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Abstract. Deep neural networks based object detection models have
revolutionized computer vision and fueled the development of a wide
range of visual recognition applications. However, recent studies have
revealed that deep object detectors can be compromised under adver-
sarial attacks, causing a victim detector to detect no object, fake ob-
jects, or mislabeled objects. With object detection being used perva-
sively in many security-critical applications, such as autonomous vehi-
cles and smart cities, we argue that a holistic approach for an in-depth
understanding of adversarial attacks and vulnerabilities of deep object
detection systems is of utmost importance for the research community
to develop robust defense mechanisms. This paper presents a framework
for analyzing and evaluating vulnerabilities of the state-of-the-art object
detectors under an adversarial lens, aiming to analyze and demystify the
attack strategies, adverse effects, and costs, as well as the cross-model
and cross-resolution transferability of attacks. Using a set of quantitative
metrics, extensive experiments are performed on six representative deep
object detectors from three popular families (YOLOv3, SSD, and Faster
R-CNN) with two benchmark datasets (PASCAL VOC and MS COCO).
We demonstrate that the proposed framework can serve as a methodical
benchmark for analyzing adversarial behaviors and risks in real-time ob-
ject detection systems. We conjecture that this framework can also serve
as a tool to assess the security risks and the adversarial robustness of
deep object detectors to be deployed in real-world applications.

Keywords: Adversarial Robustness - Object Detection - Attack Evalu-
ation Framework - Deep Neural Networks.

1 Introduction

Empowered by deep structures, nonlinear activation, and high-performance GPUs,
deep neural networks (DNNs) have monopolized object detection systems [2TIT4122],
enabling the development of many security-critical applications, such as traffic
sign detection on autonomous vehicles [23] and intrusion detection on surveil-
lance systems [6]. While deep object detection algorithms offer real-time per-
formance with high accuracy over traditional techniques [T726], recent studies
have revealed that well trained deep object detectors are vulnerable to adver-
sarial inputs that are maliciously modified but visually imperceptible from the
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Table 1: Detection on two examples by the TOG family of attacks [2].

original benign input [2I27IT2128]. Table (1| illustrates such vulnerabilities. With
no attack, the object detector can accurately identify the person, the car, and the
stop sign on the two benign images (1st column). However, the same detector is
fooled blindly by the adversarial examples (2nd-5th columns) that are perturbed
malignantly but indistinguishable from the benign images by human-perception.

1.1 Related Work and Problem Statement. Object detection is the core
task in computer vision, which takes an input image or video frame and detects
multiple instances of semantic objects according to known categories [T7126].
Although some may view object detection as a generalization of the image clas-
sification task, a deep object detector is a multi-task learner and performs two
unique learning tasks that make attacking object detection more complex and
challenging than image classification: (1) Object detection should detect and
identify instances of multiple semantic objects encapsulated in a single image
or video frame, whereas a vanilla image classifier deals with the classification of
each image into one of the known classes. (2) Object detection performs local-
ization and classification of multiple instances of multiple semantic objects in a
single image, and the localization accuracy of each instance may influence the
classification accuracy of the instance. Thus, the adversarial attack techniques
for image classifiers [10J24] are not applicable to attacking deep object detectors.
The adversarial examples to attack object detection models are generated using
more complex attack techniques, which compute and inject adversarial pertur-
bations to the benign input by maximizing objectness loss, localization loss and
classification loss simultaneously and iteratively [2127].

Existing object detection models are broadly classified into two categories:
(1) the proposal-based two-phase learning and (2) the regression-based single-
phase learning. The proposal-based approach uses a two-phase procedure by
first detecting proposal regions with a region proposal network (RPN), and then
refining them with bounding box and class label prediction. This category is
dominated by Faster R-CNN [22], and also includes R-CNN [7)8] and Mask R-
CNN [II]. The regression-based single-phase learning formulates the detection
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task as a regression problem. It jointly estimates the bounding box and class
label of objects by directly predicting the coordinates of bounding boxes. This
category is represented by YOLO [1920l2T23] and SSD [14]. Moreover, different
object detectors, even from the same family (e.g., Faster R-CNN), may use dif-
ferent neural networks as the backbone, and some additionally utilize different
input resolutions [2T22] to optimize their detection performance. Several white-
box attacks are developed to attack Faster R-CNN by utilizing proposal regions,
such as DAG [28], UEA [27], and other similar methods [1JT2]. For example, DAG
first assigns an adversarial label (at random) to each proposal region detected
and then performs iterative gradient backpropagation to misclassify the propos-
als. However, DAG attack with Faster R-CNN as the victim detector cannot be
applied or extended to attacking single-phase detectors, which do not use pro-
posal regions. Similar to the black-box transfer attacks to image classifiers [1§],
UEA [27] studied the transferability of attacks by using the adversarial examples
generated from a Faster R-CNN detector to attack SSD detectors.

1.2 Scope and Contribution. In this paper, we develop an attack evalua-
tion framework to rigorously analyze the vulnerabilities and security risks of deep
object detection systems. The paper makes three original contributions. (1) We
take a holistic approach to analyzing and characterizing adversarial attacks to
object detection models from three dominant families: YOLOv3 [2I], SSD [14],
and Faster R-CNN [22g], including attack generalization, untargeted random at-
tacks, targeted specificity attacks, such as object-vanishing, object-fabrication,
and targeted object-mislabeling. We develop the TOG family of attacks, which
on one hand show the feasibility of attacking one-phase regression-based and
two-phase proposal-based detectors using the same attack framework, and on
the other hand provide a broader coverage of vulnerabilities for analyzing and
understanding object detection through an adversarial lens. (2) Our evaluation
framework provides two main building blocks: the attack module, which incor-
porates the state-of-the-art attack algorithms, and the evaluation module, which
includes a set of quantitative metrics to measure, compare and analyze differ-
ent attack algorithms in terms of adversarial effectiveness and costs, and attack
transferability. We define cross-model transferability in terms of both algorithm
and backbone of the detectors and introduce cross-resolution transferability to
enrich our analysis on adversarial robustness of deep object detection models.
(3) We conduct comprehensive experimental analysis on six object detectors
from three dominant families of object detection algorithms (YOLOv3, SSD, and
Faster R-CNN), with four representative attack methods: DAG [28], RAP [12],
UEA [27], and TOG [2], on two benchmark datasets: PASCAL VOC [4] and MS
COCO [13]. Our experimental results further demonstrate the utility of the pro-
posed framework as a methodical benchmark platform for evaluating adversarial
robustness of deep object detectors, and assessing the security risks and the at-
tack resilience of deep object detectors to be deployed in real-world applications.

