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Abstract. Autism spectrum disorder (ASD) is a complex neurodevel-
opmental disorder characterized by deficiencies in social, communication
and repetitive behaviors. We propose imaging-based ASD biomarkers to
find the neural patterns related ASD as the primary goal of identifying
ASD. The secondary goal is to investigate the impact of imaging-patterns
for ASD. In this paper, we model and explore the identification of ASD
by learning a representation of the T1 MRI and fMRI by fusioning a
discriminative learning (DL) approach and deep convolutional neural
network. Specifically, a class-wise analysis dictionary to generate non-
negative low-rank encoding coefficients with the multi-model data, and
an orthogonal synthesis dictionary to reconstruct the data. Then, we
map the reconstructed data with the original multi-modal data as input
of the deep learning model. Finally, the learned priors from both model
are returned to the fusion framework to perform classification. The effec-
tiveness of the proposed approach was tested on a world-wide cross-site
(34) database of 1127 subjects, experiments show competitive results of
the proposed approach. Furthermore, we were able to capture the status
of brain neural patterns with the known input of the same modality.

1 Introduction

Autism spectrum disorder (ASD) is a structural and functional neurodevel-
opment disorder, it is also associated with weak communication skills, simple
repetitive behavioral pattern and lowered concentration. The common way of
diagnosis and treatment of ASD is based on symptoms, and thus, to identify a
reliable biomarker is the main challenge [7]. Most diagnosis of ASD is confirmed
at around 3 years old in the United States although, it is important to diagnose
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ASD in the early stage of life for better treatment. Magnetic resonance imag-
ing (MRI) based brain volumetric methods are commonly used to characterize
ASD [13]. To better understand the origin of ASD for precise diagnosis, signifi-
cant progress has been made using neural patterns of functional connectivity of
functional magnetic resonance imaging (fMRI) data to caracterize brain changes
related to ASD. Identification of Autism Spectrum Disorder from brain imaging
provides biomarkers for the mechanisms of the pathology.

In recent years, many representation learning techniques such as discrimina-
tive dictionary learning (DDL) [11] and deep neural networks [1] are powerful
algorithms to derive high-level latent features from high-dimensional [10] and
multi-modal data [4]. DDL has been widely used in resting-state functional con-
nectivity MRI analysis. Wang et al. [7] developed a low rank representation
approach for multi-center ASD. Zhao et al. [12] presented an effective 3D convo-
lutional neural network (CNN) based framework to derive discriminative overlap
patterns of a spatial brain network that can characterize and identify ASD from
healthy controls. However, considering the fact that ASD could be related to
subtle feature changes in the brain, it would be difficult to train an end-to-end
CNN directly without any pre-determined information, i.e., discriminative fea-
tures. Most learning based method with extracted dependent or independent
features (cortical thickness, cortical volume, connectome of fMRI) may result in
a sub-optimal solution.

One of the challenge of ASD identification is to either estimate the corre-
sponding cortical thickness of the subject under the same pre-processing pipeline
or to find the correlation of these features for a given cortical area. The trained-
rich matrix may be further processed to yield valuable informations that may be
more clinically useful by the generation of gray matter thickness with computer-
synthesized cortical volume, cortical surface area and thickness relationship.

In this study, we propose a novel multi-modal discriminative subspace learn-
ing approach named MMDL for identification of Autism Spectrum Disorder,
by fusion of multi-modal brain imaging data. Different from the conventional
modeling-based ASD identification methods, we use not only the priors learned
by CNN-based learning, but also the priors from discriminative subspace learn-
ing. The fusion is performed in two aspects. First, training the dictionary pair
learning (DPL) method. Then, the multi-modal features learned by DPL method
and the original data as the input of the CNN. The first step can fully utilize
the input data by improving the class-specific features of the original data. The
CNN can boost the training performance. Capitalizing on the knowledge, the
major contributions of this work are as follows:

– In this work, we propose a novel approach (MMDL), which fuses the classi-
fier of discriminative dictionary learning and CNN to identify ASD. In this
proposed MMDL method, instead of only using matrix factorization based
discriminative dictionary learning, we also apply the CNN based learning
to regularize the model. Specifically, during the CNN training, we initialize
the reconstructed features from discriminative dictionary learning and the
original data as the input of CNN, which boosts the input of CNN training.
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Moreover, the trained dictionary pairs are also returned to the classifier fusion
section to improve the identification of ASD performance.

– We demonstrate the classification performance of the proposed method on the
functional connectivity matrix and gray matter (cortical surface area, cortical
thickness and volume) of 1127 subjects from the challenging of predicting
autism1, the data is acquired from multiple sites with different protocols. The
proposed model is much more accurate compared to the state-of-the-art. With
one of the given features of gray matter, we can estimate the corresponding
others of it.

2 Proposed MMDL Approach

The proposed MMDL approach incorporates deep CNN based training into the
training framework, and guides the classify work with the learned priors. Figure 1
is an overview of the proposed framework. More details of each step are described
as follows.

