s linkable ring signature scheme [45].
The particular implementation we compare to was produced by EPFL’s DEDIS
group as part of kyberﬂ We note that the ring signature schemes naturally lend
themselves towards parallelism. To this end, we provide an extension of our TRS
implementation that takes advantage of concurrency.

We compared the two major operations. Firstly, the Sign() operation (“Sign”
in Section [2]) is that which forms a ring signature. Secondly, Verify() (“VerifySig”
in Section [2)) takes a ring signature as input, and verifies the well-formedness of
the signature, and (in implementation) outputs a tag which is used for linking/-
tracing.

Figure [2a) represents the normalised speedup, as a percentage, afforded to
the Sign() and Verify() operations in the TRS scheme. We note that Figure
involves purely sequential implementations. We vary n, the size of the ring.
Performance of Sign() and Verify() in both schemes scales linearly with respect
to n.

Let Trrs be the time an operation (signing or verification) takes in the TRS
implementation, and similarly define Trrg. Then, normalised speedup is given

3 https://github.com/bwesterb/go-ristretto
4 https://godoc.org/github.com/dedis/kyber/sign/anon

42

https://github.com/bwesterb/go-ristretto
https://godoc.org/github.com/dedis/kyber/sign/anon

Normalised speedup of TRS operations Verification and iterative linking/tracing of n signatures

74 7 TRS (Parallel)

75 TRS (Sequential)
X 61 —— LRS (Sequential)
= g
374 e5
g g
& g4
T 73
a 23
= o
®
E72 £2
2

—— Verify 1 /
71
Sign o
0 50 100 150 200 250 300 20 30 40 50 60 70 80 90 100
number of nodes (n) number of nodes (n)

(a) Normalised speedup, as a percentage, (b) Comparing the performance of itera-
of TRS operations over LRS operations tive verification and linking/tracing

Fig. 2: Comparing TRS and LRS operations

by:
Trrs — Trrs

normalised speedup = T
TRS

Indeed, this value hovers above 70 percent for all values of n tested. In the LRS
implementation, the Sign() operation took between 7.5 and 230.4ms to execute
(for values n = 10 and n = 310 respectively). Sign() in the TRS implementation
took between 4.3 and 132.0ms to execute. Similarly, Verify() took between 7.7
and 230.3ms to execute in the LRS implementation, and took between 4.4 and
134.6ms to execute in the TRS implementation.

To understand the performance increase, we count cryptographic operations.
We use the notation presented in [62], adapted to represent elliptic curve oper-
ations. Let F denote the cost of performing point multiplication, and M denote
the number of operations of the form (aP +bQ), where a, b are scalars, and P, Q
are points. Then, in the LRS scheme, Sign() requires 2(n— 1) M + 3E operations,
and Verify() requires 2nM operations [62]. In the TRS scheme, Sign() requires
the same 2(n — 1)M and 3E operations, in addition to nM other operations.
Similarly, the TRS Verify() call requires 2nM + nM = 3nM operations. With
the same elliptic curve implementation, we should see a performance increase
from an efficient LRS implementation, as the TRS scheme requires 1.5x M
operations by comparison to the LRS scheme. But, in the library we use for
ECC, go-ristretto, base point multiplication is 2.8x faster, point multiplication
is 2.3x faster, and point addition is 2.6x faster. Thus, we see an overall increase
in performance in our TRS implementation by comparison.

Recall that in AARBP (and thus AVCP), ring signature tracing is performed
iteratively. Suppose that some process has = correct ring signatures that they
have verified at some point in time. Then, upon receipt of another signature,
they first execute Verify(), and then perform the Trace() operation between the
new signature and each of the x stored signatures. To model this behaviour, we
perform a benchmark where signatures are processed one-by-one with a ring of
size m that is varied from 20 to 100 in increments of 20. As the linkable ring

43

signature scheme admits very similar functionality, except it performs a linking
operation, rather than a tracing operation, we benchmark similarly.

Figure compares the average time taken to perform the aforementioned
procedure, between a sequential implementation of the TRS scheme, the corre-
sponding concurrent implementation (utilising four cores), and the (sequential)
LRS implementation. Now, the time taken to perform Verify() is proportional
to the size of the ring n. In addition, we perform more (n) Verify() operations
as we increase n. Consequently, execution time grows quadratically in Figure
for each implementation. In addition to the previously outlined speedup, we
roughly halve execution time of TRS operations by exploiting concurrency in our
implementation. With n = 100, our concurrent implementation is 2.25x faster
than our sequential implementation, and is 3.86x faster than the sequential LRS
implementation.