2 Proposed Framework - Attack Module

Figure(l| gives an overview of the proposed framework. This section is dedicated
to the attack module, a collection of attack algorithms for comparisons and anal-
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ysis. We first give an algorithmic overview of deep object detection algorithms
and adversarial attacks. Then, we provide the formal analysis on the four state-
of-the-art attack algorithms (TOG [2], UEA [27], RAP [12], and DAG [28]).

2.1 DNN-based Object Detection and Adversarial Attacks

DNN-based object detection is a multi-task learning problem, aiming to mini-
mize the prediction error of (1) object existence, (2) bounding boxes, and (3)
class labels of detected objects. Given an input image @ with resolution (H x W),
a K-class object detector fg, parameterized by 6, generates a large number of
S candidate objects {01,...,05} where 0; = (5?,55’,5;”,5?,@,@) represents a
candidate centered at coordinates (b2, Bz’) having a dimension (b, ") with an
objectness probability of C; € [0, 1] to be a real object, and a K-class probability
vector p; = (pr,p2,...,pK). This is often done by dividing the input into mesh
grids in different scales (resolutions). Each grid cell is responsible for locating
objects centered at the cell. The final detection results O are obtained by apply-
ing confidence thresholding to remove candidates with low prediction confidence
and non-maximum suppression to exclude those with high overlapping.

To train a deep object detection neural network, every ground-truth object
in a training sample & is assigned to one of the S candidates according to their
center coordinates. Let O be the set of ground-truth objects of &. The object
detector can be trained by optimizing the following multi-task learning objective:

L(D;0) = Bz 0)cpLobi(®, O;0) + Lipox (&, O; ) + Letass (&, O; 6)] (1)

where D is the training set, Lobj, Loboxs and Lelass represent the loss function
of the three prediction tasks: object existence (objectness), object localization
(bounding box), and object class label respectively. In the rest of this paper, we
use O and O to distinguish between ground-truth and predicted detection, and
we only specify the argument (e.g., O(x)) to emphasize the input if necessary.

An adversarial example ' is generated by perturbing a benign input x sent
to the victim detector, aiming to fool the victim to misdetect randomly or pur-
posefully. The generation process can be conceptually formulated as

min ||z’ — ||, st O')# O(x),O') = O*(x) (2)
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where p is the distance metric and O*(x) is the incorrect detection. Popular
choices for the distance metric include the L., norm, denoting the maximum
change to any pixel, the Ly norm, computing the Euclidean distance, and the
Ly norm, measuring the number of the pixels that are changed.

Although adversarial attacks on object detection systems are more sophisti-
cated, adopting different formulations, they generally exploit gradients derived
from one or multiple losses in Equation [1| (i.e., Lobj, Lbbox, and Leiass). This
allows the attack algorithm to meticulously inject perturbations to the input
image, such that the tiny changes in input will be amplified throughout the
forward propagation of the victim detector, and become large enough to alter
one or more types of prediction results (i.e., object existence, bounding box,
and class probability), depending on the composition of gradients. We analyze
below the four representative attack algorithms on object detection systems,
understanding their properties and demystifying their working principles.

2.2 TOG: Targeted Objectness Gradient Attacks
We develop the TOG family of attacks [2] based on an iterative gradient approach
to obtain the malicious perturbation fooling the victim detector to give the
desired erroneous detection. With a proper setting of the designated detection
O*(x) and the attack loss £L*, TOG can be generally formulated as:

Tyl = H [m; - aTogf(Vzéﬁ*(m;,O*(m);e))] 3)

where @; is the adversarial example at the ¢-th iteration, [ ], [-] is the projection
onto a hypersphere with a radius € centered at « in L, norm, I" is a sign function,
and arog is the attack learning rate. With this formulation, TOG allows adver-
saries to specify the effect imposed on victim’s detection accuracy and correct-
ness, including untargeted random attacks and three types of targeted specificity
attacks: object-vanishing, object-fabrication, and targeted object-mislabeling.
Untargeted attacks fool the victim detector to randomly misdetect without
targeting at any specific object. This class of attacks succeeds if the adversarial
example fools the victim detector to give incorrect result of any form, such
as having objects vanished, fabricated, or mislabeled randomly. TOG exploits
gradients from both Lobj, Lobox, and Leiass and formulates the attack to be

w1 =[] [#t + aroa (Ve L(, O(x);0))]. (4)

As shown in the 2nd column in Table[T} the victim detector cannot identify any
correct objects that were detected on benign inputs (1st column) but the exact
effect varies across input images and attack algorithms.