Fig. 1. The Scheme of the proposed MMDL method. The input is tensor format data
with T1 MRI volume, surface area, thickness and fMRI connectome.

1 https://paris-saclay-cds.github.io/autism challenge/.
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2.1 Initialize with Discriminative Learning

The modeling of ASD identification is first treated as a 3D tensor based class-
wise discriminative dictionary learning problem, we set X = fold(X) and the
operation of fold is to fold up each column of the matrix in to the corresponding
subject of the tensor, then X = [X1, · · · ,Xk, · · · ,XK ] is the data samples and k
is the class number but in this case, it is the binary classification for identification
of Autism Spectrum Disorder.

Following [2,9], we introduced a linear feature selection dictionary Pk ∈
RM×S and a reconstruction dictionary Dk ∈ RS×M for the class k, where M
is the number of subject in class k and S is the dimension of the feature for
each subject, with P = [P1, · · · ,Pk, · · · ,PK ] and D = [D1, · · · ,Dk, · · · ,DK ],
performing data modeling in two layer fully connected neural network format
with low-rank constrain on the selected features of each group:

argmin
P,D

K∑

k=1

∥Xk − DkPkXk∥2F + λ1∥PkXk∥∗ + λ2∥PkXk∥
2
F , (1)

where k (k ∈ {k : |k−k| ̸= 0}), ∥·∥F is the Frobenius norm, λ1,λ2 > 0 control the
trade-off between the reconstruction accuracy and regularization terms, and Xk
is the data matrix not belonging toXk. The regularization term ∥PkXk∥2F is used
for forcing PkXk towards zero, projecting the samples of non-class to a nearly
null space. In this model, Pk projects the samplesXk into an encoding coefficient
matrix Ak = PkXk, it can reconstruct Xk with the reconstruct dictionary Dk,
such as Fig. 2.

Fig. 2. The flowchart of two
layer fully connected neural
network based discriminative
learning.

Ideally, the dictionary D follows orthogonal-
ity constraint with D⊤

k Dk = I to avoid over-
fitting. Hence, Xk can be taken as a combina-
tion of these similar components by enforcing
the encoding coefficients Ak = PkXk to be
non-negative and low rank. To boost the dis-
crimination of D and A, we explore weighted
nuclear norm [3,8] on A, since the features of
subjects within the same class have low rank per-
formance. This leads to the following discrimina-
tive learning (DL) problem.

argmin
P,D

K∑

k=1

∥Xk − DkPkXk∥2F + λ1∥Ak∥w,∗ + λ2

∑

k∈{k:|k−k|>T}

∥PkXk∥
2
F

s.t. D⊤
k Dk = I, Ak = PkXk, Ak ≥ 0, k = 1, ...,K. (2)

where, the first term is reconstruction error, the second regularization makes
the representation low rank, since the components of Xk are similar and have
low-rank performance, PkXk ≥ 0 makes representation non-negative and thus,
creating sparsity in this way.
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To learn dictionary sets A, D and P, we applied an alternating direction
method of multipliers (ADMM) based algorithm as [9].

2.2 Learn the Classification Priors with CNN

Once the D and A is acquired, we can get more similar input data with labels
as the input of the deep CNN learning. In this sub-section, we will describe the
input-output and the architecture of the CNN.

Input-Output: Once the estimated features are achieved, we instead train the
CNN with all the multi-model features directly. We use both the estimated multi-
model features and the original features {DA} as an input of CNN. This has the
advantage of 1) having the estimated features similar to the original multi-model
features. 2) with more training data, it can help improve the training accuracy
by boosting the learning performance. The intermediate classifiers as the output
of CNN. 3) It can work rapidly since the CNN works on features instead of
images.

Architecture: We adopt a general CNN architecture. We can apply any CNN
models, however here we just adopted the architecture of the CNN has three
blocks, which are listed as followed:

– Conv + BN + ReLU + max pooling : For the first block, we use 8 filters with
size 3 × 3 × 8, the max pooling is done by applying a 2 × 2 max filter.

– Conv + BN + ReLU + max pooling : For the second block, 16 filters with size
3 × 3 × 16.

– Conv + BN + ReLU + max pooling : For the third block, 32 filters with size
3 × 3 × 32.

– AverPooling + FC + Softmax + Classification

In the CNN, batch normalization (BN) is to accelerate the training, rectified
linear units (ReLU) is the activation function, the max pooling layer performs
down-sampling and to compute the maximum of each region. The average pool-
ing layer(AverPooling) is for down-sampling and averaging the values of each
region. FC is Fully Connected Layer.

2.3 Classification

In the classification process, we input the multi-model testing data into the
well trained CNN and the learned P and D, which can be used to classify
samples by measuring the reconstruction error for each class as the approach.
Instead of using the classification results via CNN as the final result. It can be
as intermediate to further improve the classification performance. Thus the final
classification result can be obtained by fusing the results of two classifiers.