To perform Trace() between two signatures, O(n) comparisons are performed
in a naive implementation, whereas a single comparison is need to link in the
TRS scheme. In implementation, we used a hash table, so each new signature
required O(n) lookups in the TRS scheme, and one lookup in the LRS scheme.
As expected, we observe that the increased overhead of tracing is dominated by
the time taken performing Verify() operations, and so speedup does not appear
to be affected.

Threshold encryption Our arbitrary ballot voting scheme, ABE, presented in
Appendix[D] can be instantiated with Shoup and Gennaro’s threshold encryption
scheme [57]. To this end, we present results corresponding to our implementation
of their construction.

Operation Time to execute (ms)
Encryption 0.407
Encryption verification|0.358
Share decryption 0.247
Share verification 0.339

Table 2: Threshold encryption operations

Table [2] shows the performance of all operations in the threshold encryption
scheme [57] as executed by one process, bar decryption itself. As can be seen,
all operations can be executed in a reasonable amount of time (less than a
millisecond). In our electronic voting protocol, each process performs a single
encryption operation, but may perform O(n) operations of the other forms over
the protocol’s execution. Even when n is relatively large (> 100), we can expect
to see acceptable levels of performance.

Let P be a group of n processes. Then, the final operation, share combination,
combines a group of k valid decryption shares, where k is the threshold required

44

to reconstruct the secret. In our electronic voting protocols, for interoperability
with our consensus algorithms, we set k = ¢ + 1, where ¢ is, at most, the largest
value such that ¢ < 7.

Combining k shares with varying levels of concurrency

—+— Sequential
400 2-core
—+— 3-core
—— 4-core

time to execute (ms)

20 40 60 80 100
number of nodes (n)
Fig. 3: Time taken for k partial decryptions (shares) to be combined to decrypt
a given message

Figure |3| represents the time taken to decrypt a message, varying k, the
number of shares needed to reconstruct the message in increments of 10. As
some steps of the reconstruction process can be performed concurrently, e.g. in
the derivation of Lagrange coefficients [56], we provide an extension that takes
advantage of a multi-core processor. To this end, Figure [3| graphs the time taken
to perform share combination with both our sequential implementation, and the
corresponding concurrent implementation utilising two to four cores.

Indeed, producing Lagrange coefficients requires a quadratic amount of work
(with respect to k), and subsequently decrypting a message takes O(k) effort,
which dominates execution time. Both the quadratic and linear components of
the share combination can be made concurrent. Consequently, we roughly double
our performance with two to four cores running. It is worth noting that the effort
required to spawn additional threads in the three and four core case does not
translate to a very noticeable improvement in performance for our values of k.

E.2 Elections with arbitrary ballots

Arbitrary Ballot Election (ABE) essentially combines AVCP with a threshold
encryption scheme. To perform our benchmarks for the election scheme, we used
pre-generated keying material for threshold encryption. We use Shoup and Gen-
naro’s threshold encryption scheme [57], which was benchmarked in the previ-
ous section. Our experiment differs from experiments with AVCP in that ring
signatures must also contain valid encryptions as per the threshold encryption
scheme, and because all processes perform threshold decryption with respect to
all decided ballots.

Figure [f] compares the performance of AVCP with ABE as described above.
As can be seen, there is some, but not a considerable amount, of overhead from

45

AVCP vs ABE

9000 | —— AVCP (t = max) %
ABE (t = max) /

= —— AVCP (t = 6) 4

g€ 7000 { —— ABE (t = 6) 7

8000

$ 6000

3

S 5000

]

© 4000

£

* 3000
2000

20 30 40 50 60 70 80 90 100
number of nodes (n)

Fig.4: Comparing the performance of AVCP and ABE

introducing the election’s necessary cryptographic machinery. The main factors
here are an additional message step, additional message verifications, and, re-
quiring the most additional effort, performing threshold decryption.

As can be seen (and was explored in Section@, AVCP performance degrades
when ¢ is non-optimal. Despite this, the election still takes longer to perform
when t is increased. Consider the case where (n,t) = (100, 33). As shown in
Figure [3] combining k = t + 1 = 34 (valid) partial decryptions together takes
roughly 30ms. Since each run of the experiment decides on at least n —t = 67
values, processes have to spend almost two seconds combining shares together.
In the best case, each process has to verify that (n — t)t = 2211 shares are well-
formed, which takes roughly 750ms. Thus, in addition to other cryptographic
overhead, it is clear that increasing t affects election performance.

Notwithstanding, the election protocol performs well for reasonable values of
n. At n = 100, the election roughly takes between 7.5 and 9 seconds to execute
from start to finish. Given that the latency provided by the anonymous channels
used by processes is sufficiently low, we can expect to see comparable results in
practice.

46

	Anonymity Preserving Byzantine Vector Consensus