Object-vanishing attacks consistently disable the victim detector to locate
and recognize any object. TOG-vanishing utilizes gradients from L, as it dom-
inates the decision on object existences and formulates the attack as follows:

zip1 = | [ [#t — aroc T (Ve Lovi(x:, 05 0))] (5)
By targeting specifically at}object—vanishing, this attack if successful will make

the victim detector fail to detect any object as shown in the 3rd column in
Table [1| where no object is detected in both examples.
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Object-fabrication attacks consistently fool the victim to mistakenly recognize
false objects. TOG-fabrication leverages gradients from Lyp; with formulation:

i = [ [#t + aroc (Ve Lovi (@t, 03 60))]. (6)
This attack makes the victim to drastically increase the number of detected
objects by introducing fake objects, as illustrated in the 4th column in Table
Targeted object-mislabeling attacks consistently cause the victim detector to
misclassify the objects detected on the input image by replacing their source class
label with the maliciously chosen target class label, while maintaining the same
set of correct bounding boxes. By focusing on the classification loss (i.e., Lclass)
and keeping the gradients of the other two parts unchanged, TOG-mislabeling
assigns the target class label to each object in O () to form O*(x) and generate
adversarial examples with
Ty, = H [®; — atoc (Ve L(x;, O (2);9))]. (7
For instance, the object-mislabeling attack in the 5th column in Table [1]is con-
figured to fool the victim to mislabel any stop sign as an umbrella. Note that
the person (top) and the car (bottom) can still be detected under this attack as
they are not the objects of attack interest and only stop signs will be mislabeled.
As TOG does not attack a special structure (e.g., RPN) in an object detec-
tor, it is applicable to both one-phase and two-phase techniques. Inspired by the
universal perturbations to attack image classifiers [16], TOG also develops uni-
versal perturbations to attack deep object detectors in terms of object-vanishing
or object-fabrication attack [2]. By training the universal perturbation offline on
a training set and a victim detector, the universal perturbation can be applied
during the online detection phase to any input sent to the victim.

2.3 DAG: Dense Adversary Generation

DAG [28§] is an untargeted random attack and begins with manually assigning the
IOU threshold to 0.90 in non-maximum suppression (NMS) in the RPN of a given
two-phase model. This attack setting requires one proposal region to be highly
overlapped (> 90%) with the other proposal region in order to be pruned. Hence,
a large amount of proposal regions remain unpruned. After the refinement by the
subsequent network for bounding box and class label prediction, DAG assigns a
randomly selected label for each proposal region and then performs the iterative
gradient attack to misclassify the proposals with the following formulation:

J
re= Vay 3l -5y ) @i =l - 2 (8)
i=1 <

where z; = 1 if the j-th proposal on «; from RPN is foreground and 0 otherwise,
pj and p? are the prediction confidence of the correct class ¢ and randomly
selected incorrect class ¢’ of the j-th proposal and apag is the attack learning
rate. This is equivalent to exploiting gradients derived from the classification
loss Leclass- As DAG requires to manipulate the RPN to generate a large number
of proposals, it can only be directly applicable to two-phase detection models.
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2.4 RAP: Robust Adversarial Perturbation

RAP [12] is an untargeted random attack and focuses on collapsing the function
of the RPN in two-phase algorithms. It exploits the composite gradients from
(1) the objectness loss, i.e., Lopb;, that fools the RPN to not returning foreground
objects, and (ii) the localization loss, i.e., Lpbox, that causes the bounding box
estimation to be incorrect even if foreground objects are proposed:

J
Ty = vw; sz [log(é]) + KSE(bAJﬁ T)L :E;+1 = :E; - ﬁ;}:?i Tt (9)
Jj=1
where (s is the squared error, Bj and 7 are quadruples of the proposed bounding
box and large offsets respectively, and arap is the attack learning rate.

2.5 UEA: Unified and Efficient Adversary

UEA [27] is an untargeted random attack. It trains a conditional generative
adversarial network (GAN) [9] to craft adversarial examples. In deep object
detectors, the backbone network plays an important role in feature extraction
for region proposals in two-phase algorithms or object recognition in one-phase
techniques. In practice, it is often one of the popular architectures (e.g., VGG16)
that perform well in large-scale image classification and is pretrained with the
ImageNet dataset for transfer learning. UEA designs a multi-scale attention fea-
ture loss, encouraging the GAN to create adversarial examples that can corrupt

the feature map extracted by the backbone network in the victim detector:
M

LUEA = E@0)enl Y [|Am o (& — Run)J2] (10)

m=1

where &,, is the extracted feature map of the training example & in the m-
th layer of the backbone network, R,, is a randomly predefined feature map,
and A,, is the attention weight computed based on the proposal regions from
the RPN. Whenever another detector is equipped with the same backbone, the
adversarial examples are likely to be effective. Equation [10] is jointly optimized
with the DAG formulation (Equation, requiring the manipulation of the RPN.
Hence, it is unable to directly attack one-phase algorithms.

3 Proposed Framework - Evaluation Module

The evaluation module is the second building block of the proposed framework
(Figure , providing experimental testbed to measure, evaluate and analyze
attacks and adversarial robustness of an object detector from four perspectives.

3.1 Attack Effectiveness

mean Average Precision (mAP). The interpolated average precision (AP)
has been used by major object detection competitions [4JI3]. For a given class,
the precision/recall curve is computed from the detector’s output, ranked by the
detected confidence. The AP summarizes the shape of the precision/recall curve
by taking the mean precision at a set of equally spaced recall levels. Then, the
mean Average Precision (mAP) that quantifies the overall detection quality of
a detector is computed by taking the mean of APs of all classes. The general
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attack performance can be analyzed on two sets of mAP (or AP), one on benign
examples and another on adversarial examples. A low adversarial mAP implies
the power of the attack but reveals the vulnerability of the victim model.

Attack Success Rate (ASR). In addition to comparing mAPs to reveal the
impact on overall performance of the victim, we further define the attack success
rate (ASR) for each targeted specificity attack, to capture their capability to fool
the victim to misbehave with the designated effect (e.g., object-vanishing).