To get the intermediate classification results of the initial discriminative
learning. Here, we set xi ∈ RSi be the features of type i for the subject to
classify. We define as eik = ∥xi − Di

kP
i
kx∥2 the error of reconstructing xi with
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the dictionaries of class k for feature type i. We then assign the sample to the
class whose dictionary gives the lowest error k̂i = argmink eik.

To combine the information of the two classifiers to further improve the
classification result, the final classification result can be obtained by solving the
optimization problem as followed.

argmin
α

(
kreal −

∑

j

αj k̂j
)2

, s.t.
∑

j

αj = 1, αj ≥ 0,∀j. (3)

k̂j is the classification result of each classifier j (j = 2) and the final output
is class label kreal. Constraints on regression coefficients αi enforce the final
prediction to be a convex combination of classification results from the classifiers
of CNN and discriminative dictionary learning.

3 Experiments

In this section, experiments are conducted on the public set of IMPAC2 to eval-
uate the effectiveness of the proposed MMDL approach. We use 1127 subjects
with 590 subjects as control and 537 subjects with Autism Spectrum Disorder.
The model is evaluated with structural MRI using measures of cortical thickness,
surface area and volume and resting state fMRI with 17.01(±10) years old. The
structural MRI is preprocessed with FreeSurfer and FSL, then the features are
averaged following an adapted Desikan protocol, giving a total of 70 features per
type of measure for both brain hemispheres. Connectomes were derived from
fMRI using the correlation matrix of each subject, we use the singular values
vector of the connectomes of fMRI as the input features. Then, the input is a
tensor format data with a subject (subject with the label), volume, surface area,
thickness and singular values of fMRI connectome matrix of each subject. For
functional MRI in this study, we use the MSDL functional atlas [6], we recon-
structed connectivity matrices using 70 brain discriminative regions by applying
singular value decomposition (SVD) on these connectivity matrices, the singular
values are then rearranged as vectors of 70 features.

For these tasks, We split available 1127 examples into a training set and
validation set, the latter containing 10% of examples. The validation set was used
to tune the regularization parameters and the size M of synthesis dictionary D.
Afterward, the 8-fold cross-validation is applied on these experiments to measure
performance in terms of prediction accuracy (ACC), Specificity, Sensitivity, area
under the curve (AUC) and root mean square error (RMSE).

3.1 Prediction of Autism Spectrum Disorder

We first demonstrate the proposed framework’s performance by predicting the
autism spectrum disorder, based on cortical thickness, cortical surface area and

2 https://paris-saclay-cds.github.io/autism challenge/.
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Table 1. Classification results on the database of IMPAC on 8-fold cross-validation.

Method ACC Sens. Spec. AUC

SVM 0.621± 0.027 0.616± 0.071 0.629± 0.060 0.622± 0.028

SVM+CNN 0.664± 0.042 0.892± 0.030 0.476± 0.056 0.684± 0.039

RF 0.525± 0.034 0.391± 0.142 0.628± 0.147 0.509± 0.022

RF+CNN 0.661± 0.019 0.860± 0.062 0.481± 0.046 0.670± 0.030

DLIn 0.648± 0.040 0.742± 0.077 0.543± 0.045 0.643± 0.041

MMDL 0.690± 0.055 0.790± 0.049 0.689± 0.048 0.733± 0.051

cortical volumes of T1 structure MRI and functional connectivity. For functional
MRI in this study, we use the MSDL functional atlas [6].

The average ACC, Sensitivity (Sens.), Specificity(Spec.) and AUC of the pro-
posed methods with the comparisons are on 8-fold cross-validation (CV) reported
in Table 1, the proposed MMDL method outperforms the SVM and random for-
est (RF)[5] based methods, as shown in the Table 1, the proposed method has
the highest ACC, Specificity and AUC. By fusioning the result of SVM and RF
with CNN (i.e., ‘SVM+CNN’ and ‘RF+CNN’ in Table 1) separately, the results
have improved. Compared to the competed methods in Table 1, our approach
yields improvements of about 0.026 in ACC, 0.061 in Specificity (Spec.) and
0.049 in AUC.

In the proposed model, we show the features that are predicted with the
discriminative learning model of Eq. (2) in Fig. 3 is an example of with the
cortical volume and predicted one, they are quite similar and the RMSE between
them is 0.09.

a) Tested volume. b) predicted volume.

Fig. 3. The tested volume and the predicted one.
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4 Conclusion

In this paper, a MMDL method is proposed by fusion discriminative learning and
priors of deep CNN to regularize the classification problem. Specifically, in the
non-negative discriminative dictionary learning model, this approach learns dis-
criminative features by imposing both orthogonality on the synthesis dictionary,
non-negativity low-rank constraints on projective coefficients. We initialize more
multi-model data from dictionary learning model as the input of CNN, which
can improve the training accuracy. Then, both training priors are returned to
the fusion framework to improve the performance. Experiments on the tasks of
identifying the ASD showed the benefit of our approach compared to state-of-
the-art methods. The proposed method can be used for synthesizing the neural
patterns of cortical.
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