For object-vanishing attacks, we define the ASR as the proportion of objects
detected on benign examples that are not covered by any objects detected on
their adversarial counterparts:

EmED Zée@(m) ]l[ﬁﬂél € é(m/)(IOU(b[beX]’ 6Ebbox]) 2 tIOU)]
2zep [1O(@)]]

where 1 [condition] = 1 if the condition is met and 0 otherwise, IOU(0ppbox), f)l[bbox])
computes the intersection over union of the two bounding boxes Opppoy and
6’[bbox], and tjoy is a predefined threshold controlling the amount of overlapping
required for two bounding boxes to be considered as referring to the same entity.

For object-fabrication attacks, the ASR is defined as the proportion of test
examples where additional false objects are mistakenly detected by the victim
detector under attacks:

ASR = oo 3 110 > 10(@)] (12)
€D

ASR = ; (11)

For object-mislabeling attacks, we define the ASR to be the proportion of
objects detected on benign examples that are mislabeled as the target label by
the victim detector on their adversarial counterparts:

ASR — Zze'D Zae@(z) 1[36, € @(m/)(IOU(b[beX]v 6ibbox]) 2 liou A 6Ec1ass] = T(a[claSS]))]

Yeen [10@)]|

13
where T (Of1ass)) 15 @ mapping from a source class to a target class. Under ‘(chig
setting, we consider the attack succeeds only if it (i) does not alter the bounding
box significantly and (ii) fools the detector to give a designated wrong label.

3.2 Attack Cost

Time Cost. We measure time cost using two metrics: (i) the attack time, which
measures the additional time introduced by the attack, excluding the inference
of the victim detector to obtain the final detection results; and (ii) the total time
cost, which considers both attack time and (benign) detection time.

Distortion Cost. Remaining human-imperceptible is an important factor
in adversarial attacks as significant distortion naturally mislead a deep learning
model to misbehave. A robust object detection model should be resilient against
adversarial examples that are visually identical to their benign counterparts.

Ly, Lo, and L, distances have been popularly used in adversarial learning.
They are used as a constraint to limit the maximum perturbation introducible to
the benign example. Note that a low L, distance means a high imperceptibility.

Structural Similarity (SSIM) has become an important metric to quantify
the similarly between two images in computer vision:
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(2Uefi) ot i) + K1) (20 i) 1) + K2)
(Hap + B + F(00 + 05 + R2)

I

SSIM(z,z') = (14)

=1
where x[i] denotes the i-th channel of image @, . and o, are the average and
variance of & respectively, 0.4/ is the covariance of  and «’, and k; and ko are
two variables for numerical stability. It has a range from —1.00 (the least similar)
to 1.00 (the most similar) and is considered to be more consistent to human visual
perception than L, distances. As attacks optimize different L, distances, SSIM

offers an objective comparison on the imperceptibility of adversarial examples.

3.3 Attack Transferability
All adversarial attacks on deep object detectors are white-box attacks as they
require model weights to optimize the generation of adversarial perturbation
against a victim detector. The transferability of adversarial examples generated
against one victim detector can be utilized to launch black-box attacks to other
detectors, in a similar way as the transferability of adversarial examples to attack
different image classifiers [I8]. For object detection, we propose to study not only
the cross-model transferability, but also the cross-resolution transferability.
Cross-model transferability in object detection can be further broken down
into (i) cross-algorithm transferability that the source and the target models
use different detection algorithms and (ii) cross-backbone transferability that
examines the transferability between different backbones of the same detection
algorithm and between different detection algorithms with the same backbone.
Cross-resolution transferability covers a characteristic unique to those object
detection algorithms (e.g., YOLO and Faster R-CNN) that allow variable input
resolutions. In contrast to image classification networks where the resolution of
the input image is fixed due to the fully-connected layer for the final softmax,
for object detection, increasing input resolution can generate more candidate
objects with a potentially better detection quality with the cost of slowing down
the detection. The cross-resolution transferability reveals whether the adversarial
examples generated by an attack algorithm on a source resolution can be robust
and survive under resizing and interpolation to the target resolution.

3.4 Model Applicability

From a macroscopic perspective, all object detection systems take an input image
and output a set of detected objects. They may appear to be similar, but their
internal learn-to-detect mechanisms can be very different. Some existing attacks
are designed by exploiting the vulnerability of a particular structure, e.g., the
region proposal network (RPN) in Faster R-CNN detectors. Hence, not all attack
techniques are universally applicable. RAP [12] is an example, which perturbs the
benign image to disable the functionality of the RPN in two-phase algorithms
and cannot be used on one-phase detectors where no RPN is used. We also
leverage model-applicability as an evaluation aspect on attack algorithms.

4 Experimental Analysis

Extensive experiments are conducted on two benchmark datasets: PASCAL
VOC [] and MS COCO [13]. All results are based on the entire test set, and
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No Attack

we preprocess images by padding to preserve the aspect ratio of objects. We
consider six models from three dominant detection algorithms. YOLOv3-D and
YOLOv3-M are two YOLOv3 [21] models with a Darknet53 and a MobileNetV1
backbone respectively. For SSD [14], we have SSD300 and SSD512 correspond-
ing to two models with different input resolutions. Finally, FRCNN denotes the
Faster R-CNN [22] model. As experimental results on COCO are highly similar
to VOC, we provide only YOLOv3-D on COCO due to the space constraint. We
provide more experimental configuration details in Appendix A.

4.1 Untargeted Random Attacks

This section reports the set of experiments to compare the four attack algo-
rithms: TOG, UEA, RAP, and DAG in terms of effectiveness and time cost of
untargeted attacks. Figure provides a visualization of four benign images (left
most column) and their four adversarial examples generated by TOG, UEA,
RAP, and DAG. Four attack algorithms fool the same victim detector FRCNN
to misdetect on the same query image in different ways. TOG deceives the vic-
tim detector to return false objects on the 1st, 3rd and 4th examples with no
correct objects detected. For the 2nd example with two cats, TOG succeeds by
fooling the victim to detect no object at all. This shows that different images
may respond to the same attack differently, such as missing cats by TOG in the
2nd example compared with fabricating fake objects in the other examples. Sim-
ilarly, UEA misses both the person and the dog for the 1st example, detects one
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Dataset Random Victim mAP (%) Time Cost (s) Distortion Cost

Attack Detector

Benign Adv. Benign Adv. Lo Lo Lo SSIM
VOC TOG YOLOv3-D 83.43 0.56 0.03 0.98 0.031 0.083 0.984 0.875
VOC TOG YOLOv3-M 71.84 0.43 0.02 0.59 0.031 0.083 0.978 0.876
vVOC TOG SSD300 76.11 0.86 0.02 0.39 0.031 0.120 0.975 0.879
VOC TOG SSD512 79.83  0.74 0.03 0.69 0.031 0.070 0.974 0.869
VOC TOG FRCNN 67.37  2.64 0.14 1.68 0.031 0.058 0.976 0.862
VOC UEA FRCNN 67.37 18.07 0.14 0.17  0.343 0.191 0.959 0.652
VOC RAP FRCNN 67.37  4.78 0.14 4.04 0.082 0.010 0.531 0.994
VOC DAG FRCNN 67.37  3.56 0.14 7.99 0.024 0.002 0.493 0.999

COCO TOG YOLOv3-D 54.16  3.52 0.03 1.02  0.031 0.083 0.986 0.872

Table 2: Untargeted attacks on different datasets and victim detectors.

cat correctly and misses the other cat on the 2nd example, misses both person
and car for the 3rd example, and misdetect all objects on the 4th example. RAP
and DAG fail the detection on all four examples differently.

Table 2] provides the quantitative measurements on all victim detectors under
the four attack algorithms. The first metric is the mAP in percentage, including
benign mAP with no attacks and adversarial mAP given adversarial examples.
The second metric measures the detection time on benign inputs and attack
total cost (both generation and detection). The third metric is the distortion
cost measured in L.,, Lo, Ly distances, and SSIM. L, and Ly costs reported
here are normalized by the number of pixels and the L, cost has a magnitude
of 1073. Note that UEA, RAP, and DAG can only attack FRCNN, and hence
we do not evaluate them on YOLOv3, SSD300 and SSD512. We make two ob-
servations from Table [2| First, all attacks successfully bring down the mAP of
the victim. Considering the TOG attack, the benign mAP of any victim detec-
tor is drastically reduced to less than 3.52% with four victims having a close
to zero adversarial mAP. This indicates that the victims fail miserably with
no detection capability. Second, we compare four different attacks on FRCNN,
which has a benign mAP of 67.37%. TOG is the most powerful attack with the
lowest adversarial mAP of 2.64%, followed by DAG (3.56%), RAP (4.78%), and
UEA (18.07%). By default, UEA generates adversarial examples with a fixed
resolution of 300 x 300. When attacking FRCNN taking inputs with resolution
of 600 x 600, resizing and interpolation are required. Hence, the effectiveness of
UEA is hindered. In comparison, TOG, RAP and DAG are much more adaptive,
and capable of generating adversarial examples that fit the input resolution, as
they do not rely on additional networks.

Apart from attack effectiveness, attack costs are equally important. UEA has
the lowest time cost with only 0.17s attack total time because the generation
of adversarial examples does not use the victim model but the GAN, which can
have much lower complexity. TOG has a reasonable range of attack total time
but RAP and DAG have prohibitively high time cost (4.04s and 7.99s). This can
be explained by the number of iterations required to succeed the attack in RAP
and DAG. TOG needs 10 iteration while RAP and DAG need to run more than
30 rounds. Interestingly, spending more iterations allows RAP and DAG to have
a much lower distortion cost and exceptionally high SSIM measures of 0.994 and
0.999 respectively. TOG also has a high imperceptibility with SSIM higher than
0.862, while adversarial perturbation generated by UEA is significantly more
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Fig.3: The AP of each class under TOG targeted attacks on YOLOv3-M

perceptible, having a low SSIM of 0.652. Furthermore, RAP and DAG have a
low Lg cost, which implies their perturbations are more localized. In comparison,
both TOG and UEA have the Lg cost close to 1.000, indicating that most pixels
are modified by the adversarial perturbation.

4.2 Targeted Specificity Attacks

We evaluate the three targeted specificity attacks using TOG. For targeted mis-
labeling attacks, without loss of generality, we choose two representative attack
targets: the most-likely (ML) and the least-likely (LL), which correspond to the
incorrect class label of an object detected on benign example with the high-
est and the lowest prediction confidence respectively [3]. The TOG-mislabeling
allows objects of any class to be attacked. Figure [3| shows the benign and adver-
sarial AP of each class on YOLOv3-M. All targeted attacks by TOG drastically
reduce the average precision of every class supported by the victim to almost
zero, showing the severity of the targeted attacks. We provide more experimental
measurements on all 24 cases (four attacks on six detectors) in Appendix B.

Recall Figure [2] each of the four input images responds to the same untar-
geted random attack differently. Figure [d] provides a visualization of the same set
of images attacked by TOG with different targeted specificity effects. This quali-
tatively validates that all targeted attacks in TOG are goal-driven, which can be
more detrimental to victim detector. For example, with TOG-vanishing attack
(2nd column), all four adversarial examples fool the victim detector FRCNN to
misdetect with no object recognized. For TOG-mislabeling attacks, the person
and the dog on the 1st row are purposefully mislabeled as the dog and the cat
respectively in the ML case and both aeroplanes in the LL case. In comparison
with Figure 2] UEA, RAP, DAG and general TOG are untargeted: each of the
four input images responds to attacks under the same attack algorithm (be it
TOG, UEA, RAP and DAG) quite differently, showing random ways to fool a
victim detector. We provide more experimental analysis on each targeted attack
in Appendix B.

4.3 Transferability of Attacks

We conduct quantitative analysis on the transferability of all four untargeted
attacks: TOG, UEA, RAP and DAG. Table |3| reports the results for the cross-
model transferability, measured in adversarial mAP. Using the same model to
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No Attack TOG-vanishing TOG-fabrication TOG-mislabeling TOG-mislabeling
) (ML) (LL)

Fig. 4: Four visual examples of different targeted specificity attacks by TOG.

craft adversarial examples always achieves the highest transferability, as indi-
cated in boldface. We first consider the adversarial examples generated on dif-
ferent source models and measure their transferability to different target models
using TOG (the 2nd-6th rows). First, we observe that having the same backbone
architecture does not necessarily lead to high transferability. FRCNN, SSD300
and SSD512 all use VGG16 as the backbone network. Yet, the adversarial exam-
ples generated on FRCNN have very low transferability to SSD300 and SSD512,
reducing their mAP from 76.11% to 75.80% and from 79.83% to 78.09% respec-
tively. Second, the adversarial examples generated on SSD have relatively higher
transferability compared to other source models. For instance, adversarial exam-
ples from SSD300 and SSD512 can reduce the mAP of YOLOv3-D from 83.43%
to 56.87% and 56.21%, much better than YOLOv3-M and FRCNN that only
reduction to 74.62% and 79.47% are recorded. Finally, considering the transfer-
ability of different attack algorithms with the same source model FRCNN (the
last four rows), we find that adversarial examples by UEA exhibit a higher trans-
ferability consistently. This can be attributed to its high distortion cost incurred
to perturb each adversarial example (recall Table [2)).

Table [fa] and Table [b] report the cross-resolution transferability on FRCNN
and YOLOv3 respectively. Note that only TOG can directly attack YOLOv3
(one-phase detectors), and SSD does not support variable input resolutions. We
use nearest neighbor interpolation during resizing as we find empirically that
it can better preserve the malicious pattern. For victim detector FRCNN, we
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Transfer Source Target Model

Attack Model  yOLOv3-D YOLOv3-M SSD300 SSD512 FRCNN
Benign (No Attack) 83.43 71.84 76.11  79.83  67.37
TOG YOLOv3-D 0.56 60.13 72.70 73.86 55.57
TOG  YOLOvV3-M  74.62 0.43 73.27 7527  59.1
TOG SSD300 56.87 42.85 0.86 3879  50.36
TOG SSD512 56.21 46.00 58.00 0.74  35.98
TOG FRCNN 79.47 68.60 75.80  78.09  2.64
UEA FRCNN 51.92 31.88 47.08 47.66 18.07
RAP FRCNN 81.80 69.45 75.77  76.84  4.78
DAG FRCNN 81.21 70.37 75.15  78.38  3.56

Table 3: Cross-model transferability.

Transfer Source Target Resolution
Attack Resolution 3005300 400x400 500x500 600x600 700x700 800x800

Benign (No Attack) 65.33 67.85 68.00 67.37 67.91 67.76

TOG 600x600 50.15  29.50  15.07  2.64 6.84 3.86

UEA 300x300 3.86  11.88  18.61  18.07  16.32  17.34

RAP 600x600 5845  54.32  56.96  4.78  53.21  50.12

DAG 600x600 62.89  59.82  46.58  2.84  30.96  13.75
(a) FRCNN

Model Transfer Source Target Resolution

Attack Resolution 3594352 384x384 416x416 448x448 480x480

Benign (No Attack) 82.71 83.25 83.43 83.63 83.65
TOG 416x416 25.26 14.93 0.56 11.02 12.16

Benign (No Attack) 69.98 71.13 71.84 73.10 72.72
YOLOv3-M ‘15§ 416x416  33.41 20,61  0.43 1562  19.16

YOLOv3-D

(b) YOLOV3

Table 4: Cross-resolution transferability.

observe that TOG and UEA have higher cross-resolution transferability than
RAP and DAG. The same observation can be made in both YOLOv3 detectors.
For instance, TOG can still effectively reduce the mAP from more than 82% to
less than 26% in all target resolutions evaluated on YOLOv3-D. This is because
adversarial examples generated by TOG and UEA have a higher robustness
under resizing and interpolation to fit the target resolution. Also, upsizing to
a higher target resolution is always better than downsizing, causing a higher
mAP drop in the target victim model, which can be explained by the fact that
downsizing loses the fine details of malicious perturbation.

Table [5] provides a visualization to illustrate the transferability of four TOG
targeted attacks by generating adversarial examples on SSD300 and evaluating
their cross-model transferability to the other three detectors: SSD512, YOLOv3-
D, and YOLOv3-M. Consider the SSD300 row, the detector can correctly identify
the person and the bicycle on the benign input (1st column). The targeted at-
tacks by TOG successfully fool the victim to misdetect with designated attack
specificity effects: the two objects are missed in TOG-vanishing, false objects are
detected in TOG-fabrication, and the person and the bicycle are mislabeled as
a dog and a horse in the ML case of TOG-mislabeling and both buses in the LL
case. We analyze the transferability by observing the other three rows. Given
that all three detectors can successfully identify the two objects on the benign
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Detection results under four TOG targeted attacks

Benign oy . TOG-mislabeling TOG-mislabeling
(No Attack) TOG-vanishing TOG-fabrication (ML) (LL)

SSD300

Detection results transferred from SSD300 to other victim detectors
TOG-mislabeling TOG-mislabeling
(ML) (LL)

(NOBiiltigglck) TOG-vanishing TOG-fabrication

SSD512

YOLOv3-D

YOLOv3-M

Table 5: Transferring targeted attacks on SSD300 to three other detectors.

image, we find different degrees of adversarial transferability. For instance, TOG-
vanishing and TOG-fabrication can be successfully transferred to SSD512, which
has the same backbone (i.e., VGG16) and detection algorithm as the source de-
tector SSD300. TOG-fabrication can also be transferred to YOLOv3-M with the
same effect. However, even some adversarial examples may fool other detectors
(e.g., TOG-vanishing to YOLOv3-M), they fail in transferring attacks with the
same effect. Note that with adversarial transferability, the attacks are black-
box, generated and launched without any prior knowledge of the three victim
detectors. We provide more discussion in Appendix C.

4.4 Model Applicability and Physical Attacks

We provide a comparison of seven representative attack algorithms, including
two physical attacks, to deep object detectors in Table [6]

TOG [2], UEA [27], RAP [12] and DAG [28] are the representative digital
attacks against a victim detector by perturbing pixel values of a benign image
while maximizing one or more of the three loss functions: objectness, bound-
ing box, and classification. All four can perform untargeted random attacks,
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Attack Effect Model-applicability
Random Object- Object- Object- Two-phase One-phase
vanishing fabrication mislabeling pRCONN YOLO SSD

TOG [2] v v v v v 4 v
UEA |27] v X X X 4 X X
RAP [12] v X X X v X X
DAG [28] v X X X 4 X X
DPATCH [15] X X v X v v v
Extended-RP> [5] X v v X v v v
Thys’s Patch [25] X v X X 4 v v

Table 6: Characteristics of seven representative attacks.

and TOG also provides additional three targeted specificity attacks. For model-
applicability, UEA, RAP and DAG by design depend on the RPN structure,
and can only be employed to generate adversarial examples against FRCNN
(two-phase detectors). TOG is a general attack framework without dependency
on any special structure and can be used to fool object detectors from both
one-phase (YOLO and SSD families) and two-phase algorithms (e.g., FRCNN).

In addition to perturbing the entire image, adversarial patches are also pro-
posed in either a digital (DPATCH) or physical (Extended-RPs and Thys’s
Patch) form. DPATCH puts a small patch (e.g., 40 x 40) on a benign exam-
ple, fooling the victim to fabricate objects at random position or the location
where the patch is placed. Extended-RP5 and Thys’s Patch propose printable
adversarial patches. If the adversarial patch is presented physically in the scene
captured by the camera, the captured image will become adversarial input, which
will fool a victim detector to misdetect. Extended-RP5 supports “disappearance”
and “creation”, corresponding to the object-vanishing and object-fabrication ef-
fects, while Thys’s Patch aims to make the object vanishing from the detector.
Similar to TOG, all physical attack and digital patch algorithms can be employed
on both two-phase and one-phase detection techniques.

5 Conclusion

We witnessed a growing number of digital or physical adversarial attacks to
object detection systems recently [2I5T2IT5I252728]. To gain an in-depth un-
derstanding of the security risks of employing object detection intelligence in
security-critical applications, in this paper, we develop a principled evaluation
framework to analyze vulnerabilities of object detection systems through an ad-
versarial lens, with three original contributions. First, we examine and compare
the state-of-the-art attacks through our proposed evaluation framework. Sec-
ond, to provide broader coverage of security risks in deep object detection sys-
tems, we present a family of TOG attack algorithms, capable of attacking both
proposal-based two-phase detectors (e.g., FRCNN) and regression-based one-
phase techniques (e.g., SSD, YOLOvV3), supporting a general form of untargeted
random attacks, and three targeted attacks, geared specifically to object detec-
tion. Third but not least, we introduce a set of quantitative metrics, including
cross-resolution transferability and cross-model transferability w.r.t. algorithms
and DNN backbones, to evaluate the effectiveness and cost of four representa-
tive methods of digital attacks, and using model-applicability to compare digital
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attacks with physical patch attacks. Our evaluation framework can serve as a
tool for analyzing adversarial attacks, assessing security risks and adversarial
robustness of deep object detectors deployed in real-world applications.
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Appendix

A.

Background. The VOC 2007+2012 dataset has 16,551 training images

and 4,952 testing images, while the COCO 2014 dataset has 117,264 training
images and 5,000 testing images. The configuration and detection performance
of the six detectors under no attack are reported in Table[7} All measurements are
recorded on NVIDIA RTX 2080 SUPER (8 GB) GPU, Intel i7-9700K (3.60GHz)
CPU, and 32 GB RAM on Ubuntu 18.04.

Detector . Input Benign Detection
Dataset  14ontifier Algorithm Backbone Resolution mAP(%) Time(s)

YOLOv3-D YOLOv3 Darknet53 416x416 83.43 0.0328
YOLOv3-M YOLOv3 MobileNetV1 416x416 71.84 0.0152

VOC SSD300 SSD VGG16 300x300 76.11 0.0208
SSD512 SSD VGG16 512x512 79.83 0.0330

FRCNN Faster R-CNN VGG16 600x600 67.37 0.1399

COCO YOLOv3-D YOLOv3 Darknet53 416x416 54.16 0.0337

Table 7: A summary of victim detectors under no attack.

B. Analysis on Targeted Specificity Attacks. Table [8| reports the re-

sults of four TOG targeted attacks on six victim detectors (24 cases). TOG
targeted attacks effectively bring down the mAP of all victim detectors, with
any attack specificity. For instance, YOLOv3-D on VOC has a high mAP of
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mAP (% Time Cost (s Distortion Cost
%etf(:to: Targeted Attack (%) )
(Dataset) Benign Adv. Benign Adv. Les Lo Lo SSIM
TOG-vanishing 83.43 0.32 0.03 0.77 0.031 0.082 0.983 0.877
YOLOv3-D TOG-fabrication 83.43 0.25 0.03 0.93 0.031 0.084 0.984 0.873

(VOC) TOG-mislabeling (ML) 83.43 3.15 0.03 0.95 0.031 0.080 0.972 0.879
TOG-mislabeling (LL) 83.43 2.80 0.03 0.96 0.031 0.081 0.972 0.879

TOG-vanishing 71.84 0.36 0.02 0.37 0.031 0.082 0.978 0.878

YOLOv3-M TOG-fabrication 71.84 0.17 0.02 0.57 0.031 0.084 0.976 0.873
(VOC) TOG-mislabeling (ML) 71.84 2.67 0.02 0.56  0.031 0.079 0.953 0.882
TOG-mislabeling (LL) 71.84 1.60 0.02 0.56 0.031 0.079 0.953 0.881

TOG-vanishing 76.11  5.54  0.02 0.36 0.031 0.120 0.978 0.880
SSD300 TOG-fabrication 76.11 0.57 0.02 0.37 0.031 0.122 0.978 0.877
(VOCQC) TOG-mislabeling (ML) 76.11  2.53 0.02 0.37 0.030 0.110 0.945 0.891
TOG-mislabeling (LL)  76.11 1.44  0.02 0.37 0.030 0.111 0.945 0.889

TOG-vanishing 79.83 6.23  0.03 0.62 0.031 0.071 0.975 0.868
SSD512 TOG-fabrication 79.83 0.50 0.03 0.69 0.031 0.071 0.976 0.866
(VOC) TOG-mislabeling (ML) 79.83 2.53  0.03 0.65 0.031 0.065 0.957 0.878
TOG-mislabeling (LL) 79.83 1.20 0.03 0.65 0.031 0.066 0.956 0.877

TOG-vanishing 67.37 0.14 0.14 1.66 0.031 0.058 0.975 0.862
FRCNN TOG-fabrication 67.37 1.24 0.14 1.68 0.031 0.057 0.977 0.866
(VOC) TOG-mislabeling (ML) 67.37 2.14 0.14 1.64 0.030 0.054 0.935 0.873
TOG-mislabeling (LL) 67.37 1.44 0.14 1.60 0.030 0.054 0.935 0.872

TOG-vanishing 54.16 0.41 0.03  0.78 0.031 0.082 0.986 0.874
YOLOv3-D TOG-fabrication 54.16 1.46 0.03  0.78 0.031 0.083 0.986 0.871
(COCO)  TOG-mislabeling (ML) 54.16 5.43 0.03  1.00 0.031 0.080 0.968 0.878

TOG-mislabeling (LL) 54.16 0.76 0.03  1.00 0.031 0.080 0.968 0.877

Table 8: Targeted attacks by TOG on different datasets and victim detectors.

83.43% given benign images but, under attacks, it becomes less than 3.15%.
Even though the adversarial examples in targeted attacks can fool the victim
detectors to misdetect with the targeted specificity effects, such attack sophisti-
cation does not drastically incur additional attack time cost and distortion cost,
compared with the TOG untargeted attack scenario in Table 2]

Figure [5| compares the four targeted attacks with respect to the number of
object detected by three victim detectors (YOLOv3-D, SSD512 and FRCNN)
with different settings of the confidence threshold. The benign case (the blue
solid curve) indicates the number of objects detected by the victims under no
attacks. Confidence thresholding is used by object detection algorithms as a
post-processing step to return only detected objects with high confidence (Sec-
tion , and the threshold is a hyperparameter defined by the system owner
(e.g,- FRCNN uses 0.70 by default). We find that all trends are consistent across
both detectors: Figure [5| experimentally confirms that (i) the TOG-vanishing
attacks significantly lower the number of detected objects with any setting of
confidence threshold, (ii) the number of detected objects is drastically increased
in TOG-fabrication attacks, and (iii) the TOG-mislabeling attacks (both ML
and LL) have almost the same number of objects detected on benign examples.

Figure [6] further analyzes the two targeted mislabeling attacks of TOG in
terms of ASR according to Equation With a similar formulation, we also
introduce misdetection rate (MR) to compute the portion of objects that are
mislabeled under TOG-mislabeling attacks. Note that MR still requires the de-
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Fig. 5: Number of detected objects under no attack and TOG targeted attacks.

tected bounding box to be correct, but the predicted class label of the object
can be any class but not the correct one. We observe that a large portion of
objects are successfully mislabeled as the maliciously targeted class (ASR), and
only small portion is randomly mislabeled instead (MR - ASR), especially for
the ML targets (Figure @ For the LL attack targets (Figure , the ASR is
less than 80%, but the misdetection rate (MR) is close to 100% in all five victim
detectors, indicating that almost all objects in all test examples are mislabeled
though only less than 80% LL targeted mislabeling attacks succeeded.
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Fig.6: ASR and MR of TOG-mislabeling attacks.

C. Transferability of Targeted Specificity Attacks. Consider in Table[f]
the victim detector SSD512 with the same backbone and detection algorithm
as SSD300, TOG-vanishing can perfectly transfer the attack to SSD512 with
the same effect (i.e., no object is detected). For TOG-fabrication, we observe
that while the number of false objects is not as much as in the SSD300 case, a
fairly large number of fake objects are wrongly detected by SSD512. The TOG-
mislabeling (LL) attack transfers to SSD512 but with the object-fabrication
effect instead, while the TOG-mislabeling (ML) attack failed to transfer for
this example. Now consider YOLOv3-D and YOLOv3-M, the TOG-mislabeling
(LL) attack is successful in transferability for both victims but with different
attack effects, such as wrong or additional bounding boxes or wrong labels. Also,
the attacks from SSD300 can successfully transfer to YOLOv3-M with different
attack effects compared to the attack results in SSD300, but not to YOLOv3-D
for this example.
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